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Abstract

In this paper, we develop tools to establish almost sure stability of stochastic switched systems whose
switching signal is constrained by an automaton. After having provided the necessary generalizations of
existing results in the setting of stochastic graphs, we provide a characterization of almost sure stability
in terms of multiple Lyapunov functions. We introduce the concept of lifts, providing formal expansions
of stochastic graphs, together with the guarantee of conserving the underlying probability framework. We
show how these techniques, firstly introduced in the deterministic setting, provide hierarchical methods
in order to compute tight upper bounds for the almost sure decay rate. The theoretical developments
are finally illustrated via a numerical example.

1 Introduction

Switched linear systems provide a fruitful mathematical model for a large class of physical systems and have
been the center of intense research in the last decades, for an overview, see [1]. In this framework, given M
linear subdynamics A1, . . . , AM ∈ R

n×n, we consider the system

x(k + 1) = Aσ(k)x(k), k ∈ N, (1)

where σ : N → {1, . . . ,M}, the switching signal, selects, at each instant of time, which subsystems the
solution will follow. In some situations, we only have partial information on the reasonable/suitable signals
σ : N → {1, . . . ,M}, and thus the jumps among the subsystems are modeled as a stochastic process,
providing, at each instant of time, the probability of having followed a particular switching policy. In this
case, the arising stochastic system takes the name of discrete-time (Markov) jump linear system or stochastic
switched system, and the earliest works studying stability in this setting can be found in [2, 3, 4]. The case of
stochastic switching modeled by an i.i.d. (independent and identically distributed) sequence or by a Markov
chain process is studied in [5, 6, 7, 8, 9].

Since we consider stochasticity in system (1), several stability notions can be defined and tackled. The
case of worst case stability is studied in [10, 11], providing a graph-constrained adaptation of the concept of
joint spectral radius (JSR), see [12] for a monograph. The case of second moment stability, (i.e. studying the
convergence of the mean of the squared norm of solutions), is tackled in [5, 6, 13]. In these works, it is proven
that the second moment stability can be ensured, without conservatism, by semidefinite optimization, via a
quadratic Lyapunov functions approach. The case of q-moment stability is tackled in [5, 14, 15], providing
again a characterization in terms of a “spectral quantity” (q-radius) and/or in terms of Lyapunov functions.
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In some situations, worst case or q-moment stability notions are restrictive or not meaningful for the
considered systems; for that reason, recent research focused in studying almost sure stability: system (1) is
said to be almost surely stable if the solutions are converging to zero, for almost all switching sequences (with
respect to the underlying probability measure). This problem is studied for example in [16, 8, 9, 7, 17, 18],
and a common tool in this analysis is provided by the (maximal) Lyapunov exponent, which provides a
characterization of almost sure stability: indeed, the Lyapunov exponent can be seen, roughly speaking, as
a probabilistic counterpart of the (logarithm of the) JSR. Unfortunately, it is well known that the problem
of computing the Lyapunov exponent is NP-hard or even undecidable, see [19].

In this manuscript, we provide novel techniques to estimate the Lyapunov exponent, proposing new
sufficient conditions for the almost sure stability of (1). Our ideas rely on a language-theoretic interpretation
of Markov chains, and are inspired by techniques introduced in [10] for the deterministic case. We consider
formal expansions of Markov chains, called lifts, which, while not modifying the behavior of the stochastic
system, simplify the task of providing upper bounds to the Lyapunov exponent. This requires to introduce
a flexible stochastic model, generalizing the Markov chains framework, and we thus consider the stochastic
graphs formalism, see [20]. Then, our approach makes use of the concept of multiple Lyapunov functions,
introduced in [21, 7] in the i.i.d. case, and adapted here in this general context. We prove that, increasing
the dimension (in terms of node/edges) of the lift of the Markov chain, the corresponding estimation of the
Lyapunov exponent is asymptotically exact.

The manuscript is organized as follows: in Section 2 we recall the necessary preliminaries of probability
theory, while in Section 3 we provide the extension of results involving almost sure stability, the probabilistic
spectral radius and multiple Lyapunov functions. In Section 4 we define the main concepts of our work, the
lifts of stochastic graphs, and we provide our main results, which are then illustrated in Section 5 with the
help of a numerical example.

