
Almost sure stability of discrete­time Markov Jump Linear 
Systems

Article  (Accepted Version)

http://sro.sussex.ac.uk

Song, Yang, Dong, Hao, Yang, Taicheng and Fei, Minrui (2014) Almost sure stability of discrete-
time Markov Jump Linear Systems. IET Control Theory and Applications, 8 (11). pp. 901-906. 
ISSN 1751-8644 

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/73622/

This document is made available in accordance with publisher policies and may differ from the 
published  version or from the version of record. If you wish to cite this item you are advised to 
consult the publisher’s version. Please see the URL above for details on accessing the published 
version. 

Copyright and reuse: 
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable, the material 
made available in SRO has been checked for eligibility before being made available. 

Copies of full text items generally can be reproduced, displayed or performed and given to third 
parties in any format or medium for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge, provided that the authors, title and full bibliographic 
details are credited, a hyperlink and/or URL is given for the original metadata page and the 
content is not changed in any way. 

http://sro.sussex.ac.uk/


1 
 

Almost Sure Stability of Discrete-time Markov Jump Linear Systems  

Yang Song a,b,*, Hao Dong a , Taicheng Yang c , Minrui Fei a,b 

a Dept. of Automation, Shanghai University, Shanghai, 200072, PRC, 

      b Shanghai Key Laboratory of Power Station Automation Technology, Shanghai, 200072, PRC 

               c Dept. of Engineering and design, University of Sussex, Brighton, BN1 9QT, UK,      

Email: Yang Song{y_song@shu.edu.cn}, Hao Dong {07121936@163.com} 

Taicheng Yang{taiyang@sussex.ac.uk}, Minrui Fei{mrfei@staff.shu.edu.cn}                         

__________________________________________________________________________________ 

Abstract--- This paper deals with transient analysis and almost sure stability for 

discrete-time Markov Jump Linear System (MJLS). The expectation of sojourn time and 

activation number of any mode, and switching number between any two modes of 

discrete-time MJLS are presented firstly. Then a result on transient behavior analysis of 

discrete-time MJLS is given. Finally a new deterministically testable condition for the 

exponential almost sure stability of discrete-time MJLS is proposed.  
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1. Introduction 

Markov Jump Linear Systems (MJLS) are composed of a set of linear subsystems 

(also called modes) and a switching sequence governed by a Markov stochastic process. 

MJLS are extensively used to model physical systems subject to abrupt changes or failures, 

e.g., fault tolerate systems[1], aerospace systems [2], networked control systems [3, 4], etc. 

Stability study for stochastic system is of fundamental importance. Several definitions of the 

stability have been proposed, such as  -moment stability, mean square stability (MS 
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stability), almost sure stability (AS stability), etc[5-9]. The conservativeness of these 

definitions is quite different.  -moment stability requires that the expectation of  -th 

moment of state norm ( )E x t
 

   should converge to zero asymptotically. When 2  , 

 -moment stability degenerates to be a special case called MS stability. AS stability, 

different from  -moment stability, requires the state trajectory converging to zero with 

probability one. From the application point of view, the convergence of system state 

trajectory with probability one is more relevant than that of moment behavior [10]. For 

Markov Jump Linear System, both MS stability and  -moment stability imply AS stability 

but not vice versa [5, 6, 11]. Most results on MJLS are given for the case that the modes are 

finite. For MJLS with infinite modes, the stability problems are studied in [12, 13]. In 

recent years, some researchers investigated the stability issue of MJLS for more complex 

scenarios, e.g. the transition probabilities are partial-known [14] or piecewise-constant [15], 

the switching between subsystems are governed by a Markovain process and a 

deterministic dwell time restriction jointly [16, 17].  

