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ALMOST SURE INVARIANCE PRINCIPLES FOR PARTIAL SUMS OF
MIXING B-VALUED RANDOM VARIABLES.!

By J. KUELBS AND WALTER PHILIPP

University of Wisconsin and University of Illinois

The approximation of partial sums of ¢-mixing random variables with values
in a Banach space B by a B-valued Brownian motion is obtained. This result
yields the compact as well as the functional law of the iterated logarithm for these
sums. As an application we strengthen a uniform law of the iterated logarithm
for classes of functions recently obtained by Kaufman and Philipp (1978). As
byproducts we obtain necessary and sufficient conditions for an almost sure
invariance principle for independent identically distributed B-valued random
variables and an almost sure invariance principle for sums of d-dimensional
random vectors satisfying a strong mixing condition.

1. Introduction. Many of the classical limit theorems of probability hold for sequences of
real-valued random variables which are weakly dependent in one sense or other. However, for
weakly dependent Banach space valued random variables very little is known. In this paper
we establish a central limit theorem, several laws of the iterated logarithm, as well as an almost
sure invariance principle for ¢-mixing sequences of random variables with values in a separable
Banach space.

One method of proving the law of the iterated logarithm, as well as the functional law of
the iterated logarithm, for a sequence of real-valued random variables is to establish an almost
sure invariance principle, i.€., an approximation of the partial sum process by a suitable
Brownian motion, and then to use the behavior of the Brownian motion to obtain results for
the partial sum process. This is the idea of Strassen (1964) who showed that if {x;, j= 1} is a
sequence of independent identically distributed real-valued random variables centered at
expectations and with variance 1, then one can redefine (if necessary) the sequence {x;, j= 1}
on a new probability space, on which there exists a Brownian motion {X{(t), ¢ = 0} such that
with probability 1

(LD) Si=e ;= X(1) = o((¢ log log 1)*"%)
as t — o,

Using Brownian motion to approximate the partial sums of weakly dependent random
variables such as martingale differences, and mixing and lacunary sequences has been the
theme of a considerable amount of recent research. However, the methods used in this area
(martingale approximation and Skorohod embedding) have seemingly been unsuitable even
for independent Banach space valued random variables and hence little progress has been
made in this direction. Now using the recent approximation results of Berkes and Philipp
(1979) we prove a Banach space analogue of Strassen’s (1964) result while handling ¢-mixing
random variables as well.

Before stating three of our theorems we will introduce some notation. Throughout the
paper B denotes a real separable Banach space with norm || - |, and a, = (2n log log n)"/?
where log x stands for log(max(x, €)). If {x;, j = 1} is a sequence of B-valued random variables
we define S, = ¥<. xj, n= 1 and let # ) be the o-field generated by the random variables x,,
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Xa+1, .. ., Xo. The sequence {x;, j = 1} is ¢-mixing if there exists a sequence of real numbers
(k) | 0 such that
(1.2) | P(4 0 B) — P(A)P(B)| < ¢(k)P(A)

forall 4 € 4%, BE .#7,x and all k, n = 1. The sequence {x;, j = 1} is weakly stationary if
E{f(x1)g(xn)} = E{f(xs+1)g(xr+n)} forall n, k = 1 and f, g € B*.
We say that the sequence {x;, j = 1} satisfies the bounded law of the iterated logarithm if

(1.3) lim sup,—w || Sull/a. < o as.

We refer to the following refinement of (1.3) as the compact law of the iterated logarithm if
there is a compact set X in B such that

(1.4) lim sup, ... | Sx/a, — K[|=0  as.
and
(L5) C({Sn/a.}) =K as.

Here | x — K|| = infyex || x — y|| and C({ y.}) denotes the cluster set of the sequence { ya}.

Of course, if {x;, j = 1} satisfies the compact law of the iterated logarithm, then it also
satisfies the bounded law of the iterated logarithm. But the converse is not necessarily true.
For an example of this see Pisier (1975).

THEOREM 1. Let {x;, j = 1} be a weakly stationary sequence of ¢-mixing B-valued random
variables with (2 + 8)th moments uniformly bounded by 1. We assume that 0 < 8 < | and that
for some € > 0

(1.6) () << n~ BT,

Moreover, suppose that for every p > O there exists a mapping A,: B — B with finite dimensional
range satisfying

(1.7 E{A,(x)} =0 j=1
and
(1.8) supj=1 E[| Ay(x) > < o0,

Furthermore, suppose that
(1.9) E|| X = M) |I* = mp

forallp>0,a=0andn= 1. Then the two series defining the covariance function T of the
sequence {x;, j = 1}, defined as

(1.10) T(f &) = E{f(x)g(x1)} + Lj=2 E{f(x1)g(x))} + Tj=2 E{f(x))g(x1)}

converge absolutely for all f, g € B*. Moreover, without changing its distribution we can redefine
the sequence {x;, j = 1} on a new probability space on which there exists a Brownian motion
{X(1), t = 0} with covariance structure given by T such that with probability |

(L11) I Si=e % = Xl = o((t log log 1)*%) [ .

As usual, we use the symbol < to denote that the left-hand side is bounded by an
unspecified constant times the right-hand side; in other words, we use the << symbol instead
of the O notation.

The following result is a corollary to the proof of Theorem 1.

COROLLARY 1. Under the hypotheses of Theorem 1 the sequence {n""%S,, n =1} converges

weakly to a mean zero Gaussian measure p with covariance structure given by T; thus p =
LX(D)).
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As a matter of fact Corollary 1 is even true for random variables satisfying a strong mixing
condition with a slower rate of decay (see Proposition 4.2).

COROLLARY 2. Let {x;, j = 1} be a strict sense stationary sequence of ¢-mixing random
variables with values in a separable Hilbert space H. Suppose that x, has mean zero and Sfinite
(2 + 8)th moment. Moreover, assume that (1.6) is satisfied. Then the conclusions of Theorem 1
and Corollary 1 remain valid, i.e., an almost sure invariance principle and a central limit theorem
hold for the partial sums of the sequence.

If the maps A, of Theorem 1 are replaced by the linear maps I1y described in Lemma 2.1
of Kuelbs (1976a), and (1.9) is replaced by an analogous condition which relates the dimension
of the range of Ily to the rate at which the quantity corresponding to p can be made small,
then we can strengthen (1.11). Recall that the range of the map Ily is a Hilbert space H, which
is a subset of B determined by the covariance function T given in (1.10) and u = SAZ) where
Z is a mean zero Gaussian random variable with covariance 7. Our results in this direction
are not necessarily best possible, but we include them as we are certain that the methods we
use can be applied to various situations even though our theorem may not apply directly. In
fact since the writing of this paper Herold Dehling (1980) has substantially improved Corollary
3 below.

THEOREM 2. Let {x;, j = 1} be a weakly stationary sequence of ¢-mixing B-valued random
variables, centered at expectations and with (2 + 8)th moments uniformly bounded by 1. Suppose
that 0 < 6 < 1 and that (1.6) holds. Let Ily be the linear maps determined from the covariance
Sunction T as given in (1.10) by the method described in Lemma 2.1 of Kuelbs (1976a) and
suppose that

(1.12) T < e,

where || Iy ||: denotes the operator norm when Ily is considered as an operator from B to H,.
Furthermore, assume that there is a constant C such that

(1.13) E| X80 (5 — Myx) |2 = CnN 278
foralla=0,n, N = 1. Then the conclusion of Theorem 1 holds with (1.11) replaced by
(1.149) 13,=c %, — X(O || < tl/z(log ty~2 as.

In case {x;, j = 1} is a strictly stationary sequence with values in a separable Hilbert space
the central limit assertion of Corollary 2 aides us in formulating Theorem 2 in a more direct
form. The reason for this is, essentially, that the maps Iy, determined as in Theorem 2 from
the covariance function T in (1.10) or equivalently from the limiting Gaussian measure p =
Z(X(1)) of Corollary 2, are such that we can obtain an upper bound for || ILy||; directly and
such that they converge pointwise to the identity map on the support of p. Of course, by the
support of any probability measure » we mean the set

F={x€eHyU)>0 for all open sets U containing x}.

Further, it is known that the support of any mean zero Gaussian measure is a closed subspace.
In fact, it is well-known that if Z is a H-valued random variable with distribution g, then there
is an orthonormal set {e;, i = 1} (not necessarily complete) in H such that with probability 1

(115) Z = ZLZI (Z’ ei)eL

where {Z, e,), i = 1} are independent mean zero Gaussian random variables with positive
variances. Moreover, the support of 1 is the closed subspace M generated by {e;, i = 1}. These
results are contained in a paper by Jain and Kallianpur (1970). In view of (1.15) and Lemma
2.1 of Kuelbs (1976a) one now can easily check that if \; = E(Z, ¢;)?, i = 1, then

(L.16) In(x) = Yi=n (x, e)e: = Tien (X, a))Sov; xXEH
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where a; = A;"/%¢; and Sa; = \’’¢; where S is the operator of Lemma 2.1 of Kuelbs. The point
in writing both expressions for Iy in (1.16) is that both are useful in the proof of Corollary 3.
We also recall for the reader that {Sa;:i = 1} is orthonormal in H, since E(Z, a;)> = 1 and
{(Z, a):i= 1} are independent. Moreover, if L denotes the projection of H onto the orthogonal
complement of M we have

(L17) x1 = Tiz1 (X1, €)ei + Lxy).

We now can formulate Corollary 3.

COROLLARY 3. Let {x;, j = 1} be a strict sense stationary sequence of ¢-mixing random
variables with values in a separable Hilbert space H. Assume that x| has mean zero and finite (2
+ 8)th moment with 0 < § < 1. Suppose that (1.6) holds and that if x, is written in the form
(1.17), then

(1.18) Yien E(x1, &) < N7 and infici<n E(Z, €)* > ™V

where Z is the mean zero Gaussian random variable determined by T as given in (1.10). Then the
conclusion of Theorem 1 holds with (1.11) replaced by (1.14).

For independent random variables we also have the following theorem.

THEOREM 3.  Let {x;, j = 1} be independent identically distributed B-valued random variables
centered at expectations and with finite (2 + 8)th moments with 0 < § < 1. Then the following two
statements are equivalent.

(a) Without changing its distribution we can redefine the sequence {x;, j = 1} on a new
probability space on which there exists a Brownian motion {X(?), t = 0} with covariance structure
given by

T(f 8) = E{f(x1)g(x)} fgEB*,
such that with probability 1

X<t x; = X(t)|| = o(( log log 1)'/%) t— oo,

(b) x1 is pre-Gaussian and any of the following three conditions holds.
(i) S»/an— 0 in probability
(ii) EY Sal/an— 0
(iii) {x;, j = 1} satisfies the compact law of the iterated logarithm with limit set K, the unit
ball of the Hilbert space H s,

The Hilbert space He(x,) and the limit set K in Theorem 3 are defined in Lemma 2.1 of
Kuelbs (1976a). ’

Recall that a random variable x is called pre-Gaussian if its covariance function T¢( 5LHg
= E{ f(x)g(x)} is the covariance function of a countably additive Gaussian measure on the
Banach space B. For the sake of historical accuracy, however, we would like to observe that
pre-Gaussian random variables are in fact post-Gaussian.

