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ALMOST SURE CONVERGENCE OF MULTIPARAMETER
MARTINGALES FOR MARKOV RANDOM FIELDS

By HANs FOLLMER
ETH Ziirich

We prove that bounded multiparameter martingales converge almost
surely if the underlying o-fields are generated by a Markov random field which
satisfies Dobrushin’s uniqueness condition. An example shows that it is not
enough to assume that the Markov field is uniquely determined by its
conditional probabilities.

1. Introduction. Suppose that we have a two-dimensional random field X, (¢
€ Z% with values in some state space. For a bounded random variable Z
depending on the field and for a finite subset V of Z2, consider the conditional
expectation

Zy=E[Z|X.(s € V)]

of Z with respect to the random variables X, with index s € V. We are interested
in the behavior of Zy as V increases to Z2. It is well known that the martingale
(Zv) converges in L? for any p = 1 along the filter of all finite subsets V of Z% see
[4] Chapter V, 44. But a classical counterexample of Dieudonné [5] shows that
one cannot expect almost sure convergence even if the random variables X, are
independent and identically distributed. For almost sure convergence, it is there-
fore necessary to restrict V to some smaller class. Let us consider the class of
rectangles V; = {s € Z?|0 < s < t}, where s < ¢ denotes the coordinatewise
ordering of Z?, and let us put % = o(X;; 0 < s < t). Now we are dealing with two-
parameter martingales

Z=E[Z|#] (t=0).

Here again, a counterexample of Dubins and Pitman [8] shows that almost sure
convergence does not hold in general. On the other hand we know, by a result of
Cairoli [3], that bounded two-parameter martingales converge if the random field
satisfies the following condition:

For each ¢ = (t1, t) the two o-fields F§ = o(X; si < t;) (i = 1, 2) are
conditionally independent with respect to their intersection %;.

(1.1)

From the point of random fields, this condition is rather restrictive. In most cases
there is some diagonal interaction between % and #; which does not pass
through %,. If this effect becomes too strong then one should expect almost sure
convergence to fail. The breakdown of martingale convergence may thus be
viewed as one of the various critical phenomena caused by strong spatial inter-
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action. On the other hand, it is natural to expect that martingales do converge for
a reasonably large class of random fields where the interaction is not too strong.

In order to make this more precise, we consider random fields in the framework
of Dobrushin [6]. This means that the random field is specified by the conditional
probabilities

1.2) P[X.EA|X.(s#t)] (tET).

For a Markov random field, these conditional probabilities only depend on the
values X, for those sites s which are neighbors of ¢£. In Section 3 we give an
example of a Markov random field which shows that bounded martingales may
not converge even if there is no phase transition, ie., if the random field is
uniquely determined by its conditional probabilities. But in Section 2 we prove
that almost sure convergence does hold for any Markov field which satisfies
Dobrushin’s well-known uniqueness condition

(1.3) c=supe)s C: < 1.

The coefficient C;,; measures the influence of site s on the conditional probability
(1.2) at site t; see (2.8) for the precise definition. The proof combines Dobrushin’s
contraction technique with an iterated application of “Hunt’s lemma” (2.3).
Throughout this paper we consider the two-dimensional case, but this is only
for notational convenience. The extension to higher dimensions is straightforward.

2. Convergence under Dobrushin’s uniqueness condition. Let the ran-
dom field be given by a probability measure P on £ = S”, where S is some
standard Borel space and T is the set of all couples ¢ = (¢, ¢2) of non-negative
integers. The random variable X; is defined by X;(w) = w(¢). We write s < ¢ if s;
<t(i=1,2)andput|t—s|=|t — 81|+ |ta — s2|. For t = (1, &;) € T we define
the o-fields 9’2 =o0(Xs;8i=t)(1=1,2) and % = 9’}1 n 9’}2 =o(Xs;s<1t).

A bounded martingale with respect to the o-fields % is of the form

@1) Z,=E[Z|#] (t€T)

for some bounded measurable Z; see [4] Chapter V, 44. Our aim is to prove almost
sure convergence of Z; as 1, t> 1 «. Let us first observe that the iterated conditional
expectations

(2.2) ZP =E[Z|F:|Fi] (GeET)
converge almost surely; note that condition (1.1) would imply Z{’ = Z,. In fact,
the one-parameter martingale Y, = E[Z| #}] converges almost surely and

satisfies sup | Y;, | € L for any Z with E[|Z]|log|Z|] < o; see [4] Chapter V, 25.
The convergence of Z{" = E[Y. | #1] thus follows from the following.