2 Preliminaries

In this section we introduce the necessary notation from probability theory and stochastic switched systems.

2.1 Shift Space and Ergodicity

Given M ∈ N, consider the finite set 〈M〉 := {1, . . . ,M}, and the one-sided Bernoulli space defined by
ΣM := {σ = (σ0, σ1, σ2, . . . ) | ∀k ∈ N, σk ∈ 〈M〉}. We consider the left-shift operator ℓ : ΣM → ΣM defined
by ℓ(σ) = (σ1, σ2, . . . ). The Borel σ-algebra of ΣM , denoted by B(ΣM ), is generated by the cylinders of
the form [ik−1, . . . , i0] := {σ ∈ ΣM | σ0 = i0, . . . , σk−1 = ik−1}, where k ∈ N is the length of the cylinder.
There is an identification between cylinders of length k and elements of 〈M〉k and thus we also denotes with
ı̂ = (ik−1, . . . , i0) ∈ 〈M〉k a generic cylinder [̂ı] of length k. A measure µ on (ΣM ,B(ΣM )) is said to be
shift-invariant if µ(ℓ−1(C)) = µ(C) for all C ∈ B(ΣM ). A shift-invariant measure µ is ergodic with respect
to ℓ if for all C ∈ B(ΣM ) such that ℓ−1(C) = C we have (µ(C) = 0 or µ(C) = 1). For an overview of this
topic see [22, Chapter 1].

2.2 Stochastic Graphs and Stochastic Switched Systems

In the following, givenM ∈ N, we introduce the structure used to define probability measures on (ΣM ,B(ΣM )).

Definition 1. Given M ∈ N, a stochastic graph G = (S,E, p) on 〈M〉 is defined by

1. A finite set S, the set of nodes;

2. The set E ⊂ S × S × 〈M〉 of directed, labeled edges;

3. A function p : E → (0, 1], where, given e ∈ E, p(e) is the probability associated with e ∈ E.

2



We denote the generic edge by e = (a, b, i); i =: lab(e) ∈ 〈M〉 is the label of e, a =: st(e) ∈ S and
b =: end(e) ∈ S are the starting and ending nodes of e, respectively. The probability p(e), when needed, is
also denoted by pa,b,i. We require that

∑

b∈S,i∈〈M〉

pa,b,i = 1, ∀a ∈ S.

When needed for notational simplicity, we set pa,b,i = 0 for every (a, b, i) /∈ E. For every K ∈ N,

by PathK(G) we denote the set of paths in G of length K. Given q ∈ PathK(G), q = (ej1 , · · · , ejK ), we

define p(q) := p(ej1) · · · p(ejK ). We denote by st(q) ∈ S the starting node of q ∈ PathK(G), and we say

that ı̂ = (iK−1, . . . , i0) ∈ 〈M〉K is the label of q = (ej1 , · · · , ejK ) ∈ PathK(G) and we write lab(q) = ı̂ if
lab(ej1) = i0, . . . , lab(ejK ) = iK−1.

We define ΞS the set of probability distributions on S, and we can identify ΞS = {ξ ∈ R
|S|
+ |

∑|S|
j=1 ξj = 1}.

Given any ξ ∈ ΞS and any stochastic graph G on 〈M〉, we can define a probability measure on (ΣM ,B(ΣM))
as clarified in what follows; for every k ∈ N, we first consider a probability measure on S × 〈M〉k, denoted
by PG,ξ (without making k explicit, for simplicity) defined recursively as follows:





PG,ξ(s, ∅) := ξ(s), ∀ s ∈ S,

PG,ξ(s, i) :=
∑

a∈S ξ(a)pa,s,i, ∀ (s, i) ∈ S × 〈M〉,

PG,ξ(s, ı̂) :=
∑

a∈S PG,ξ(a, ı̂
−)pa,s,ı̂f , ∀s ∈ S, ı̂ ∈ 〈M〉k

(2)

where, given ı̂ = (ik−1, . . . , i0) ∈ 〈M〉k, ı̂− := (ik−2, . . . , i0) ∈ 〈M〉k−1 denotes the predecessor of ı̂ and
ı̂f := ik−1 is the final label of ı̂. Intuitively, PG,ξ(s, ı̂) denotes the probability of “being” in the node s ∈ S
after having followed a path labeled by the (multi-)index ı̂ ∈ 〈M〉k, given an initial probability measure ξ.
Finally, we introduce µG,ξ on (ΣM ,B(ΣM)) by defining it on the set of cylinders of ΣM , i.e., ∀ ı̂ ∈ 〈M〉k,
∀k ∈ N we set