In the meantime Philipp (1979) has proved Theorem 3 assuming only finite second moments
thereby generalizing Strassen’s (1964) Theorem 2 to B-valued random variables,

Finally we point out the rather surprising fact that for certain independent identically
distributed sequences of Banach space valued random variables, the compact law of the
iterated logarithm holds, yet it is impossible to approximate the partial sum process by a
Brownian motion with an error term which is o((¢ log log )'/%) as 1 — co. This contrasts sharply
with the finite dimensional situation. We will elaborate on this point in Section 5.

As we mentioned earlier, the asymptotic fluctuation behavior of Brownian motion translates
immediately to any sequence of random variables for which an almost sure invariance
principle holds with a sufficiently small error term. Indeed, let {x,, j = 1} be any sequence of
random variables satisfying (1.11). Then {x;, j = 1} satisfies the compact law of the iterated
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logarithm since by Theorem 4.1 of Kuelbs (1977) the sequence {X(j) — X(j — 1), j = 1} does.
Moreover, since in Theorem 1 p = #(X(1)) the limit set X is the unit ball of the Hilbert space
H, which generates u.

But we also have a functional law of the iterated logarithm analogous to the real-valued
case studied by Strassen (1964). Let Cz[0, 1] denote the Banach space of B-valued continuous
functions on [0, 1] which vanish at zero, with the norm

I/ 8 = supo<c<i | A, SECB0,1].

Forrn=1and 0 = ¢ =< 1 define Y.(¢) = X(nt) where {X(¢), ¢t = 0} is Brownian motion. Then
Y, € Cgl[0, 1] for n = 1. Moreover, by Theorem 1 of Kuelbs and LePage (1973) there is a
compact set K C Cg([0, 1] uniquely determined by the covariance of #(X(1)) such that with
probability 1

(1.19) My || ¥o/@n — K5 = 0
and
(1.20) C{Yn/an,n=1}) =K.

The cluster set K is described in Kuelbs and LePage (1973), but also can be computed from
the covariance function of the Gaussian measure P induced on Cg[0, 1] by the process { X{(1),
0 =t =1} by using Lemma 2.1 of Kuelbs (1976a).

Now let {x;, j = 1} be any sequence of random variables satisfying (1.11). For #n = 1 and
0 =1=1define

To(t) = Sn: if t=k/n, k=0,1,.--.n
and linear in between these points. Then by (1.11)
” Y.— T, ”B,m/an = 0(1)

and hence by (1.19) and (1.20) the partial sum process also satisfies the functional law of the
iterated logarithm, i.e., (1.19) and (1.20) continue to hold with probability 1 if we replace ¥,
by T..

As a final application of translating asymptotic fluctuation behavior for Brownian motion
to the related partial sum process we present a corollary which combines Corollary 3 and
Theorem 2.4 of Kuelbs (1975b).

COROLLARY 4. Let {x;, j = 1} be a strict sense stationary sequence of ¢-mixing random
variables with values in a separable Hilbert space H. Assume x| has mean zero and finite (2 +
8)th moment with 0 < & < 1. Suppose thar (1.6) and (1.18) hold. Let Z be as in (1.15), set

(12D T = supi=:1 {E(Z, )*}'?,

and let n, denote the cardinality of the set of those integers i where the supremum is achieved in
(1.21). Finally, let Y(t) be a positive nondecreasing, continuous function defined on [1, ®). Then

(1.22) P{||Su]l > n"*Y(m)Ti0} =0 or 1

according as

(1.23) f -(\P(—?)n—l exp(— ¥*(t)/D dt <o  or =,

Comparing the hypotheses of Theorems 1 and 3 we notice that in Theorem 3 no assumptions
are made to the effect that the random variables are approximable by finite dimensional ones.
This is in direct contrast to Theorem 1 and thus (1.9) might appear overly restrictive, Indeed,
(1.9) is undoubtedly not a necessary condition for (1.11). But there are many situations when
the approximation in (1.9) is automatic. One example is furnished by Corollary 2. Another
example occurs when {x;, j = 1} is'a sequence of independent identically distributed random
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variables centered at expectations, with finite second moments and satisfying the central limit
theorem in B. This can be seen by using the maps Ily defined in Lemma 2.1 of Kuelbs (1976a)
along with Theorem 5.1 of de Acosta and Giné (1979). A third example is provided if {x,,
j = 1} is a sequence of independent identically distributed random variables with mean zero,
finite second moments and assuming values in a type 2 Banach space. Recall that a Banach
space is of type 2 if there is a constant 4 such that

Elzi+ oo + 2P =AY, E| 2]

for all sequences {z;, j = 1} of independent mean zero random variables and all #n = 1. Suppose
now that there is a collection of maps {A,, p > 0} taking B into B with finite dimensional
range and such that

E{A,x1} =0, E|xi—Axi|*<p/A.

Such a family of maps A, exists by Kuelbs (1977), page 790. Then obviously (1.9) follows.
Hence in this setting the approximation of a single random variable by a finite dimensional
one translates immediately into the approximation of the partial sums.

We also would like to observe that if B is a Hilbert space or even only a type 2 Banach
space the rate of decay for ¢ demanded in (1.6) can be considerably relaxed.

The reader may wonder why we have Theorem 1 only for ¢-mixing random variables and
not for random variables satisfying a strong mixing condition. The main reason is the lack of
a proper generalization of Theorem 2 of Berkes and Philipp (1979) to strong mixing random
variables. But since we and Berkes are confident that such a generalization will be forthcoming
in the not too distant future, we have arranged the proof in such a way that the full strength
of the ¢-mixing condition is employed only in Section 3. In Sections 2 and 4, which contain
the remaining material on which the proof of Theorem 1 rests, we only assume that the
random variables satisfy a strong mixing condition with an even slower rate of decay for the
mixing coefficient.

As a by-product we obtain in Section 2 an almost sure invariance principle for sums of d-
dimensional random vectors satisfying a strong mixing condition. In Section 3 we prove a
bounded law of the iterated logarithm for ¢-mixing B-valued random variables assuming only
a rather mild growth condition on the variance of the partial sums. In this section we also have
estimates on the (2 + §)th moments of and exponential bounds for the partial sums of such
random variables which may be useful in other applications. In Section 4 we complete the
proof of Theorems | and 2. We also use some of the material of Section 4 for the proof of
Theorem 3, carried out in Section 5. In Section 5 we also give an example which is instructive
in connection with the proof of Theorem 1. As an application of Theorem | we prove in
Section 6 a refinement of a uniform law of the iterated logarithm recently obtained by
Kaufman and Philipp (1978).

The proof of Theorem 1 is probably easiest understood by starting to read Section 4.4 and
working one’s way backwards.

2. An almost sure invariance principle for sums of mixing random vectors. As a by-product
of the proof of the almost sure invariance principle for B-space valued random variables we
obtain an almost sure invariance principle with a sharper error term for sums of random
vectors satisfying a strong mixing condition. Let {£,, n = 1} be a sequence of random vectors
€ R and let .# % be the o-field generated by the random vectors &,, 41, . . ., &. Then {£,,
n = 1} is said to satisfy a strong mixing condition if there exists a nonincreasing sequence
{p(n), n = 1} such that

2.1 | P(AB) — P(A)P(B)| < p(n) | O
foralln,k=1,allA €. #%and BE H5.,.
TueorReM 4. Let {{., n = 1} be a weak sense Stationary sequence of R%valued random

vectors, centered at expectations and having (2 + 8)th moments with 0 < § < 1, uniformly
bounded by 1. Suppose that {£,, n = 1} satisfies a strong mixing condition (2.1) with
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2.2 p(n) < p~1Fa0+2/) e> 0.
Write
én = (gnl, e énd)'

Then the two series in
2.3) Yii = E&1&1; + Yp=2 E€0&n + Yi=2 Euibyy

converge absolutely. Denote the matrix ((v;))1 = i, j < d) by I". Then we can redefine the
sequence {&., n = 1} on a new probability space together with Brownian motion X(t) with
covariance matrix I" such that

Znst gn - X(t) << t1/2w>\ a.s.

for some A > 0 depending on €, 8 and d only.

For independent random vectors € R this result was recently proved by Berkes and
Philipp (1979). Moreover, in that paper a sketch of the proof of Theorem 4 was given for the
case d = | using the present method. (See Remark 4.4.4 of Berkes and Philipp (1979).) On the
other hand for the case d = 1 a much more general almost sure invariance principle was
proved by Philipp and Stout (1975) using martingale approximation and the Skorohod
embedding theorem (see Theorems 7.1, 8.1 and 8.2 and 11.1 of Philipp and Stout (1975)). It
is possible to extend Theorems 7.1, 8.1 and 8.2 of Philipp and Stout (1975) to random vectors
using the present method.

Of course, by a weak sense stationary sequence of random vectors {£,, n = 1} we mean a
sequence whose components £,, satisfy

E{§a+n,j£a+1,i} = E{gnjgli}

foralla=0,n=1and 1 =i, j=d. It is easy to see that this is in agreement with the definition
for B-space valued random variables as given in Section 1.

2.1. Preliminaries.
LemMa 2.1. Let ¢ and m be two random variables measurable % and 4 respectively. Let r, s,
t=1withr ' +s '+t =L If||£]s < o and || n|: < = then

(2.4) | Eén — EEn| = 10(o(Z )" [[£lls |7 |le-
Moreover, if | €|l < % and || n]|. < o then

(2.5) | Eén — E€En| < 40(Z 9) [ € ll= M0 -
Here

p(F G) =sup | P(AB) — P(A)P(B)|

the supremum being extended over all A € Fand B € 4.

Relation (2.5) is due to Volkonskii and Rozanov (1959), (2.4) is due to Davydov (1970).
For a proof see Deo (1973). The next lemma is due to Dvoretzky (1970).

LeMMA 2.2, Let § be a (possibly complex-valued) random variable with | ¢| < 1 and let # be
the o-field generated by £. Then for any o-field 4
E|E(¢| 9) — E¢§| = 2mp(Z, 9).
If & is real-valued then the constant 2 can be replaced by 4.

This lemma is implicitly contained in the proof of (2.5) as given in Ibragimov and Linnik
(1971), page 306. On the other hand if we take the well-known relation (2.5) for granted we
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can give a very simple proof in the real case. Assume without loss of generality E£ = 0. Then
by (2.5)

E|E(¢| 9)| = E{E(¢] 4)-sign E(¢| 9)}
= E{¢-sign E¢| 9)} < 40(F, 9).

We observe that similar results, such as Theorem 2.2 of Serfling (1968) can be proved in the
same way by combining this trick with one used in Philipp and Stout (1975), page 33.

In Section 4 we shall need to allow that the dimension 4 tends to infinity at a certain rate.
For this reason it is important to keep track of how the estimates in the following lemmas
depend on d.

From now on we assume that

2.6) 0<ex<l.