(2.3) LEMMA. If (Y,) converges almost surely and satisfies sup | Y.| € L'
then
limy,mE[Yn| %m]

exists almost surely for any increasing or decreasing sequence of o-fields ( 9n).
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(2.4) REMARKS. 1) The lemma is usually stated for the case n = m and
attributed to Hunt; see [4] Chapter V, 45. But it appears already, in the two-
parameter form (2.3), in Blackwell and Dubins [2] Theorem 2. The proof shows
that n may run through any partially ordered index set.

2) The observation that (2.3) implies the convergence of (2.2) is due to L.
Sucheston; see [13] where the argument appears in a more general framework
and with some other applications.

If we apply the lemma successively, with n ranging in T, then we obtain almost
sure convergence of

(2.5) ZN = E[ZV| FL| F1] (teT)

for each N = 1. This would imply almost sure convergence of the martingale (Z,)
if we could prove

(2.6) limysup;|ZY) — Z:| =0 aus.

The purpose of this paper is to show that this uniform approximation holds for
a large class of random fields.

From now on we assume that P is a Markov field specified by its conditional
probabilities in the sense of [6]. More precisely, we assume that for each ¢t € T we
are given a conditional probability distribution 7 (dx|w) of X, with respect to
o(Xs; s # t), which satisfies the following Markov property:

(2.7) 7 (- |w) = m(-|n) if Xo(w)=Xsn) for |s—t|=1.

Let C = (Cs,;) denote Dobrushin’s interaction matrix:

(2.8) Cs,e = sup{%| 7e(- |w) — 7(- | n) || :w = n off s}

where ||| denotes the total variation norm. Condition (1.3) implies that the

Markov field P is uniquely determined by its conditional probabilities (7:):c;
this is Dobrushin’s well-known uniqueness theorem [6].

(2.9). THEOREM. If condition (1.3) holds then any bounded martingale
E[Z| #;] converges almost surely as t,, t> 1 .

Proor. Throughout the proof we fix ¢t = (¢, t2) € T and put
T;={s€T|si>t}, oTi={s€T|si=1t}

for i = 1, 2. In view of (2.6) we have to see how the conditional expectation
E[Y| #i] of a bounded %7 -measurable random variable Y depends on the sites
s with s; = ¢, and s; > . In part 1) we evaluate the conditional expectation
as an integral with respect to an explicit conditional probability distribution
P[.| #i], viewed as a random field on S™ which only depends on the sites s in
the boundary 47\. In part 2) we use Dobrushin’s comparison theorem for random
fields in order to get a quantitative estimate for this dependence on the boundary
conditions. The iteration of this estimate in part 3) will lead to the uniform
approximation (2.6).

1) The joint conditional distribution of the random variables X;(s € Th), given
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the values X,(w) for s; < ¢;, may be viewed as a Markov random field on S”*: the
conditional probability distribution at a site s € T coincides with =, for s; > ¢
+ 1, and for s = (& + 1, sp) it only involves the boundary value X, ., (w). It is
clear that the collection of these conditional probabilities satisfies again the
uniqueness condition (1.3). Thus the conditional distribution on S™' is uniquely
determined by the boundary values X;(w) (s € T1). This is the so-called global
Markov property; see [1], [9], or [12].

For the rest of the proof we fix the restriction w; of w to {s|s =< t}, i.e., the
values X;(w) for s < ¢. A boundary condition on 47} can now be described by a
point x = (x1, X2, - - +) in the space B = S™>"*), putting X, ,,4») (®) = x,. Let P*
denote the induced Markov random field on 8™, and let (7%)scr, denote the
collection of its conditional probabilities. A bounded #?-measurable random
variable Y is of the form Y (w:, 1:) with 7 € 8™, and its conditional expectation
E[Y| #!](w) can now be calculated as the integral

f Y (o, <) dP™.

2) Consider two boundary conditions x, y € B. Applying Dobrushin’s compar-
ison theorem for random fields (see [7] Theorem 3 or [10] (2.4)), we obtain the
estimate

(2.10) ’ j Y (we, -) dP* — f Y(wi, ) dP? | < Yuver, buDP,8,(Y),

where 8,(Y) = sup{| Y(w) — Y(n)|: @ = n off v} denotes the maximal oscillation
of Y at site v, where DV is the sum of the non-negative powers of the matrix
C" = (Cs,¢)s,ce1,, and where we put
bu = sup (|| mi(- |n) — 7 [n) | :n € ST).