µG,ξ (̂ı) :=
∑

s∈S

PG,ξ(s, ı̂). (3)

Another possible definition of (3), is obtained setting

µG,ξ (̂ı) :=
∑

s∈S

ξ(s)
∑

q∈Path
k(G)

st(q)=s, lab(q)=ı̂

p(q), (4)

for all ı̂ ∈ 〈M〉k and for all k ∈ N. It is easy to see that (3) and (4) are equivalent and in the following
we may use both, depending on the convenience. With this definition, for any stochastic graph G and any
ξ ∈ ΞS , we have that (ΣM ,B(ΣM ), µG,ξ) is a well-defined probability space.

Remark 1 (Choice of the model). For more details regarding the stochastic graph formalism, see [20, Defini-
tion 2.3.14] and references therein. The case of finite Markov chain is recovered by the setting in Definition 1;
given a stochastic matrix P = (pij) ∈ R

M×M
≥0 , the state transition matrix associated to a time homogeneous

Markov chain, we can define the corresponding stochastic graph by S := 〈M〉, E = {(i, j, j) | (i, j) ∈ 〈M〉2}
and pi,j,j = pi,j , for all (i, j) ∈ 〈M〉2. For a graphical representation, see Figure 1a. It can be seen that every
stochastic graph can be rewritten, paying the price of “enlarging” the alphabet and/or the node set, as an
ordinary Markov chain, see [20]. We carry out the analysis in the setting of general stochastic graphs, since
it will be crucial, in the following sections, when considering “expanded” version of a given graph/Markov
chain.

In the next developments, given a stochastic graph G, we consider the following crucial property.

Assumption 1. The considered stochastic graph G is strongly connected, i.e., for all a, b ∈ S there exists a
path in G starting at a and arriving at b.
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Given G = (S,E, p) a stochastic graph on 〈M〉, let us consider the stochastic matrix PG ∈ R
|S|×|S|
≥0 defined

by

pa,b :=
∑

i∈〈M〉

pa,b,i. (5)

If G satisfies Assumption 1, by the Perron-Frobenius Theorem, we can consider ξG ∈ ΞS as the unique
measure such that ξ⊤G PG = ξ⊤G , which satisfies ξGj > 0 for any j ∈ {1, . . . , |S|}. This unique measure ξG is
refereed to as the invariant measure of the stochastic graph G. We recall the following important properties
that we use in what follows.

Lemma 1. Consider a stochastic graph G on 〈M〉 satisfying Assumption 1. Then, the measure µG,ξG on
(ΣM ,B(ΣM )) is shift-invariant and ergodic and, for any ξ ∈ ΞS, the measure µG,ξ is absolutely continuous1

with respect to µG,ξG .

The first part holds by ergodic theory, see for example [22, Chapter 1], while the absolute continuity of
µG,ξ for any ξ ∈ ΞS follows by the fact that ξG > 0 (component-wise). Now that the stochastic setting is
well defined, we introduce the class of systems we study in what follows.

Definition 2 ((Stochastic) Switched Systems). Let us consider M,n ∈ N, A := {A1, . . . , AM} ⊂ R
n×n, and

a stochastic graph G on 〈M〉. We consider the discrete-time switched system S(A,G) defined by

x(k + 1) = Aσk
x(k), k ∈ N, (6)

where σ ∈ ΣM is also called the switching sequence. Given ξ ∈ ΞS , we consider the probability space
(ΣM ,B(ΣM ), µG,ξ) and the asymptotic behavior of systems (6) is then studied with respect to this measure.