LemMma 23, Let {§., n = 1} be as in Theorem 4. Then forall1 =i, j<d
E{Tkm=n &ribm} = yun + O(n'7°)
and
2.7 v, = 0(1)

where the constants implied by O only depend on € and the constant implied by << in (2.2).

The proof follows along well-known lines. We have by (2.4) and (2.2)
2.8) | E&udi| = 10| & fl2+s | o 2o (h = DY < k71
Thus

E{Ykmen &ribmi} = nEfnéy + Yi-2 (n — k + DE¢u&y,

+ Yi-e (n — k + DE&GY,;

= n(Eéuéy + Yi-z Eéiiby
+ Y2 Eduiby) + O(Xi-2 k)

=ny, + O Yasn K79 + O(n™)

= nyy + O(n' ™).

Relation (2.7) now follows from (2.3) and (2.8).
LeMMA 2.4. Let {n., n = 1} be a weak sense stationary sequence of random variables,

centered at expectations and with (2 + 8)th moments uniformly bounded by 1. Suppose that
{nn, n = 1} satisfies a strong mixing condition (2.1) with rate of decay given by (2.2). Then

ECQren m)? = 6°n + O(n'™)
where
29 0% = En} + 2 Yoz Enqime = O(1)
and where the constants implied by O only depend on € and the constant implied by << in (2.2).

We call 6” the variance of the sequence {n,, n = 1}.

This follows from Lemma 2.3 by setting d = 1 and ;. = &.
The next lemma is due to Sotres and Malay Ghosh (1977). The value of « can be obtained
by a careful analysis of their proof and of Serfling’s (1968) paper on which their proof rests.
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LeMMA 2.5. Let {n., n = 1} be a sequence of random variables, centered at expectations
with (2 + 8)th moments with 0 < 8 < 1, uniformly bounded by 1. Suppose that n., n = 1} satisfies
a strong mixing condition with rate of decay p(n) given by (2.2). Put o = €8/8. Then for all a =
0

E | Z‘::g*'l Ty |2+a < n1+u/2.

Here the constant implied by << only depends on €, 8 and the constant implied by << in (2.2).

2.2. The central limit theorem. Let u = (uy, ---, uq) € R? and let {é, n = 1} be the
sequence of Theorem 4. We write for n = 1
(2.10) o=, &) = Y =a hbn.

Then {{,, n = 1} satisfies the same mixing condition as {£,, n = 1}.

LEMMA 2.6.  We have for the variance o” of the sequence {{,, n = 1}
of=(uTuy<d|ul

where the constant implied by << only depends on € and the constant implied by << in (2.2).

This follows at once from (2.9), (2.3) and (2.7).

For the proof of Theorem 1 we need to assume that the dimension & and the bound on the
(2 + 8)th moments of the random vectors §,(1 < »n =< N) may increase with N. For that purpose
we fix N = 1 and assume that {£,, 1 <n =< N} is a sequence of random vectors of dimension
d(N). Let fn(u) be the characteristic function of N™'/? ¥,<n &,.

ProposITION 2.1. Let {§, 1 =< n < N} be a weak sense stationary sequence «f random
vectors with values in R®, d = d(N), centered at expectations and with (2 + 8)th moments with
0 < 8 = 1, bounded by b = b(N) = 1, say. Suppose that the sequence satisfies a strong mixing
condition (2.1) with rate of decay (2.2). If d = d(N) = N** where o is given by Lemma 2.5 then

fv(u) — exp(— % (u, Tu)) < BN~/

for all u € R with |u| = N*/*. Here the constant implied by << only depends on €, 8, and the
constant implied by << in (2.2).

The proof follows the usual pattern of defining large block sums and small block sums of
random variables and of estimating their characteristic functions. Since we expand the
characteristic functions using a Taylor expansion up to the (2 + §)th moments we can assume
without loss of generality that b = 1. Let

@11 p=I[N"]q=[N""",  I=[N/(p+ ]

Then

(2.12) 1= N"%1 + O(NV%).

We introduce the intervals
Hy=((=)p+a,jp~+ (- D4l l=j=l
Bi=(p+ (G~ Dgjp+ 9l l=j=l

Lii=(Up + ) N]
and define the random variables y,(l < j< D and z;(1 =j=< [+ 1) by

= ZVGH, vs z; = ZVEIJ gv«
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LemMA 2.7.  Under the hypotheses of Proposition 2.1
E|Y <tz |* << N"%.

1/(2+8)

Proor. Replacing &, by £,b”
(2.10) and Cauchy’s inequality

| Zg:Z+1 g.” I < I u | |Zg:g+l gv | = Na/64 Zde | ZZ:Z+1 gu] |

foralla=0,n=1and |u| < N“/% We apply Lemma 2.5 to each sequence {£,,, » = 1}(1 <
j = d) and obtain

we can assume b = 1 without loss of generality. By

E| Y50 &, [27 < nt*2

uniformly for =0, | <j=<dand 0 < y < a. More precisely the constant implied by < only
depends on ¢, 8 and the constant implied by < in (2.2). Consequently

(213) E | ‘:::+1 ; |2+y P N(2+7)a/32n1+y/2

with the same provision for the constant implied by <. Thus

2.14) Ez} < NY/4+3as8
and
(2.15) Ez}y < N3/4*el8,

Hence by Minkowski’s inequality, (2.12), (2.14), (2.15) and since a < % by (2.6) and Lemma
2.5

” stlﬂ z ”2 & ] NVBT3a/16 | nr3/8+a/16 oo Ar3/B+3a/16 oo ATT/16

LemMa 2.8.  Under the hypotheses of Proposition 2.1

I, E{exp(iy, N"%)} — exp(— % (u, Tu)) < N **%p,

The proof is a routine modification of the standard proof of the central limit theorem for
independent random variables. Again we assume b = 1. We first observe that by Lemma 2.6
(2.16) of <« N8,

Thus by Lemma 2.4
@17) Ep? = a®N¥* + Q(N?(-a/4N=/16)
= oIN¥* + Q(N¥* /%)

since & < € and since {,N "% has (2 + 8)th moment bounded by 1. Moreover, by (2.13)
@.18) E |y, [P < N@roa/2ysea/s o N (tta/26/4ta/16)
Thus for some 4 with |§| < 1
2.19) E{exp(iy N "} =1—=Y% N'Eyf + ON"E | y;"** =1 —r;, say.
Now by (2.17) and (2.18)

r, = %BNY46® + O(N™%)) + O(N~+a/D0/4a/16))

= BN Vg2 4 O(N~VA/3),

Thus by (2.16)

rf < N Yot o N738,
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Consequently,
log E {exp(iyyN™/%) = —r; + 0r} = =% N™g® + O(N7/*7/%)
and

log I,_, E{exp(iyN %) = = o o’(1 + ON /) + OWN ™) =~ % o* + O(N™/%)

by (2.12) and (2.16). Hence
I, E{expliyN ™)) = & 720 "%) = &= 2(1 + O(N™/™)).
The lemma follows now from Lemma 2.6. ]
We can now finish the proof of Proposition 2.1 in the usual fashion: We have
(2.20) fu(u) —exp(— % (u, Twy) =T+ II + 11, say,
where
I = E{exp(iN"* (T 1y + Tj=e2))} — E{exp(N~"" T =1))}
I = E(exp(N 2 32)} — [, E{exp(N ")}

I = T ;= E{exp(iN~"%y;)} — exp(— % (u, Tu)).

Since for real x and y
| e = e | = e~ 1| = x|
we have by Lemma 2.7 and Cauchy’s inequality
I<< N ’E | Y ez, | < NTVENT1p << N8,
g; apply Lemma 2.1 [ times to the real and imaginary parts and obtain by (2.12), (2.11) and
2)
IT < lp(g) < NVAIN"M/4 « N7/,

Since I11 is estimated in Lemma 2.8 we obtain Proposition 2.1 from (2.20) and these estimates.

2.3. Introduction of the blocks. In Sections 4 and 5 we need to assume that the dimension
d of the random variables £, increases with n. However, treating the cases d(¥) = const and
d(N) 1 » simultaneously, as was done in the proof of the central limit theorem, would yield
a worse error term in Theorem 4. Hence we shall assume throughout the remainder of this
section that the dimension d is fixed.

We define blocks H and I, of consecutive positive intergers leaving no gaps between
blocks. The order is Hi, I, Hy, I, - - - (These blocks have nothing in common with the blocks
introduced in Section 2.2.) To define the length of the blocks we write

2.21) B =288 da!

and set

(2.22) card Hy, = [k*], card I, = [k**] k=1
Put

(2.23) te =Y, = card(H; U I)).

Then

(2.24) P < < kP
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PROPOSITION 2.2. There is a constant A > 0 such that as k — «

MaXyy=i,,, | Soeee1 & | < 2 as,

It is enough to prove the inequality for each component £,(1 < j < d). Denote them
generically by 5,. We put

(2.25) F(r, s) = | Doty |.
For given N with # < N =< ty+; we let n = n(N) be the largest integer such that
(2.26) 2"= N~ t.
Writing N — 1, in dyadic expansion we have
N — tp = Yomizn €2
where ; = 0, 1. Hence (for the details see, e.g., S. and L. Gaal (1964), page 139)

(2.27) F(0, N — tx) = Yosisn F(m2'*', 27

where 0 < m; < 277 (0 < [ < n) are integers. Put y = a/8(8 + 1) and define the events
(2.28) Gu(m, I) = {Fm2™', 2%y = /%)

2.29) G = Uizn, U, _yn,—1 Gu(m, 1)

where 7, = n(tx+1) in the above notation.
LemMA 2.9.  With probability 1 only finitely many of the events G occur.

Proor. We have by Lemma 2.5 and (2.24)
P{Gk(m, l)} < k—(,8+1)(1—-y)(1+a/2)2l(1+¢x/2).
Thus by (2.22), (2.28) and (2.29)
P(Gk) < k—(ﬂ+1)(1—y)(1+¢x/2) 215"1, 21(1+¢x/2)2n,,—l

< k—(B+1)(1—‘/)(1+a/2)2n,,(1+u/2) <« k—l—a/B' 0

Proposition 2.2 follows now at once. Indeed, by (2.25) — (2.29) we have with probability 1

MaXy<n=,,, F(O, N — tx) < np 87072 < t}/274, 0
REMARK. A similar argument is used in Section 3.3 and in the proof of Proposition 4.1,

We now define random variables y; and z; by
(2.30) = EVEFI] gv Zj = Z"EIj gv-

(Again these have nothing to do with the ones introduced in the previous section).