For a MJLS system, the testabilities of such several stabilities are different. The 

results on MS stability are generally given in form of coupled Lyapunov equations [2, 6] 

[18, 19] which can solved effectively by Linear Matrix Inequality (LMI) toolbox. On AS 

stability, it is difficult to have a general checking technique. A necessary and sufficient 

condition for AS stability is that the top Lyapunov exponent defined over infinite time 

should be negative[20]. However, this condition is often hard to be assessed. Therefore, it 

is necessary to find some practically testable conditions. A sufficient condition for testing 

the AS stability is proposed for stochastic linear systems [10] [21] and discrete-time MJLS 

[22], which is based on the average norm contractivity of state transition matrix over a 

finite, yet unknown, time interval. The sufficient condition in [10] [22] [21] is 

non-deterministic, although it is less restrictive compared with top Lyapunov exponent 
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method. Furthermore a solving technique based on Monte Carlo algorithm is developed to 

check this conditions [10] [21]. Recently, new deterministic sufficient conditions are 

presented on AS stability of continuous-time MJLS [7, 17, 23]. These sufficient conditions 

are obtained by investigating the statistics of switching actions and the total sojourn time 

of each mode in a MJLS. For the discrete-time MJLS, to the best of authors’ knowledge, 

there is no equivalent result reported. This paper aims at bridging this gap. The main 

contributions of this paper consist in three aspects: firstly, the expectation of sojourn time 

and activation number of any mode, and the switching number between any two modes for 

discrete-time MJLS are given for the first time; secondly, a result on transient analysis of 

discrete-time MJLS is presented; thirdly, a new approach to test AS stability for 

discrete-time MJLS is obtained. 

The paper is structured as follows. In section 2 some preliminaries and definitions are 

given. In section 3, the expectation of switching number between any two modes, and the 

total sojourn time and activation number of each mode are provided. In Section 4, a 

transient analysis result and an AS stability condition for discrete-time MJLS are proposed. 

Section 5 gives two examples and Section 6 concludes the paper. 

 

2. Preliminaries and Definitions 

Consider a discrete-time Markov Jump Linear System  

                           ( )kk+1 kx A x  , k Z                      (1) 

where Z  is a positive integer set, state nkx , the switching sequence 

  ,   k k Z  is a Markov chain, taking values on a finite set  1,2, , N , N is the 

number of modes,   Pr 0if i  is the initial provability distribution of MJLS. Markov 

chain   k  in this paper is assumed to be irreducible and aperiodic, therefore it is 
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ergodic and has a unique invariant distribution  1 2 N  π  , which can be 

calculated by 

                          
1

1

1

N

j i ij
i

N

j
j

p 







 

 





                            (2) 

Definition 1 MJLS system (1) is said to be exponentially almost sure stable, if there exist 

0   such that for any 0
nx  and any initial distribution  0 ,  

1
Pr lim sup ln 1

k k




    
 

kx                    (3) 

 

3. Sojourn Time and Switching Number of a Markov Chain  

In this paper, the accumulate time of a MJLS sojourns in mode j  and the total number 

of switching from mode i  to mode j  in interval  0, k are denoted as   k
jT  and  k

ijn  

respectively. The number of activations of mode j in interval  0, k  is denoted as  k
jn ,  

the probability that mode   j is active at instant n is noted as  n
jp . Stochastic variable 

( )n
jS is defined as  

( ) 1, mode  is active at instant n

0,  any other mode is active at instant n
n

j

if j
S

if


 


 

The expectation   Pr 0 , 1,2, ,iE i f i N       is denoted as  E F , similarly, 

    :  Pr 0 , 1,2, ,iE E i i N        π  . 

 

Proposition 1 Given a Markov chain   ,   k k Z   with N modes, the following are 

satisfied for all modes ,i j ,  
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                       1

1

k
k T i

j j
i

E T k 



         
F jc P p                       (4) 

                  T 1

1

k
k i

ij i ij ij i ij
i

E n p k p c p 



         
F ic P p  ,    i j      (5)  

 k
jE n   F    1 1

1

1
k

T i T k
jj j jj j

i

p k p  



       
  
 j jc P p c P p    (6) 

where  1
T

nc c c , i i ic f   , jp is the j-th column of transition matrix P .  

Proof：Since    ( )Pr 1n n
j jp S  , this gives 

   (1) (2) ( )

1

k
k nk

j F j j j j
n

E T E S S S p


          F               (7) 

and 

                        

   

   

   

1

1

1 2

1

1

1 1

,   

 ,  

     

N
n n

j i ij
i

N
n n

j i ij
i

N N

j i ij i i ij
i i

p p p

p p p

p f p c p





 



 





  





 


                 (8) 

where i i ic f   . 