Given x0 ∈ R
n and σ ∈ ΣM , we denote by x(k, x0, σ) the solution of (6), starting at x0 with respect to

the signal σ, evaluated at time k ∈ N. Similarly, given A = {A1, . . . , AM} ⊂ R
n×n, for any k ∈ N, given

ı̂ = (ik−1, . . . , i0) ∈ 〈M〉k we use the notation A(̂ı) = Aik−1
· · ·Ai0 , and given σ ∈ ΣM , Ak(σ) = Aσk−1

· · ·Aσ0
.

3 Almost Sure Stability and probabilistic spectral radius

We now introduce the considered stability notion and the corresponding spectral characterization.

Definition 3. Consider M,n ∈ N, A = {A1, . . . , AM} ⊂ R
n×n and a stochastic graph G on 〈M〉. Given

Φ ⊆ ΞS the switched system (6) is said to be uniformly almost surely asymptotically stable with respect to Φ
if, for any x0 ∈ R

n and any ξ ∈ Φ we have

µG,ξ

({
σ ∈ ΣM | lim

k→∞
|x(k, x0, σ)| = 0

})
= 1. (7)

In the case Φ = ΞS , the term “with respect to Φ” is omitted.

It turns out that this stability notion, (as the “deterministic” one, introduced in [7]) can be characterized
by studying a corresponding probabilistic spectral radius.

Definition 4 (Probabilistic Spectral Radius). Consider M,n ∈ N, A = {A1, . . . , AM} ⊂ R
n×n, a stochastic

graph G on 〈M〉 and ξ ∈ ΞS . Given any operator matrix norm ‖ · ‖, we define

ρ0(A,G, ξ) := lim sup
k→∞


 ∏

ı̂∈〈M〉k

‖A(̂ı)‖µG,ξ(ı̂)




1
k

. (8)

The quantity ρ0(A,G, ξ) is referred to as the probabilistic spectral radius of A induced by G and ξ ∈ ΞS .

1Given 2 measures µ, ν (on a generic measurable space), µ is absolutely continuous with respect to ν is ν(C) = 0 implies
µ(C) = 0.
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The subscript 0 in ρ0(A,G, ξ) is motivated by the fact that this radius can be seen as the limit, for q
going to 0, of the q-spectral radius, i.e. the quantity characterizing the stability of the q-moment of solutions,
see [23, 5]. From now on we study stability with respect to the whole set ΞS ; under Assumption 1 this is
not restrictive: using Lemma 1 it can be shown that, for any ξ ∈ ΞS , we have

sup
ξ∈ΞS

ρ0(A,G, ξ) = ρ0(A,G, ξG), (9)

see [5, Lemma 2.3]. We have the following relation between almost sure stability and probabilistic spectral
radius.

Proposition 1. Consider M,n ∈ N, A = {A1, . . . , AM} ⊂ R
n×n and a stochastic graph G on 〈M〉 satisfying

Assumption 1. Then, the system S(A,G) is uniformly almost surely asymptotically stable if and only if

ρ0(A,G, ξG) < 1.

Sketch of the Proof. The proof can be found in [5] for the case of Markov jump linear systems (i.e. for
stochastic graphs arising from strongly connected Markov chains), and the ideas can be adapted in this
context,mutatis mutandis. The peculiarity here is that we consider the probabilistic spectral radius as defined
in (8). Instead, most of the literature concerning stability of stochastic switched systems (cfr. [5, 16, 17, 24]
and references therein) introduce the (maximal) Lyapunov Exponent

λ0(A,G, ξ) := lim sup
k→∞

1

k
EG,ξ

(
log ‖Ak(σ)‖

)
(10)

to characterize almost sure stability. Since it holds that eλ0(A,G,ξ) = ρ0(A,G, ξ), we can apply the same
arguments in our case.

The reason to consider the probabilistic spectral radius (instead of the Lyapunov exponent) is two-fold:
from one side, this allows to draw a parallel with the definition and estimation techniques for the JSR
(see [18]), and, on the other hand, it allows us to simplify the following notation and proofs.

3.1 Lyapunov Multi Functions for Almost-Sure Stability

To give a “computable” characterization of the probabilistic spectral radius, we define the space of candidate
Lyapunov functions.

Definition 5. We say that f is a candidate Lyapunov function (and we write f ∈ Fn) if f : Rn → R is
continuous, positive definite, and positively homogeneous2.