Lemma 2.10. We have as M —
1Y ,emz; | <ttt as.
Proor. By Minkowski’s inequality, Lemma 2.3 and (2.22)
| Ximm zillo < Bjmm || 21l << Tjem j¥° << MM,

The lemma follows now from Chebyshev’s inequality and the Borel-Cantelli lemma since 8
= 288/a > 4-288.
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PrOOF OF THEOREM 4. We follow Berkes and Philipp (1979, pages 43, 44). Put
Xe=k Py,
and let % be the o-field generated by Xj, - - -, Xi. Then by Lemma 2.2, (2.2) and (2.21)
E | E {exp(i (4, X&) | F-1)} — E{exp(i (4, Xp))}| < p (k¥ < kP4 < k%,
From Proposition 2.1 we obtain using (2.21) once more
E{exp(i (u, Xe))} — exp(— % (u, Tu)) < (k) <« k%

for all u with | u| < k** < (k®)/*. These two inequalities show that we can choose A, = const-
k™* and Ty, = const-k**. The remainder of the proof now follows Berkes and Philipp (1979,
pages 43, 44) verbatim except that in (3.10) of that paper we have to include the estimate given
by Lemma 2.10. We also note that I" need not be positive definite to carry out the estimate of
page 43 of Berkes and Philipp (1979).

3. The bounded law of the iterated logarithm for ¢-mixing B-space valued random variables.
In this section we prove the following theorem.

THEOREM 5. Let {x,, v = 1} be a sequence of ¢-mixing B-space valued random variables
with (2 + 8)th moments uniformly bounded. We assume that 0 < 8 < | and that

G.1 d(n) <« p~EHOUrLD
Jor some 0 < e < Y. Suppose that for some o
(3.2 E|Ytax|P<e’n
foralla=0,n=1. Then with probability 1
lim SUPN—w " E,,szv X, ||/aN =< 20000/8.
The proof of Theorem 5 is divided into three sections.
3.1. Bounds on the (2 + 8)th moments of partial sums.
LemMa 3.1.  Let {n,, n = 1} be a sequence of B-space valued random variables, satisfying
the hypotheses of Theorem 5. We assume that 0 < 8 < 1. Suppose that (3.1) holds. Then
E ” Zc:;i—;+1 M "2+6 < n1+8/2(02+8 + b).

where the constant implied by << only depends on €, § and the constant implied by << in (3.1).
Here b denotes the uniform bound on the (2 + 8)th moments.

This lemma is a variant of Ibragimov’s (1962) Lemma 1.9. Its proof is a minor modification
of the proof of Theorem 3.1 of Serfling (1968). Without loss of generality we assume 6**% + b
= 1. Since & = 1 and since his 8 = %6 we can replace his € by 8. For given n we define

k=[n"*%, m=[%n]—k
so that
33) S(2k) < n~ 1+,
Here and throughout this section e is the same as in (3.1). Define
R, =Y, S, = Y
Then each of these two sums has m terms and thus by (3.2) we have uniformly in a = 0

E|S.|2<m.
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Moreover, we observe that by (3.3), by Serfling’s (1968) Theorem 2.2 with a = p =1+ %8, ¢
= | + 2/8 and by Minkowski’s inequality

A=E(| Sa|* |45 = E| Sa |

satisfies
E| A |1+8/2 < 4¢(2k)8/2 E ” Sa "2+8 < n1+8/2.

Thus by Serfling’s argument
E || Ra+ Sa |**° = m™**2a, (2% = z51)**°.

Consequently, using Minkowski’s inequality (here and in the next five lines a» has the same
meaning as in Serfling’s paper)
| S22 1y Jlovs < || Ra + Sa [l2+s + || AR [lo+s + || Datn ll2+s
=mP2a{®P02 - 20 + 2k + 1
< m1/2a’17{(2+8)(21/2 - Z(;l + 3m—e/8)
since a,, = 1. Thus for all # = Ny = (620)*°

E| S, P = n"an.

The remainder of the proof is the same as in Serfling (1968).
We note that the idea of separating the blocks R and S. in this context goes back to Doob

(1953), pages 225-227.
3.2. An exponential bound. The proof of Theorem 5 is based on the following proposition.

ProPOSITION 3.1. Let R = 1 and assume the hypotheses of Theorem 5. Suppose that the
bound b for the (2 + 8)th moments is not less than 1. Then there exists a constant C = 1 depending
only on €, § and the constant implied by << in (3.1) such that for alln =0 and a = 0

P{|| ¥2% x. || = 10Ra(2" log n)*/%}
= CQ7% + R27"%(1 + bo*%) + exp(—1.1 RY*log n)).
Without loss of generality we can assume a = 0 as well as
(3.4 R7X1 + bo 2% < 27720

since otherwise there is nothing to prove. We divide the proof of Proposition 3.1 into several
steps and formulate them as lemmas. Let

(3.5) s = l:g n:! and t= l:% n:!.

We introduce long blocks Hj, - - -, Hy of consecutive integers, each having length 2° — 2* and
short blocks I, - - -, I of length 2° each, leaving no gaps between the blocks. The order is H;,
L, --., Hy, It. We define k by

(3.6) k= 2""%(< 275

so that

U= ;U L;=[1,2"]NZ.
We write
yi=Yven X, and  z,=3,erx, A 1=j<k
and note that by Markov’s and Minkowski’s inequalities and by (3.2), (3.5) and (3.6)
P{| Zs=k 2 || = % Ro2"*} < (% Ro2/*) 2 (T, (E || 7 |22

@7 <« R™H™n/5,
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We also note that
Yi=a( )i+ 2) = Yo=rx,
and that thus by the triangle and Holder’s inequalities and by (3.2), (3.12) and (3.6)
E|Ymyl =X E| z]| + 02
¢ < 0k-27% + 0272 < 027?

By Theorem 2 of Berkes and Philipp (1979) there exist independent random variables ¥;
having the same distribution as y, such that

39 P{LY; =yl = 66(2°)} < 66(2°).
Thus by (3.1), (3.4), (3.5) and (3.6)
P{I Syer (%= )l = % RYC D02} < 5, P{| Y = 3y | = %6 R¥E0277)
(3.10) -2
<k o) <27,
We now truncate the random variables Y; by defining

w=Y, ] Y] <R¥Y*¥52"(log ny

@10 =0 otherwise.

Since Y, and y, have the same distribution we obtain from Lemma 3.1, (3.4) and (3.5)

PLY, # w;} = P{|| , || = R¥**P62"(log n)~/%}
(312) < R—20—2782—n(1+8/2)(10g n)1+8/2E “ _yj "2+8
< R—22—n(1+8/2)/5(1 + bo—2—8) < 2*n(1+6/4)/5.
LeMMa 32 E||Zc w, | < RY@g2m/?

Proor. Let

A= {| Zy=e (3 = W)l = R¥*Pg2%/%)
B ={l| Tj=x (3 — Y))| = R 96277}

and
C = Uizy=k Uizjie- szt (CUty =+, ) N BY)
where
Cp o) =w, # Y, -, w#£Y, ,w=1Y, forall j#ji(l=<i<vw)}.
Obviously 4 C BU C. By (3.8)

(3.13) f I s will = f I Zs=e s | + R 96272 < R¥*+9g 27
At At
and by (3.6), (3.10) and (3.11)
(.14) f | 3=k w || < k-2"/2R¥E+D P(B)g < 2"/5+1/2RU@+9)=2ng o R2/@+3) g
B

By (3.12) and independence we have for each »-tuple j; < -.. < j,
(3.15) P{C(j1, ce < 9—l1+5/4)/5
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and on B°N C(jy, - - -, j,) we have
| Zizew | = 2k Yill + Xis | T
(3.16)
=) Sim i) + R¥* 0622 + 3 || Y |-

By independence, Cauchy’s inequality, (3.15), (3.12), (3.5), (3.2) and since Y, and y; have the
same distribution we have

J I, 1
ClUpse i)

=P(w, A Y, l<I<wnls#iiw=Y forall j#j l<I=<} I v; |

(wj‘,éyJ)
< 27(v—1)n(1+8/4)/5.Pl/Z{Wj‘ % le} 'E1/2 " le "2
prs 2—(u71)n(1+5/4)/5.2—n(1+8/4)/1022n/5a.

Consequently by (3.8), (3.6) and (3.16)

j IDWERA SJ I 2= s || + R*E 02772
C C

+ 3 cp kTy27 T IRORE/A/E 9 RS0 Y In/5 s

< RZ/(2+5)02n/2 + 02)1/2.2)15/40 ZISvsk v2—nv5/25 <« R2/(2+5)02n/2'

The lemma follows now from (3.13), (3.14) and the last estimate.
The following lemma is essentially due to Kuelbs (1977).

LemMa 3.3 Let {w,, j < k} be a sequence of independent B-valued random variables with
|| wi || < cbe l=j=k
Let
Th=3,<xw.
Then
P{| T || = 2ebs} < exp{— € + %2 (1 + %2 €c)bi” Y=<k E || w; |*
+ Y% ebi'E| Tw |} ifec=<1
=exp{—ec (1 — % b* Ty E | wi |9
+ % 'BE || Tk ||} ifec > 1.

Proor. By relation (2.4) of Kuelbs (1977) we have for all ¢ with 1c < 1
P{|| Ty || > 2ebr} < exp(— et)E{exp(%bi't | Tx ||}
< exp{— et + Yar’(l + %tc)bp® Y ;< E || w; I + Vb 'E | Ty, ||}

The lemma follows if we set t = € or ¢ = 1/c according as ec < 1 or ec > 1.
We now can finish the proof of Proposition 3.1. We first observe that by (3.11), (3.2) and
the definition of y,

E|wP=E|Y;|P=E|y|=2%"
Thus by (3.5)
3.17) S E || w | =< k-2%% < 2762
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We now apply Lemma 3.3 with b, = 62"%, ¢ = R¥®"(log n)™'/? and € = %R(log n)"/2. Then
€c > 1 and thus by (3.17) and Lemma 3.2
P{|| ¥,=x w, || = 9Ro(2"log n)'"*} =< exp{— % R¥**¥log n-(1 — %) + O(log"’n)}
< exp (—1.1 R¥®*og n).

Here the constant implied by O only depends on the constant implied by < in Lemma 3.2.
Thus by (3.10), (3.12), (3.6) and (3.7)

P{|| 3oz x, | = 10R0(2"log n)'/*}
= P{|| Zs=x(Y; — y)l = % Ro2"?} + P{|| ¥j= 2, || = % Ro2"?}
+ Y=k P{w; # Y} + P{|| Z,=¢ w, | = 9Ro(2"log n)"/*}
< 27T 4 R4 R+ bo 227/ 4 exp(— 1LIRY*Plog n).

The proposition follows now since 0 < § < 1.

3.3. ProoF oF TuroreM 5. We can assume without loss of generality o = 1. We write
(3-18) F(M, N) = | D58 x, ||

Let N =1 be given and let n be the largest integer with 2" < N. Put p = [3n/8] + 1. Then we
can write

N=2"+¥r, &2 + 627

where ¢, = 0 or 1 and | §| =< 4. Thus there exist integers m; with 0 < m; < 2"~*(p == n) such
that (for the details see S. and L. Gaal (1964), page 139)

(3.19) F0, N) =< F(0,2") + Yip FQ™ + m2!, 2571 4+ 32Hme242 | 5 |,

=204m, 2P+1
We now define the events
E. = {F(0,2") = 10(2"log n)"/*}
Gu(m, 1) = {FQ" + m2", 2" Y = 10.2%/2+3U=n)/801 50 1/2
G, = ULy Unzant Go(m, 1)
Ha(my = (5757207 | x, || = 277

and

Hn = Ums2"‘P n(m)

Lemma 3.4, With probability 1 only finitely many of the events E,, G, and H, occur.