From Eq.(2), it follows that  

   1

1 1

N N
T

j i i ij j i ij j
i i

p c p c p c  
 

       jp , 

                  2 1

1 1 1

N N N
T T T

j i ij i i ij j i ij j
i i i

p p p c p p c p p  
  

         jc Pp  

                  3 2

1 1 1

N N N

j i ij i i ij j i ij j
i i i

p p p p p p p  
  

        T T T 2
jc P c P c P p  

  

   1

1

N
n n

j i ij j
i

p p p 



   T n-1
jc P p  
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where  1 2
T

Nc c c c , jp is the j-th column of transition matrix P . 

Setting 0 IP ,  0
j ip f , it follows that   

             

1

k
k n

j j
n

E T p


    F
1

k

j
i

k


    
 
T i -1

jc P p                 (9) 

and the total number of switching from mode i  to mode j  in interval  0, k is  

                      
1 1

0 1

k k
k n n

ij i ij i ij i ij
n n

E n p p f p p p
 

 

       F  

1
1

1

k
T i

i ij ij i ij
i

p k p c p






    
 
 ic P p         (10) 

On the other hand, if    , 1n j n j    , then we call n is a switching-out point of 

mode j. The total probability of switching-out point of mode j occurs during the interval 

 0, k is    
1

1

1
k

n
j jj

n

p p




 . The probability that mode j is the latest mode being activated in 

 0, k is ( )k
jp . Therefore, the number of activations of mode i is 

                   
1

( )

1

1
k

k n k
j j jj j

n

E n p p p




      F  

                1

1

1
k

T i
jj j jj j

i

p k p 



        
  
 T k-1

j jc P p c P p  

This completes the proof.  □   

Remark 1 Proposition 1 gives the expectations of the sojourn time and switching number 

of MJLS along with time axis. It can be seen that these expectations are related with initial 

probability distribution. When initial probability distribution F  equals with the unique 

invariant distribution, the following corollary can be obtained.  

 

Corollary 1 If the initial probability distribution equals to the unique invariant distribution 

of Markov chain, then  
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                            k
j jE T k   π                             (11) 

                       k
ij i ijE n p k   π                           (12) 

 k
jE n   π  1j jj jj jp k p                  (13) 

 

4. Almost Sure Stability of MJLS 

Lemma 1[22]  MJLS system (1) is exponential almost sure stable if and only if 

  0E  π , where the top Lyapunov exponent is defined as 
( ) (0)ln

lim
k

k k
 




Α A
 

 

We first show a result of the upper bound for lnE kx  along with time axis if the 

initial probability distribution F is known.  

Theorem 1 Consider MJLS system (1) with initial distributionF , then expectation of  

ln kx  satisfies  

1 2 3 0ln ( ) lnE kg g k g E   kx x                (14) 

where 

1
1, 1 1

   

T 1 1
2

1, 1 1 1 1
   

1
ln ln

2

1 1
( ) ln ln

2 2

                                                                   

N N

i ij ij j j
i j j

i j

N k N k
i T i

ij i ij j
i j i j i

i j

g p

g k p

   

 

  


 

    


 
    
 

       
   

 

    jc P p c P p

 

 

1 min

3 max
1 1, 1

   

1
              ln

2

1 1
ln ln

2 2

N
i

i i

N N

i i i ij ij
i i j

i j

Q

g f Q c p




 



  










  


  




 

T k -1
ic P p

  (15) 

And the parameters ij , j  and 0i Q satisfies,  
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i

ij




 
 

T
i i i i

j i

A Q A Q

Q Q
                           (16) 

Proof: Choose Lyapunov function  

                      
T

k kkV k  x Q x                          (17) 

Consider a switching sequence as  

             1 1 11 1 1 1l l l l ls s s s s k k                        (18) 

where ls , 1,ls   , denote switching instants, here, ls denotes the latest switching instant in 

 0, k . Then it follows from Eq.(16) that   

         1 11 1 1k k k kk k k kV k        T T Tx Q x = x A Q A x    1 1k V k         (19) 

Due to      1 lk k s     , hence    1 1k V k   can be rewritten as    
l ls V s . 