The local Markov property (2.7) implies b, = 0 if u; > ¢, + 1 or u; < £,, and also
fu=(t1+1, 6+ k) and yr = x. For u = (¢t1 + 1, £, + k) and y, # x, we have b,
= C(tl,t2+k),(t,+1,t2+k)'

Let us now assume that Y depends only on «; and on the coordinates s € 9T
N Ti; by the global Markov property, this will be the case for the random variables
which appear in (2.5). Having fixed ¢, we can identify Y with a function f on B,
writing

f(2)=Y(w) if Xjipnw =2, (n=1,2,-...)

for z = (21, z», -+ +) € B. Let us also use the notation
Elf(x) = jY(wt, -) dP7, al(f) = 8(t|+l,tz)(Y)
A;el,)l = C(t,,b_»+k),(t;+1,t2+k)D 8|)+1,tz+k),(h+l,tz)
so that (2.10) becomes
2.11) | Eof (%) = Eif (9) | < Xk i-rn0m AL 80(F).
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The same estimate holds for the operator E; and the matrix A®, obtained by
interchanging the role of 1 and 2. So far we neglect the fact that (2.10) resp. (2.11)
requires a certain continuity property for Y resp. f; this will be discussed in
Section 4.

3) Iterating (2.11) we get

(2.12) | (B2E)Yf () — (E2E)Nf ()| = Xk (APAD)RL8u(f).

If we evaluate (A ?AY), ; then we obtain a sum of terms C,,,C,,, - - - along paths
(u, v, w, - +) of the following form. The path starts at u = (£, + &, &), goes to (£
+ k, t; + 1), and from there to some site (¢, £z + j) in 8T}, with steps of length 1
and staying inside T%. Then it goes to (¢, + 1, t2 +j), and from there to (¢ + [, £2),
with steps of length 1 and staying inside T. No path occurs twice, and each has
at least length £ + /. This implies

CZ

1—-c¢

Ye (APAD) L < Tk Fmorrt Clhnnpmn, it = Dm=t41 €™ =

due to (1.3). In the same way we see that

@ A (YN ™
Yr(AYA) e = T
and so (2.12) implies
2N
(2.13) [(E2En) ¥ (x) — (B2Bn) “f(5) | = 7— S0 8u(£).

We will show in part 4) that the function fon B which corresponds to the random
variable Y = Z? in (2.5), satisfies

(2.14) Y1 8u(f) =27 Z]|w

for some constant y < co. With this £, the random variable Z{"*?(«) is of the form
(E:E1)Vf (x) with x, = Xy 1p (@) (R =1,2, --). Thus (2.13) and (2.14) imply

2N
(2.15) sup | Z{N P (w) — ZNP ()| =

2711 Z ||
“—2112)
where the sup is taken over all w and 1 whose restrictions w; and 7 to {s|s =< ¢}
coincide. Evaluating E[-| % ](w) as an integral with respect to a conditional
probability distribution P[-| %#;](w) which is concentrated on the set of all y with
1N = w¢, We see that

|ZEV*2 (@) = Ze(w)| = | E[ZIM*?(w) = ZE2(-)| ] ()|

is also bounded by the right side of (2.15), and this is the desired uniform
approximation (2.6).

4) We still have to clarify the following technical point. The estimate (2.11) is
only valid under the assumption that f belongs to the class C(B) of functions on
B which can be approximated uniformly by bounded measurable functions
depending only on finitely many coordinates. Let us therefore show that the
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kernels E;(i = 1, 2) have the following strong Feller property:

If fis a bounded measurable function on B then E;f belongs to C(B)
and satisfies Y, 6z (Ef) < .

For f € C(B) the estimate (2.11) holds and implies
2.17) | Brf (%) = Esf ()| < S D AD2| £l

But (2.17) clearly extends to any bounded measurable f. Since

(2.16)

(1) m -
Zk"Ak,l = Zk,l Zmzkﬂ C(t,,t-;+k),(t,+l,t2) = 21 Zmal+1 "=y <o,

(2.17) implies | E1f (x) — E1f (y)| < e whenever x;, =y, for k < k(¢), and this shows
E,f € C(B). Moreover, (2.17) implies

w(Erf) =TiAD 2| fll
so that }x 8 (E1f) = 27| flle < .