ProOF. We put R = 1 in Proposition 3.1 and obtain
(3.20) P(E,) « 27"% 4+ exp(— 1.1 log n) < n7',
Similarly if we put R = 20"91/278/80 we ohtain
P(Go(m, 1)) < 270 DUZMA0B/20 4 972 4 exp(— 1.1 20~D/0g [).
Thus
P(Go) <K Yanssmimn 2077 4 By eren 272027
321 + Yonss=izn exp(— 1.1.2°078log [ + n — )

< np
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Finally,
PH.m)=P{ T (x| = EllxD=%2"} + P(TE| x| ="%2")

where both sums are extended over appropriate intervals of length 2”. The second probability
is zero since p < %n + 1. The first probability is by Lemma 3.1.

<« 27ﬂ(1+5/2) . 2p(1+6/2)

Thus
(3.22) P(H,) < 27 PI¥/2 0 pnb/4

The lemma follows now from (3.20)~(3.22) and the Borel-Cantelli lemma.
To finish the proof of Theorem 5 we observe that by (3.19) and by Lemma 3.4 we have
with probability 1 for all N = Ny(w)

F(0, N) =< 10Q2"0g n)/? + Yan/ssizn 10.27/2+80/801o01/2y 4 on/2
= 2000/8-(2"log n)"/* < 2000/8-(N log log N)"/2,

We divide by (N log log N)'/% take the lim supn_.. and obtain the result.

4. Proof of Theorems 1 and 2. The goal of this section is a little ambitious. We first shall
prove the rather general Theorem 6 below from which Theorem 1 and half of Theorem 3 will
follow fairly quickly. Moreover, we have arranged the proof of Theorem 6 so that first the
proof will require only minor modifications to yield Theorem 2 and also that Theorems 1 and
2 can be easily extended to random variables satisfying a strong mixing condition once
Proposition 3.1 has been generalized accordingly. We hope that the exposition is sufficiently
translucent so that the reader will not judge our goal as over-ambitious.

Before we start we would like to dispose of an idea for the proof of Theorem 1 which does
not work. Considering conditions (1.7)-(1.9) and the statements of Theorems 4 and 5, the
general direction of how to proceed from there on appears to be quite obvious. For given p
> 0 the random variables x, — A,(x,) satisfy the hypotheses of Theorem 5 and thus

Lim supse || Yen X — Ag(x) || /2 < p*  as.

Since the random variables A, (x,) are finite dimensional and mixing Theorem 4 gives a
Brownian motion {X,(¢), t = 0} such that

[ 2= Ap(xy) — Xo() || < 67272 a.s.
Hence
4.1) lim sup— || ¥ x, — x0(2) | ( log log 1) 2 < p'?  as.

Since p > 0 is arbitrary it follows from the remarks after Theorem 3 that (4.1) still implies the
compact as well as the functional law of the iterated logarithm for {x,, j = 1}. However, (4.1)
does not guarantee the existence of a universal Brownian motion {X(z), ¢ = 0} satisfying (1.11).
As a matter of fact this is just one thing the example mentioned in Section 1 and carried out
in Section 5, is designed to demonstrate. Hence a substantially different idea has to be
introduced. It consists, in essence, of a utilization of the maps Iy described in Lemma 2.1 of
Kuelbs (1976a).

We now formulate the above-mentioned result which also serves as an outline of the proofs
of our main theorems.

TueoreM 6. Let {x;,, j = 1} be a weak sense stationary sequence of B-valued random
variables centered at expectations and with (2 + 8)th moments with 0 < 8 =< | uniformly bounded
by 1. Suppose that {x,, j = 1} satisfies a strong mixing condition (2.1) with rate of decay given by
(2.2). Moreover, let o be given by Lemma 2.5, i.e., a = ¢6/8 and recall (2.6). Suppose that there
exist constants A and C such that forall R=1,a=0andn=0

(42) P{||T=2 x. || = ARQ" log n)?} = CQR72" + R™2277/ 4+ exp(—1.1R*/**) log n)).
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Next, let u be any mean zero Gaussian measure on B and let Iy be the maps obtained from p as
defined in Lemma 2.1 of Kuelbs (1976a). Then {Ilnx;, j = 1} is a weak sense stationary sequence
of random variables centered at expectations with (2 + 8)th moments uniformly bounded by
| x| **°. Hence by Proposition 2.1 for any fixed a = O the sequence {IlnXj.a, j = 1} satisfies
the central limit theorem with limiting Gaussian measure Ay (say), independent of a. We suppose
that p satisfies )™ = Ay for N = Np.

Finally, let K be the unit ball of the Hilbert space H, as defined in Lemma 2.1 of Kuelbs
(1976a). Suppose that with probability 1

4.3) lim, .. | S./a. — K| = 0.
Then the conclusion of Theorem 1 holds.

The proof of Theorem 6 is carried out in the next three subsections. In Section 4.4 we
deduce Theorem 1 from Theorem 6 and in Section 4.5 we prove Theorem 2 by a minor
modification of the argument.

4.1. Approximation by finite-dimensional random variables. Let Ily be the maps obtained
from p as described in Lemma 2.1 of Kuelbs (1976a). Then by relation (2.4) of Kuelbs (1976a)

4.4) dim Iy B = min(N, dim H,).

LemmMma 4.1.  Given v > O there is an N such that

lim SUPnoeo @n' || Xoen (x. — Oux,) | <n  as.

PRroOF. Let I be the identity map on B. Since the map I — Ily is continuous
4.5) | a7z (Sn — IInSs) = (I —IIM)K|| > 0  as.
Now by relation (3.7) of Kuelbs (1976a)
I-TWKC {(x€B: x| <)
for all sufficiently large N. This together with (4.5) implies the lemma.

Lemma 4.2, Let X(t) be Brownian motion on B having the same covariance structure as ji.
Then given n > O there is an N such that

lim sup,.(t log log ) 2 || X(¢) — Iy X(@®) || <n  as.
ProOF. We apply Theorem 4.1 of Kuelbs (1977) to the increments of X(x) and obtain
lim, .|| X(n)/a,. — K| =0 as.
Let
Z, = MaXp=i=n+1 || X(2) = X(n) || n=0.

Then {Z,, n = 0} is a sequence of independent identically distributed random variables. By
Lévy’s maximal inequality for B-valued Brownian motion we have

P{(Z, =)} = P{Zo=\} = 2P{|| X() | = A}.

Applying the Fernique-Landau-Shepp theorem (see Fernique (1970)) to the distribution of
[| X(1) | we have by a standard application of the Borel-Cantelli lemma

(4.6) MaXpeinr | X(¢) — X(n) | < n'* as.
Thus
lime . || (2¢ log log &) 2X(£) = K||=0  as.
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The remainder of the proof of the lemma follows verbatim the proof of Lemma 4.1 except that
we replace S» by X(¢) and a, by a..

4.2. Introduction of the blocks. Let a be given by Lemma 2.5, i.e., @ = £8/8 and let N; be
the largest integral power of 2 not exceeding k~"**'° exp(k*'®). As in Section 2.3 we define
inductively blocks of consecutive integers, Hy and I, leaving no gaps between the blocks, by
setting

4.7 card H, = N, card I, = [exp(%k*"")] k= 1.
Let

4.8) ty =Y jei card(H, U I).

Then

4.9) exp(k*/%) < t, < exp(k**).

Of course, the blocks H; have nothing to do with the Hilbert spaces H, or Hua. If {x;, j
= 1} is a sequence of ¢-mixing random variables with rate of decay given by (1.6) we shall
replace a by & throughout this and the next two subsections. This will be used in the proof of
Theorem 2.

LeMMa 43. Ask—
1Yoer, x. || < ti?  as.
ProOF. Since the (2 + §)th moments of x, are uniformly bounded by 1, so are the first
moments. Hence by (4.7), (4.9) and Markov’s inequality
P{| Zer, x| = 147} < exp(=¥6k™"") Foer, E|| x| < k7

PROPOSITION 4.1.  We have with probability 1 as k —

maXe,<ts,,, ” Etk<”5t Xy " < (tk/log tk)l/z-

For the proof we combine the arguments used in the proofs of Proposition 2.2 and Section
3.3. We define F(r, s) by (2.25), replacing 1, by x,. Put N = {t] and define n(N) by (2.26). Let
ny = n(tr+1) and p = p = [3n,/8] + 1. Then as in (2.27) and (3.19) we have for each N with
< N =<t

(4.10) FO, N = 1) < Ypmizn F(my 21, 2) + TE002 | x|
where 0 = m; < 277 ( p=1I1=n)and 0 =mj, =2 7" Next we define the events
Ge(m, I) = {F(m2"*", 2%) = A(te/log’ 1)"*}
G, = Up=izn, Um=znt Gr(m, 1)
Hi(m) = (T80 || x| = (tx/log t:)'/%)

Hj, = Upmon,-pn1 Hk(m)
LemMa 4.4, With probability 1 only finitely many of the events G, and H), occur.

Proor. We apply (4.2) with R = ;> 2~ *(log #;)"* and obtain
P(Ge(m, D)) < 27% + 132 log" 1, - 27/

@.11)
+ Cxp(—l.l(ti/2271/2 (log tk)—2)a/(2+a) log D.
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Consequently, by a straight-forward calculation using (4.7) and (4.9)

(4.12) P(Gr) << exp(=Yiok®/1%) + exp<— % k“/m) + exp(—k/10)

where each term in (4.12) represents a bound for the sum of the corresponding terms in (4.11).
Finally,

P(Hr(m) = P{IE(|| x| = El x| = Yo(te/log 1)/*} + P{ZE| x. || = ¥%(us/log 1:)"*}

where both sums are extended over appropriate intervals of length 2. The second probability
is zero since p < 3n,/8 + 1. By Lemma 2.5 the first probability is bounded by

<« (tk/log tk)—l—(1/2)n . 2p(1+(1/2)a).
(If {x,, j = 1} is ¢-mixing we apply Lemma 3.1 instead.) Hence by (4.7) and (4.9)
P(H)) < exp(—Yieak /™).

The lemma follows now from this last estimate, (4.12) and the Borel-Cantelli lemma. ad
We now can finish the proof of Proposition 4.1. By (4.10) we have with probability 1

max;,<v<,,, F(0, N — 1) << m(te/log® 1,)"/* < (te/log 1)"%

LemMa 4.5, We have with probability 1 as k — o

maxy, <., | X(6) — X(t:) | < (t/l0g 1)'2.

This follows from the Fernique-Landau-Shepp theorem (see Fernique (1970)) by standard
calculations. But it also follows from (4.6) and from Proposition 4.1 applied to the sequence
of increments X(n) — X(n — 1).

4.3. Conclusion of the proof of Theorem 6. Let dp T o subject to the conditions
(4.13) dy = kTP | Ty, |1 << exp(k*P710),

Here we restrict 8 to 0 < # =< §/20. Recall that in case of ¢-mixing random variables « is to
be replaced by 4.