Observing that there is no switching during ,ls k , therefore, 

                     21 2
k sl

l l l ls s sV k V k V k V s    


               (20) 

Then from      1 1 11 1l l ls s s             1l ls s   and Eq.(16), it follows  

                             1 1=  
l l l ll l l l

T T
l s s s ss s s sV s      x Q x x Q x  

                         
         

       
1 11 1 1 1

1 1< 1

l ll l l l l

l l l

T T
s ss s s s s

ls s s V s

    

  



 

    

 





x A Q A x
 

Following a similar procedure, it leads to,   

       

     

         

         1

1

1 1

11

1

k sl

l

l

l l l l

l l l

l l l l

ls

k s
ls s s s

k s s s
ls s s s

V k V s

V s

V s



   

   



  

  








 

 




 





 

      
1, 1 1

   

0
k k

ij j

N N
n T

ij j
i j j

i j

V 
  


 
    
 
                  (21) 
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Denote
    

1, 1 1
   

( )
k k

ij j

N N
n T

ij j
i j j

i j

q k  
  


 
    
 
  ，then Eq.(21) can be simplified as  

                ( ) 0V k q k V                           (22) 

On the other hand, for any time instant k and any initial condition 0x , we have  

              min max 0 00( ) 0 ( )T T T
k k k kk k V k q k V q k      Q x x x Q x Q x x    (23)      

Then it can be seen that  

  
  

  
  

max 0

0 min

max 0

min

ln ln ( )

1 1
                 ln ( ) ln ln

2

k

k

k

E E q k

E q k E E
















 
      
    

 
   
 
 

Qx

x Q

Q
Q

     (24) 

Noticing that ( ) ln( )f x x is a concave function, based on Jansen’s inequality, it leads to 

       max max max0 0
1

ln ln ln
N

i i
i

E E f   


  Q Q Q         (25) 

     
 

 1 minmin min

1 1
ln ln ln

kN
i

i ik k

p
E E

 
  

   QQ Q
          (26) 

And  

     
1, 1 1

   

ln ( ) ln ln
N N

k k
F ij ij F j j

i j j
i j

E q k E n E T 
  


                (27) 

where  k
ip is the probability of that mode i is active at instant k.  

Applying   1k T k
i ip    ic P p into Eq.(26),  

    1 minmin

1
ln ln

N
i

i ik

E



 


 

T k-1
ic P p

QQ
             (28)      

Hence 
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     

   

1, 1 1
   

0

max
1 1 min

ln ln
1

ln
2

                                       ln ln

N N
k k

ij ij j j
i j j

k i j

N N
i

i i
i i i

E n E T

E

f

 




  


 

        
   

   
     

 

 

 

F F

T k-1
i

x

x c P p
Q

Q

 (29)  

Substituting Eq.(4) and (5) into Eq.(29) leads to Eq.(14).   

This completes the proof. □ 

 

Based on theorem 1, the following result on AS stability of discrete time MJLS can be 

obtained.   

Theorem 2 Consider MJLS system (1), if there exist a set of 0i Q , scalars i , ij , such 

that Eq.(30)~(32) hold, then the system is exponential almost sure stable. 

       0i i T
i i iA Q A Q  ,                         (30) 

j ij iQ Q ,                              (31) 

                  
1, 1 1

   

ln ln 0
N N

i ij ij i i
i j i

i j

p   
  


                    (32) 

where , 1,2, , ,  i j N i j  . 

Proof: Due to   max 0 Q and   min k Q are bounded, it follows from condition (33)( 34) 

and Eq. (243) that  

0 0
0

ln max

lim

k

x

k
E

k





 
 
 
 
 
 

x

x

  
  

max 0

min

ln ( ) ln
1 1 ln ( )

lim lim
2 2

k

k k

q k
q k

E E
k k








 

 
 
 
  
 
 
  

Q

Q
     (35) 

Since 
0 0

( ) (0) 0

( ) (0)
0 0

0 0

max max
k k

k
x

 
   

 
x

A A x x
A A

x x


 and MJLS (1) is ergodic, 

substitute the expression of ( ) q k into Eq. (36),           
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0 0( ) (0) 0

ln max
ln 1 ln ( )

lim lim lim   
2

k

xk

k k k

q k
E E E

k k k
  

  

 
  
   
     
 


x

A A x
 

     
1, 1 1

   

ln ln

1
                                     lim

2

N N
k k

ij ij j j
i j j

i j

k

E n E T

E
k

  
  




      



      (37)  

Substituting	Eq.	(38)	and (39)	into	Eq. (37) , and from condition (32) , it yields 

( ) (0)

1, 1 1
   

ln 1
lim ln ln 0

2

N N
k

i ij ij i i
k

i j i
i j

E p
k

     


  


               
 

A A
  

Based on Lemma 1, MJLS (1) is exponential almost sure stable. 