(2.18) REMARKS. 1) Theorem (2.9) also holds in the case T = Z* which was
considered in the introduction. In this case, we might as well state it as a four-
parameter result for the class of rectangles V, ;= (v € Z*|s=u=<t}(s=0=<1¢):
Under condition (1.3), bounded martingales

Z,.=E[Z| %, (s<0=<t),

where % = 0(Xy; s < u < t), converge almost surely as ¢, £; 1  and s1, s2 || —0,
or as t1, L 1 oo with fixed s. The proof is essentially the same, except that the role
of Z{ is now played by

Zit = EIZ| 74| 74| 95| 951,

where 9% =o(X.|u;=s) fori=1,2.

2) The method also works if the Markov property is replaced by an exponential
decay condition on the coefficients Cs,. In particular, it is enough to require the
Markov property (2.7) in terms of finite neighborhoods of the form {s||s — ¢| =
r} with some fixed range r < o.

3) We have assumed that the random variable Z is bounded in L.. Under
hypothesis (1.1) it is enough to require boundedness in L log L because then we
have to apply Lemma (3.1) only once. Since N iterations of the lemma would
already require boundedness in L log"L, a natural assumption for the method
above would seem to be boundedness in L, for some p > 1. But then we would
also need a reformulation of Dobrushin’s contraction technique in terms of L”-
norms, and a corresponding strengthening of condition (1.3).

3. A counterexample. In this section we construct a Markov random field
which admits no phase transition, but does admit a bounded martingale which
fails to converge almost surely.

We take T'= Z% and S = {0, 1}. Put T, = {t € T|| t| = n}. The random field
P on S” will be defined by strictly positive measures on S™(n = 0, 1, - -), and by



MARTINGALE CONVERGENCE FOR RANDOM FIELDS 139

the assumption that the different strips 7). behave independently. This implies
that P is uniquely determined by its conditional probabilities (1.2); see [6].
Consider a two-step Markov chain on S = {0, 1} with transition probability

€ if y=0

p(ll(x,y))={8 if x=0, y
1-6 if x=1, y=

1
1
whose initial distribution on S X S is strictly positive and puts weight ¢ on (1, 1).

Let P, be the corresponding distribution on S'> ", Denoting by &; the ith
projection, we have

(3.1) P,f¢i=10=<i=n)]=¢1-8)""
(3.2) P,,[gi =0 (ﬁ =is 3—”)] =(1—-e)™,
4 4
For k = 2 a simple estimate yields
(3.3) P ér=1]1<2c+ (E—2)0c+ &
so that
_ . _ (1 -8t

Take & = r2(r = 2, 3, --), n, big enough so that (3.2) is <%, and 8, small
enough so that (3.4) is = %. The random field P on S7 is now determined by the
following conditions: (i) the different strips 7, behave independently; (ii) for n
= n.(r = 2), the distribution on S™is given by the Markov chain measure P,
above; (iii) for n # n,, we take, e.g., a Bernoulli measure.

Let us now construct a bounded martingale of the form P[A | #](¢ € T') which
does not converge almost surely. Put A, = {x;=1(t € T, )} and A = U7, A,. For
0 <t € T, we have P[A| %] = P[A,| %] = P[A,|X,] since the different strips
behave independently, and so (3.4) implies

(3.5) PA|#]=% on {X,=1}.
For any s > 0, (3.2) and our choice of n, imply
(3.6) P[Zsstean X > 0] =W

for sufficiently large r. It follows by Borel-Cantelli that there are, almost surely,
infinitely many strips T, which contain some ¢ = s with X; = 1, and so (3.5)
implies
limsup P[A|#]=% as.
On the other hand,
lim inf P[A | %] < lim P[A| #mm] =0 as.on A

and P[A°] > 0 since ), P[A,] converges due to (3.1). This shows that P[A|%]
(t € T') does not converge almost surely.
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(3.7) REMARK. We have followed closely the construction of Dubins and
Pitman [8], except that their daisies have been replaced by certain Markov
chains. The point of the modification is that now the interaction becomes local in
the sense of (2.18, 2), i.e., the resulting random field has the Markov property
with range r = 4.
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