We put d = min(dy, dim H,). Then [14,B = I, H, can be viewed as a Euclidean space R¢
with metric induced by the norm in H,. As usual, we denote the metric| - ||x, by |- |.
Throughout the remainder of this section we will frequently identify I1;,B as R? without
notice. We define

(4.14) §=T4x, if vEHrU L.
Then {£,, v € H:} is a weak sense stationary sequence of random variables centered at

expectations with E| £, [ « exp(k*"#/%/') and satisfying a strong mixing condition with
the same rate of decay given by (2.2). We also define

(4.15) Xe=Ni'? Y,en, &.

We now apply Theorem 1 of Berkes and Philipp (1979) to the sequence {X;, k = 1} and
to {%, k = 1} where % = .. The random vectors X; have dimension not exceeding d;.
We put

(4.16) T, = k2,
By Lemma 2.2, (4.7), (4.8) and (2.2)
@17) E| E{exp(i(u, X))| Fa1} — E{exp(i(u, X))} | < plexp(uk®/'®))

< exp(—¥k/1?),
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By Proposition 2.1, (4.6) and (4.7) we have for all |u| = T, < N#/*
4.18)  E{exp(i{u, Xs))} — exp{—"%(u, Tau)} < Ni"/*b < exp(—10ak"/").

Here I'y is the d X d identity matrix since, by hypothesis, Iy is the covariance matrix of the
Gaussian measure p™. Thus we can choose

4.19) Ax = const exp(—10~%ak*/").
As in Section 3 of the paper by Berkes and Philipp (1979) one can show that

4.20) G{|u| = W) Ke™ =8, say,

where G is a multivariate normal distribution with mean zero and covariance matrix I'y.
Hence by Theorem 1 of Berkes and Philipp (1979) we can redefine the sequence { X, & = 1}
without changing its distribution on a richer probability space on which there exists a sequence
{Yr, k = 1} of independent random vectors with distribution G, having values in R? and
satsifying

(421) P{|Xk—Yk|2ak}Sak
with
(4.22) ar € dpyTr' log T + N TH + 8 < k72

by (4.13), (4.16), (4.19) and (4.20). Hence with probability 1
[ X, — Y| < k72
or

(4.23) |Sven, & — Ni2Ye| < N2k T2 < 0k %
Further by (4.20)
| Ye| < Tk a.s.
Consequently by (4.23), (4.7) and (4.8) we have with probability 1
(@24 | Tem & — (0 — 11) Vi
< | Yoen, & — Ni2Ye| + | Ya| | (e — o) — NY?| < 037k 2

We recall that {Y,, k = 1} is a sequence of independent multivariate normal random
vectors with mean zero and covariance matrix I'y. Hence for any Brownian motion {X(?), ¢
= 0} in B with covariance structure given by T the sequences {(fx — fx—1) "*Ila, (X(tx) —
X(tr-1)), k = 1} and { Y, k = 1} have the same distribution. Hence by Kolmogorov’s existence
theorem, which remains valid in the Banach space setting, we can redefine the process {},=
X,, t = 0} and the sequence {Yz, k = 1} on a richer probability space without changing their
joint distribution such that on this probability space there exists Brownian motion {X(?), ¢ =
0} with covariance structure given by 7" and satisfying

4.25) (te — tam1) P, (X(82) — X(ta-1)) = Y k=1.

Indeed, if F denotes the joint distribution of finitely many X;’s and Y,’s and if G denotes the
joint distribution of the same Y,’s and a finite number of properly normalized increments of
the Brownian motion {X(¢), = 0} then Lemma Al of Berkes and Philipp (1979) shows that
the consistency requirement in Kolmogorov’s existence theorem is satisfied..

We now show that {X(¢), # = 0} has the desired properties. Let € > 0 and choose N so large
that the conclusions of Lemmas 4.1 and 4.2 hold. Let ¢ > 0 be given and define m by ¢, < ¢
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=< tm+1. Then

| Zoe x0 = XO || = || Zose Gow — Mvx) ||
+ | Iy || max, <s<z, ., | Te,<rse X |
(4.26) + | vl Zemm | ez, x|
+ Yizm || Yverr, Dnx, — (X)) — X(te-1)) |
+ || On || max,,<e<t,,, | X(tn) = X@) || + || OnX(@0) — X(@)||-

By relation (2.3) of Kuelbs (1976a) we have || x | <c| x| g, for x € H, and by definition
of || - ||, we have || y||m, = | y | for y €114, B = R®. Here ¢ = 1 is a constant. Moreover, for dj,
= N we have Iy o [1y, = Iy and || [In(I114,2) || 5, < || I14,z | &, for z € B since the [1x’s when
restricted to H, are projections and hence have norm 1. Consequently, we have for d, = N by
(4.4), (4.24), (4.25) and (4.14)

| Yvem, vx, = TIv(X(te) — X(t:—1)) |
@27 = | Ivren, Max, — Mo (X(te) — X(t-1))) |
= || On(Een, Ha,x, — Moy (X(t) — X(t-1))) || 1,
=c|Ten & — (tn — -1)? V| < 1%k as.

After dividing (4.26) by (¢ log log )"/ we obtain from Lemmas 4.1-4.3, 4.5, Proposition 4.1
and (4.27)

lim sup.«(t loglog ) 2 || Toee X, —X(@) | =20 as.
since by the fact ; increases we have
Th=m kP < 0?12
4.4. Proof of Theorem 1. At first we prove a central limit theorem slightly stronger than
Corollary 1.

PROPOSITION 4.2.  Let {x,, j = 1} be a weak sense stationary sequence of B-valued random
variables with (2 + S)th moments with 0 < 8 < 1, bounded by 1 and satisfying a stirong mixing
condition (2.1) with rate of decay (2.2). Moreover, suppose that for every p > 0 there exists a
mapping A,:B — B with finite dimensional range satisfying (1.7)—(1.9). Then the series defining
T(f, g) converges absolutely for all f, g € B*. Moreover, { L(n™"/*Sy), n = 1} converges weakly
to a mean zero Gaussian measure . (say) whose covariance structure is given by T(f, g).

ProoOF. Since the (2 + 8)th moments are uniformly bounded by 1 we have for all f€ B*
(4.28) supoz1 E | f(x) |77 = || £ < oo,

Moreover, by Holder’s inequality and (1.9) we have for all p > 0
|E(fx )| = | E(f(x.)) = E{ f(Ao(x.))} |
=AIENx = Ax) I =1 fle™
Thus for all f€ B* and v = 1
(4.29) E(f(x,)) = 0.

Hence by (4.28), (2.2) and by (2.4) withs=¢t=2+dandr=1+2/§ we have forall f, g€
B*andv=1

E{f(x,)g(x)) < »~0%,

This proves the first claim. To prove the second claim we observe that by (1.9) and by
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Theorem 4 the sequence {#£(n~"/2S,), n = 1} of probability measures is relatively compact. By
Proposition 2.1 the finite dimensional distributions of {n~"?S,) converge to mean zero
Gaussian distributions determined by the covariance T(f, g). Since a measure on B is
determined by its finite dimensional distributions we conclude that the measures £(n'/%S.,,)
converge weakly to a mean zero Gaussian measure on B with covariance 7(f, g). O

We apply Theorem 6 with the measure p given by Proposition 4.2. From the way p was
obtained it is obvious that the hypothesis on the limit distribution of {IIxxjie, j = 1} is
satisfied. In view of (1.9) Proposition 3.1 implies (4.2). Hence all that remains to be shown for
the completion of the proof of Theorem 1 is the following lemma.

LeMMa 4.6, With probability 1
limgse || Sn/an — K| =0
where K is the unit ball of the Hilbert space determined by T(f, g) (or w) as in Lemma 2.1 of
Kuelbs (1976a).

Proor. We apply 3.1 of Kuelbs (1976a) to the sequence {S./a., n = 1}. Let f € B*. By
(4.28) and (4.29) we see that Theorem 4 above holds for the sequence {f(x,), j = 1}. But
Theorem 4 implies the law of the iterated logarithm. Hence we have with probability 1

lm SUPne f(Sn/an) = T'(f, f).
Since {n""/*f(S.), n= 1} converges in distribution to 4f ' and since by Lemma 2.5 {n "'(f(S»))’,
n = 1} is uniformly integrable we have that

limae ™ E(f(Sn))? = f X dyf (%) = f (fG))? du().

But by Lemma 2.3

limye. n " E(f(S2))? = T(f, f)-
Consequently we obtain from relation (2.5) of Kuelbs (1976a)

172
T(ff) = <f (f(x)* du()t)) = supxex f(x).
B

Hence condition (3.1) of Theorem 3.1 of Kuelbs (1976a) is satisfied and the lemma will follow
if we can show that the sequence {S./a., n = 1} is with probability 1 relatively (=
conditionally) compact. But this follows from a double barrelled application of Theorem 5
above. Given p > 0 we see that the sequence {Y.=» Ay(x,)/a@n, n = 1} is relatively compact
with probability 1 by applying Theorem 5 to the finite dimensional random variables A,(x,).
But Theorem 5 also implies

lim SUpne @n’ || Tusn (0 — A1) | = 2000072/8  as.

This together with the previous remarks implies the relative compactness of {S»/a., n = 1}
and thus the lemma.

4.5. Proof of Theorem 2. Let
(4.30) dy, = k0RO,
In view of (4.13) and because of our convention interpreting « as § in case of ¢-mixing random
variables (4.30) is an admissible choice. All that is needed for the proof of Theorem 2 are the
following two lemmas.

LEMMA 4.7, Ask— o

| Soen(x, — Hagx,) | < 5%k~ as.
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ProoF. Since by (4.30) and (1.12)
E|| Mapx, — x| < 8(| TLy, |37 + DE] x, |7 < €%
and since by (1.13) (recall that n, is defined in the proof of Proposition 4.1)
bo P ¥ . A ot < 20
we obtain from Proposition 3.1
P{|| Toem(x — Tayx,) | = 1k 7"}
< P{|| Zoen,(x, — Iax,) | = 10(10/8)% % 20,4, (N} log log Ni)*}
K N2+ N0 4 np' P ™
since by (4.7), (4.9), (1.13), (4.30) '
04,(N log log N)'2 = o(t}%k ™).

The lemma follows now from the Borel-Cantelli lemma.

LemMA 4.8. Let {X(¢), t = 0} be a Brownian motion with covariance structure T. Then as k
—> 0 '

| X(2) — X(te—1) — Mg, (X(tx) — X(t—1)) || < %k as.