This completes the proof. □ 

Remark 2: If 1 2 N   Q Q Q I , then it is clear that we can choose 1ij  for any 

 i j . In the case Theorem 2 will degenerate to Theorem 2.1 in [24].               

Therefore Theorem 2 can be regarded as a more general result based on a more flexible 

multiple Lyapunov Function method whereas Theorem 2.1 in [24] is based on a common 

Lyapunov Function method.    

 

5. Numerical Example 

Example 1: This example is to demonstrate Proposition 1.  

Consider a two-mode Markov chain with transition matrix
0.7 0.3

0.6 0.4

 
  
 

P , the initial 

distribution is  0.2 0.8F . The unique invariant distribution is 

21 12

12 21 12 21

2 1
, ,

3 3

p p

p p p p

           
π . Compute  k

jE T 
 F and  k

ijE n 
 F  by using 3000 

samples of the Markov chain. Table 1 and 2 shows the computation values as well as the 
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theory value obtained from Proposition 1. As expected, the two sets of values are 

consistent.  

Table .1  Expectations of sojourn time 

 
1

kE T  F  k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

Computation 

Value
 0.6267 1.2697 1.9150 2.5667 3.2527 3.8957 4.5323 5.2710 5.9660 6.6420

Theory 

Value 0.6200 1.2820 1.9482 2.6148 3.2815 3.9481 4.6148 5.2815 5.9481 6.6148

 

Table .2 Expectations of switching number 

 
12

kE n  F  k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 

Computation 

Value
 0.1823 0.3860 0.5827 0.7823 0.9647 1.1937 1.3950 1.5750 1.9817 

Theory 

Value 0.1860 0.3846 0.5845 0.7844 0.9844 1.1844 1.3844 1.5844 1.9844 

 

Example 2: This example is to demonstrate Theorem 2. Consider a MJLS  

   1= , 1,2k kk k  x A x  

where 1

0.2 1

0 0.2

 
  
 

A ， 2

0.9 0.4

0.5 0.2

 
  
 

A , transition probability 
0.6 0.4

0.1 0.9






 

P . 

It is proved that this MJLS is not mean square stable [21].  

By using Theorem 2.1 and Theorem 2.2 in [24], we can get 

Theorem 2.1:    1 2 0.2 0.8
max 1 1 max 2 2 1.0785 1.2597 1

p p
T TA A A A             

Theorem 2.2： 1 2

1 22 2
1.1051 1

p p
A A      

It violates the condition of such two Theorems, therefore we cannot judge the AS stability 

of this MJLS by [24] . 

By using Theorem 2 of this paper, we choose 1 2=0.2 =1.25 ， ； 12 21=6.6 =0.9 ，  and  
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1

18.9798 -13.1455

-13.1455 157.9363

 
  
 

Q , 2

124.8681 -87.1653
=  

-87.1653 226.7459

 
 
 

Q . 

Then all conditions in Theorem 2 are satisfied. Therefore this MJLS is AS stable.  

 Fig.1 illustrates nine realizations of kx  starting from the initial state T[3, 1] . One can 

see that the MJLS is exponential almost sure stable. 

 

INSERT FIG.1 HERE 

Fig.1 nine realizations of kx for example 2 

6. Conclusions 

In this paper, the transient and steady characteristics of discrete-time Markov jump 

linear systems are investigated. The expectations of sojourn time, activation number and 

switching number are given. Based on the above results, a theorem on transient analysis of 

discrete-time MJLS is then presented. After that a new deterministic sufficient condition 

on exponential almost sure stability of discrete-time MJLS is proposed in form of matrix 

inequalities. Finally, two numerical examples are provided to demonstrate the effectiveness 

of the proposed results.  
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Fig.1 nine realizations of kx for example 2 

 