For the proof of this lemma we shall apply Lemma 4.7 to the sequence {X(v + 1) — X(),
v = 1}. To see that Lemma 4.7 applies we need only verify that an analogue of (1.13) holds.
That is, if p = AX(1)) = AX@E + 1) — X(v)) denotes the mean zero Gaussian limit of
{n"'?S,, n= 1} then Lemma 4.8 is proved if we can show that there exists a constant C such
that

4.31) f | x — Iyx || 2 du(x) = CN™125,
B

For the proof of (4.31) we first show that {n™' || S, |%, n = 1} is uniformly integrable. Fix
€ > 0 and choose L so large that (1.13) implies

(4.32) SUPnz1 11 'E || Sy = ISk |2 < e

Since I1; has finite-dimensional range we can apply Lemma 3.1 to each of the coordinates of
I1.S, and conclude that {n ™" II. S, ||% n = 1} is uniformly integrable. This together with
(4.32) implies the uniform integrability of {n™" || S,.||%, # = 1}. Consequently since by Corol-
lary 1 {n""/2S,, n = 1} converges in distribution to p and since I — Iy is a linear operator on
B we conclude that

limy o 2 'E|| S, — InSn |2 = j | x — Mwx || du(x).
B
(4.31) follows now from (1.13). O »
We finally can finish the proof of Theorem 2. We have similar to (4.26) and (4.27)
| Zomex = XON| = Znwm || Boer (%0 = o, x,) |
+ MK, <i<t,,, || VepsrmeXs |
| X(0) = X(tm) |

+ max,, i<, |

+ Eksm " EVEIk'xv ”
+ Eksm, " EVEHkHdk-xv - Hdk(X(tk) - X(tk_l)) ”
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+ Yhem | X(ts) = X(ta-1) — Mo, (X(tr) — X(t-1)) |
< (tw/log tn)'*  as.
by Lemma 4.7, Proposition 4.1, Lemma 4.5, Lemma 4.3, (4.24), (4.25) and Lemma 4.8.

4.6. Proof of Corollaries 2,3 and 4. We first observe that the standard lemmas on ¢-mixing
random variables as given in Billingsley (1968) pages 170-172 remain valid for ¢-mixing
random variables with values in a separable Hilbert space.

To prove Corollary 2 we apply Theorem 1 and Proposition 4.2. This can be done as soon
as we prove the existence of the maps A, satisfying (1.7)-(1.9). In view of Theorem 4 we can
assume without loss of generality that H is infinite dimensional. We choose a complete
orthonormal basis {e,, i = 1} for H and define the sequence of projections

Li(x) = Yizi(x, &)e for x€H k=1
By (20.32) and Lemma 1, page 170 of Billingsley (1968)
(4.33) E|| Z=n (5 = LeG)) |* = 4nE || x1 = Li(x1) |* Tr=1 &)
Since (1.6) holds Y=1 ¢*(k) = A < . We now define for p > 0
A, = Ly
where
k(p) = inf{k:E | x1 — La(x1) |* < Yap/A4}.

By (4.33) A, satisfies (1.7)-(1.9). Hence Corollary 2 is proved.

We now prove Corollary 3. In view of Theorem 4 we again can assume without loss of
generality that H is infinite dimensional. We now make use of the remarks preceeding
Corollary 3 relating the Gaussian measure p and (1.15)-(1.17). Let Il be given as in (1.16).
Of course, if M is finite-dimensional we have only finitely many ITx’s. We now define

xf=I = L)x) = Y1 (x5, @)e; jz1

where 1 is the identity map and where L is given by (1.17).
Recalling both expressions for Ily in (1.16) we see that

| Thn [|F = supyepe: || Tn(x) [},

= SUp|xj=1 Disn(X, 00)

(X, ei)z
A

= SUpjxj=1 Di=n

= SUP1<i=sN }\t_l

Since A\, = E(Z, e;)* and (1.18) holds we have (1.12). Thus to apply Theorem 2 to the
sequence {x},j= 1} we need only verify (1.13). However, arguing as in (4.33) we obtain

E| 2 E (xf = Ovx}) | = 4nE | xt — Tn(x 1) [|* That ¢'%(k)
= 4n Ti=1 07%(k) Yinne E(x1, €1)°
< CnN1¥8

for some constant C. Thus (1.14) holds for the sequence {x?, j = 1}.
Hence to complete the proof of Corollary 3 it is enough to show that with probability 1

(439 | Xj=e (x5 = x|l < 1'% /log ¢.

This will follow from the following proposition.
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PROPOSITION 4.3. Let { y;, j = 1} be a strict sense stationary sequence of ¢-mixing random
variables with values in a separable Hilbert space H. Assume that y, has mean zero and finite
(2 + 8)th moment with 0 < § < 1. Suppose that (1.6) holds and that the covariance function
T(f, g) of the sequence { y;, j = 1} vanishes for all f, g € H*. Then for any y >0

I =iyl <<tr  as.

Recall that the covariance function of a sequence of random variables is defined in (1.10).

For the proof of (4.34) we apply Proposition 4.3 to y, = x; — x} = L(x;). We observe that
the sequence {L(x,), j = 1} obeys the central limit theorem by Corollary 2 with limiting
measure x” = 8, the unit mass at 0. Hence the covariance function 7 of the sequence { L(x,),
j = 1} as defined in (1.10) vanishes identically.

We break up the proof of Proposition 4.3 into several steps which we formulate as lemmas,
all valid under the hypothesis of the proposition.

Lemma 4.9, 0F = limyon 'E||Y,<. 3> = 0.

ProoF. We fix € > 0 and choose a finite-dimensional projection R such that E| y;, —

R(»)|I? < €. Let d denote the dimension of the range of R and ey, - - -, es an orthonormal
basis for R(H). Then arguing as in (4.33)

(4.35) nE[| Zj=n (I — RO = Ce

for some constant C. Furthermore.

(4.36) n E (| Symn RONI® = 17" Tuymn E(R(p: ROM)Y.

Now

liMpwit ' Y ,2n E{(R(y3), &)X(R(3), &)} = T(R*(e), R*(e)) =0
forr=1, ---, d Here R* is the adjoint of R. Hence by (4.36)
(4.37) nENN = RO <€
for sufficiently large n. The result follows now from (4.35), (4.37) and Minkowski’s inequality.

Lemma 4.10. E||3,<. y > < L.

Proor. This follows, for instance, from Billingsley (1968), page 172 as ¢(n) << n ¢ by
(1.6).

We now can finish the proof of Proposition 4.3 by applying the Gaal-Koksma strong law
of large numbers which remains valid for random variables with values in a linear metric
space. (See Theorem Al in Philipp and Stout (1975), page 134.)

Hence Corollary 3 is proved.

Finally Corollary 4 follows easily by combining Corollary 3 and Theorem 2.4 of Kuelbs
(1975b). That is, if Y(r) is as in Corollary 4, then standard methods imply that it suffices to
show the equivalence of (1.22) and (1.23) only for those {:(¢) which also satisfy

(log log )'/* = y(¥) < 2(log log t)"/*
for large ¢. For this class of functions i Corollary 3 and Theorem 2.4 of Kuelbs (1975b) easily
yield Corollary 4.

5. Proof of Theorem 3. Suppose that x; is pre-Gaussian and let p denote the mean zero
Gaussian measure determined by the covariance structure

CRY) T(f, ) = E{ f(x1)g(x1)} /g €B*
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Further, assume that any of the conditions in (b) hold. Then by Theorem 4.1 of Kuelbs (1977)
we have that all the conditions in (b) hold. In particular, condition (b-iii) implies that with
probability 1

(5.2) limpo| S./an — K[| =0

where K is the unit ball of the Hilbert space determined by u. This shows that condition (4.3)
in Theorem 6 is satisfied.

We put d = min(N, dim H,). Then as in Section 4.4 IIxB = IIyH, can be viewed as a
Euclidean space R with metric induced by the norm of H,. Again we denote this metric

by |-|.

To verify the hypothesis on the limit distribution of {IIxX;+a, j = 1} we observe that it is
a sequence of independent identically distributed R?-valued random variables, centered at
expectations, with finite (2 + §)th moments and with I'y, the d X 4 identity matrix, as their
covariance matrix. Hence the sequence satisfies the central limit theorem. The limiting
Gaussian distribution Ay also has I'y as its covariance matrix. Since the Gaussian measure y
has covariance structure given by (5.1) we conclude that p™ is also a Gaussian measure with
covariance matrix I'y when Ily B is interpreted as above. Since all measures have mean zero
we therefore have Ay = u™.

It remains to verify (4.2). We prove a slightly stronger result.

ProposITION 5.1.  Let {x;, j = 1} be a sequence of independent identically distributed B-
valued random variables centered at expectations and (2 + 8)th moments bounded by 1. Suppose
that condition (b)(ii) in Theorem 3 holds. Then there exists a constant C such that for all R, n
=1

P{[| Zj=n xjll = 9R(n log log n)'/*} <= C(R2n~*"* + exp(—1.1R¥**®log log n)).

The proof consists of a simplification of the proof of Proposition 3.1. We put
wi=x; if | x| = R¥®¥(n/log log n)*’*
=0 otherwise.
Then we obtain from Markov’s inequality

5.3) P{w; # x;} << R2n717%4,
LemMa 5.1.  E| Y <n w; = o((n log log n)'/%).

Proor. We introduce the event

C= ulSVSnU15j1<-~~<j”5nc(j17 .. "jv)

where
Cjr, orvufi) =W, #x,, oo, w, Ex,w=x  j#*ji (1=isy)}

Then by (5.3)

P{C(j1, «++, Jo)} < p~W¥o/0»
and

f (B
CUp-++d,)

=Pw,# Y, l=sl=spl#i;w=7Y, for all j?éjl,lilsv}j [ x,

|
{w, %x,)

<« p 8=, —1/2-8/8
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On C(ji, +++, j.) we have
1 Zs=n will = 1 Zsmn Xill + Biso 121

Hence

[ 18w = [ WSl B gm0
c C

= J’ I Zj=n X1l + O(').
C

On C° the two sums are identical. Hence we obtain the lemma from (b)i). O
We now can finish the proof of Proposition 5.1. By Lemma 3.4 with k = n, by = n'/%, ¢ =
R¥®*9(log log n)™% and € = % R(log log n)"/* we have

P{|| 3 =n wi|| = 9R(n log log n)'/*} = exp(—%R¥**Plog log n(1 — %) + o(log log n))
<« exp(—1.1R¥**¥og log n).
Hence by (5.3)
P{||Zj<n X; | = 9R(n log log n)"/*}
< B jen Pwy # 27} + (I Symn wyll = OR(n log log n)%)
<« R72n7%* + exp(—1.1 R¥®*®1og log n).

This concludes the proof of Proposition 5.1 and of half of Theorem 3.

To prove the second half we assume that (1.11) holds. Then S,/a. converges to zero in
probability since X(n)/a, does. Hence in view of Theorem 4.1 of Kuelbs (1977) we conclude
that conditions (i), (i) and (iii) hold. Thus it suffices to show that x; is pre-Gaussian.

Let f € B*. Then, by the classical law of the iterated logarithm we have that with
probability 1

i SUpnef(Sa)/an = EV2(f3(x1)} = T (£, )
and
lim Supns f(X(n)/an = EV2{ f*(X(1)}.

Hence by (1.11)

G4 T(f.f) = E{f(X(1))}.
Since real symmetric bilinear forms are determined by their diagonals (5.4) implies
E{ f(x1)g(x1)} = T(f, g) = E{f(X(1))g(X(1))} f. g€ B*.

Hence x, is pre-Gaussian by definition. O

We shall discuss now the example due to Kuelbs (1976b) and mentioned at the end of
Section 1. Let x1, x, - - - be the independent identically distributed ¢,-valued random variables
defined by

x, = Y € e (2 log j)7V? r=1

where {e;, j = 1} is the canonical basis of co and {€”, j = 1} are independent sequences of

independent identically distributed random variables with P{e” = *1} = }%. Then as is
shown in Kuelbs (1976b) the sequence {x,, » = 1} satisfies condition (iii) of Theorem 3. Hence
by Theorem 4.1 of Kuelbs (1977) conditions (i) and (ii) of Theorem 3 are also satisfied. But it
is impossible to have a Brownian motion { X(¢), ¢t = 0} satisfying (1.11) since x; is not pre-
Gaussian.

On the other hand, for each p > 0 we can redefine the sequence {x,, » = 1} on a new
probability space together with a Brownian motion {X,(¢), ¢ = 0} such that (4.1) holds. To
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prove this claim we use the fact that {x,, » = 1} satisfies a compact law of the iterated
logarithm (see Kuelbs (1976b) for details) with limit set )

(5.5) K= {{ar, k= 1} € co: Y1=1 aflog k = %},

Define now for N = 1

Ynx, = Yj=n €,”¢/(2 log j)7/%
Since the map I — yw is continuous (5.5) implies that for any p > 0 there is an N such that
with probability 1 (see the proof of Lemma 4.1)

(5.6) lim suprwa@z'|| Sv=n X, — x| < p.

Using Theorem 4 we can construct an N-dimensional Brownian motion {X,(?), t = 0} such
that with probability 1

.7 I De v, — Xo(0)]] << 1727

for some A > 0. Combining (5.6) and (5.7) we have (4.1) as claimed.

This example shows that approximating partial sum processes of B-valued random variables
by the corresponding B-valued Brownian motion in the form of (4.1) is intrinsically somewhat
less precise than one might hope. More specifically, the above sequence {x,, » = 1} satisfies
the compact law of the iterated logarithm (and hence also the functional law of the iterated
logarithm by Kuelbs (1975a)) yet it cannot be approximated by a Brownian motion so that
(1.11) holds. Of course, the problem in this example is that there is no natural limiting
Brownian motion to approximate with.

6. An application to the uniform law of the iterated logarithm for classes of
functions. Kaufman and Philipp (1978) proved, among a number of things, the following
uniform law of the iterated logarithm. Let S, be the class of real-valued functions on [0, 1]
with f(0) = f(1), ;J5 f(x) dx = 0 and satisfying the Lipschitz condition

(6.1) |/ =l =Ix =yl O=x,y=1L

If « > Y% and {£,, j = 1} is either a strictly stationary sequence of random variables, uniformly
distributed over [0, 1] and satisfying a strong mixing condition or a sequence of lacunary
random variables, then with probability 1

6.2) lim supn_,ay 'supres, | Yo=n (&) = C

where C is some finite constant. Moreover, they proved that if « < ' than (6.2) is false even
if {§,, j = 1} is a sequence of independent random variables uniformly distributed over [0, 1].
In this section we prove an almost sure invariance principle for « > % and stationary, ¢-
mixing sequences of random variables {£;, j = 1}. In view of the remarks in Section 1, this
result will, of course, imply (6.2).
As a matter of fact we shall prove a theorem for a class slightly bigger than S,. Let A =
{An, —o0 < n < o} be any fixed sequence of positive numbers such that

(6.3) Cr =det 3 nj=0 AnZ < 00,

Let S be the class of all real-valued continuous functions f on [0, 1] with f§ f(x) dx = 0 and
whose Fourier series

(6:4) J(x) = Tinjz1 cne™™
is such that the Fourier coefficients {c,} satisfy the condition
(6~5) 2|n|20 |C,,|2}\2 =1

Then § 2 U,-1/28, by taking A, = [ n|"*(log| n|)® (see Zygmund (1935), page 136, (3)). Hence
Theorem 7 below will imply, as a simple corollary, (6.2) with S, replaced by S.
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The conditions (6.3) and (6.5) easily imply (6.4) converges absolutely and uniformly in f
€ S. (See the proof of Lemma 6.1). Since S C C[0, 1] we have a natural distance given by the
uniform norm

IS = gl = suposs=i| f(x) = g(x)|.
Our theorem can now be stated as follows.
THEOREM 7. Let C(S) denote the class of real-valued continuous functions on S and let

{&,,] = 1} be a p-mixing sequence of random variables, uniformly distributed over [0, 1]. Assume
that (1.6) holds. Define the random variables with values in C(S)

(6.6) % (f, @) = f(§(w)) FES =L

Suppose that {x,, j = 1} is weak sense stationary. Then {n~/2S,, n = 1} converges weakly to
a mean zero Gaussian measure on C(S). Moreover, we can redefine {£;, j = 1} on a new
probability space on which there exists Brownian motion with covariance given by (1.10) such
that

(6.7) I12= % — Xl = o((t log log '*)  ass.

REMARKS. 1. The norm on C(S) is, of course, that given by the supremum norm

(6.8) L1l = supres| ¥(f) y € C(S).

Since, as will be shown in Lemma 6.1 below, S is a compact metric space it will follow that
C(S) is a separable Banach space.

2. If {§;, j = 1} is strictly stationary, then the C(S)-valued random variables are also
strictly stationary.

6.1. The compactness of S.
Lemma 6.1. S is a compact metric space in the distance given by the uniform norm

If = glle = suposs=i| f(x) — g(x)].

Proor. We will first show that S is a uniformly bounded, equicontinuous subset of
C{0, 1]. Then the Arzela-Ascoli theorem will imply that S is relatively compact.

To see that S is uniformly bounded we note that the Fourier coefficients of f € S satisfy
co = [ f(x)dx =0and

(6.9) Sinizt [ en| < {Zinzt [ PAR} 2 Tinz1 A7} 2= CVP <

by (6.3) and (6.5). Hence the Fourier series for each f € S converges absolutely and uniformly
to f. Hence by (6.4) and (6.9)

(6.10) supres| flle = CV* < .

This proves that S is uniformly bounded.
We now show that S is equicontinuous. For each € > 0 there is N such that

(611) 2|n|>N >\;2<€2/8.
Let {c.(f)) denote the Fourier coefficients of f € S. Then by (6.11), (6.3) and (6.5)

27inx __ ez-n-iny 2

An
= SUpres Els|n|sN >\721| Cn(f)lz‘ 215|n|sN >\;2| e?minT — e?miny |2
+ supres X ini>N Anl €a(f)[*+ Tinj=n 4N57

=47°Ch-N¥|x — y|* + he? < €

Supfeslf(x) _f(/v)lz = suprS 2|n|21 Ancn(fv)‘
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if [x — y| = %0 Cy’N e = § (say).

Hence S is relatively compact. The compactness of .S will follow if we show that S is closed.
Let { f, k = 1} be a sequence of elements of S converging uniformly to f. Then f is continuous,
f6 f(x) dx =0, and { fx, k = 1} converges to f in L’[0, 1]. Hence the Fourier coefficients of
fi, call them {c\¥, n € Z} converge to the Fourier coefficients {c», n € Z} of f. Since for all
k=1

Yinzt [P PAL <1
we have for each N =1
Yizini=n | €a|*Ah = limjse Yiepnj=n | P |2AZ < 1.
Letting N — o« we conclude that f € S and that thus S is closed.

6.2. The maps A,. First we observe that the x; are C(S) valued random variables which,
by (6.10), are uniformly bounded. Further, since [5 f(x) dx = 0, we have the Bochner integral
of each x;(j = 1) equal to zero in C(S). The x, are ¢-mixing with ¢ as in (1.6) since the £, have
this property. Hence to show that Theorem 1 is applicable we must obtain the maps A,: C(S)

— C(S) satisfying (1.7)~(1.9).
For this purpose we define

(6.12) M= Ui {yECS) y(f)=f() forall fe S}

Note that the mapping 7 from M into [0, 1], defined by ¢ = 7( y) is continuous and that M is
a closed subset of C(S). Now define the mappings ¥ from C(S) into C(S) by

(6.13) (P = Re(Tini<n ca(exp 2mik[ N°1()I/N?})  yEM
=0 otherwise.
Here [s] is the greatest integer in s. Also define the mappings @y by
O (yXNf) = ReLini<n c(flexp (2mikr(y)})  yeEM

6.14)
=0 otherwise.

We observe that ¥ maps C(S) onto the finite dimensional subspace generated by
{ yri(+): pr(f) = Re(cr(f))cosRmkl/N?) or Im(ck(f))sin(2nkl/N?), |k| < N, 0= I< N?}.

Further it is easy to see that ¥x(x;) and ®~(x;) are measurable for j= 1 and ¥ = 1.
Condition (1.9) will follow from the following lemma.

LEMMA 6.2. For each p > 0 there exists an N(p) such that
E|| X x — ¥n(xpl* < np
forallm=0,n=1and N = N(p).

ProoF. We prove the lemma for m = 0. The general case follows applying this special
case to the sequence {£;+m, j = 1}. We first note that suppressing the index N in ® and ¥

(6.15)  E|Sn— Tjzn YD = 2{E| Su — Tjzn PON|* + E[| Tjzn @(x;) — ¥ (x)|17).
Now by (6.5), (6.6) and (6.14).
E|Sn = L= ()|
= E{supres| Y =n Re(Tri=n cr(f)expmiké;))|*}
6.16) = E[supres(Tiri=n | s (N*AR - Dirizn Ae®| Tjzn expmik)|*)}
= Yiki=n A"E | ¥ j=n expmiké))|?

= (Cin EIkIEN }\Z2
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The last step follows from the proof of Lemma 2.3. Indeed, it is easy to show by the same
standard arguments used to prove Lemma 2.3 that

6.17) E{Y j<n cosQmké)}2 < % Cin

for some constant C; since £, has uniform distribution over [0, 1]. A similar estimate holds if
in (6.17) cosine is replaced by sine.
By (6.13)

(6.18) ¥ (x)(f) = Re(Tr<n cx(f)expmik[ N?¢,]/N?)).
Put
77 = m,(k) = exp(2mikE,) — expQmik[ N&]/N?).
Then for N = 1
En,=0 j=1
and
[n| <27|k|N* j=1
Thus by the argument leading to (6.17)
E|Sznm|®< Cin| k[N~
Consequently, by (6.18)
E|| Sjsn ®(x)) = ¥(x)|I” = E{supres| Xj=n Re T a1« cx(Hn;[*}
(6.19) < E{supres Lix<n | cx(NIAE Disi<n A& | Ljzn 0%}
< Vip<v AS2Cin| kPN ' = CiGinN 2,
The lemma follows now from (6.15), (6.16) and (6.19).

6.3. Proof of Theorem 7. As observed after the statement of Lemma 6.2 the mapping Ap
= ¥np will satisfy (1.9). Furthermore, we conclude from (6.9) and (6.18) that || A,(x;)| is
uniformly bounded. Finally for every f € § we have EA,(x;)(f) = 0. Hence Theorem 7
follows from Theorem 1.
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