Definition 6 (Lyapunov Multi-Functions). Consider A = {A1, . . . , AN} ⊂ R
n×n, a stochastic graph G =

(S,E, p) and a scalar ρ ≥ 0. A Lyapunov multi function (LMF) for S(A,G) w.r.t. ρ is a set of |S| functions
F := {fa ∈ Fn | a ∈ S} such that, ∀x ∈ R

n, ∀a ∈ S,
∏

i∈〈M〉

∏

b∈S

(fb(Aix))
pa,b,i ≤ ρfa(x). (11)

Proposition 2. Consider A = {A1, . . . , AN} ⊂ R
n×n, a stochastic graph G, it holds that

sup
ξ∈ΞS

ρ0(A,G, ξ) ≤

inf {ρ ≥ 0 | ∃ F ⊂ Fn, LMF for S(A,G) w.r.t. ρ} .
(12)

If G satisfies Assumption 1 the equality holds, i.e.,

ρ0(A,G, ξG) =

inf {ρ ≥ 0 | ∃ F ⊂ Fn, LMF for S(A,G) w.r.t. ρ} .
(13)

2A function f : Rn
→ R is positively homogeneous if f(ax) = af(x), for any a ∈ R+ and any x ∈ R

n.
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Proof. First, consider a Lyapunov multi function for S = (A,G) w.r.t. ρ, denoted by F := {fs ∈ Fn, | s ∈ S}.
We show that for every ξ ∈ ΞS , we have ρ0(A,G, ξ) ≤ ρ. By finiteness of S and since fs ∈ Fn are homogeneous
of degree 1, continuous and positive definite, there exist α, β ∈ R+ such that

α|x| ≤ fs(x) ≤ β|x| ∀x ∈ R
n, ∀s ∈ S. (14)

Let us consider any ξ ∈ ΞS , we want to prove that, for every k ∈ N,

∏

s∈S

∏

̂∈〈M〉k

fs(A(̂)x)
PG,ξ(s,̂) ≤ ρk

∏

s∈S

fs(x)
ξ(s), ∀ x ∈ R

n. (15)

We prove it by induction, the case k = 0 is a trivial identity (posing, by definition 〈M〉0 := {∅}). We consider
any k ∈ N and supposing that (15) is verified for k − 1 we prove that it is also true for k. Computing

∏

s∈S

∏

̂∈〈M〉k

fs(A(ĵ)x)
PG,ξ(s,̂) =

∏

s∈S

∏

̂∈〈M〉k

fs(A(̂)x)
∑

a∈S
PG,ξ(a,̂

−)pa,s,̂f

=
∏

s∈S

∏

̂∈〈M〉k

∏

a∈S

[fs(A(̂)x)
pa,s,̂f ]

PG,ξ(a,̂
−)

=
∏

a∈S

∏

ı̂∈〈M〉k−1


∏

s∈S

∏

j∈〈M〉

fs(AjA(̂ı)x)
pa,s,j



PG,ξ(a,ı̂)

≤ρ
∏

a∈S

∏

ı̂∈〈M〉k−1

fa(A(̂ı)x)
PG,ξ(a,ı̂) ≤ ρρk−1

∏

s∈S

fs(x)
ξ(s) = ρk

∏

s∈S

fs(x)
ξ(s).

Now, using (14) and (15) we obtain

∏

̂∈〈M〉k

‖A(̂)‖µG,ξ(̂) =
∏

s∈S

∏

̂∈〈M〉k

max
x 6=0

|A(̂)x|

|x|

PG,ξ(s,̂)

=
∏

s∈S

∏

̂∈〈M〉k

(
max
x 6=0

|A(̂)x|∏
a∈S |x|ξ(a)

)PG,ξ(s,̂)

≤
β

α

∏

s∈S

∏

̂∈〈M〉k

(
max
x 6=0

fs(A(̂)x)∏
a∈S fa(x)ξ(a)

)PG,ξ(s,̂)

≤
β

α
ρk.

Concluding we have, for any ξ ∈ ΞS ρ0(A,G, ξ) := lim supk→∞

[∏
̂∈〈M〉k ‖A(̂)‖

µG,ξ(̂)
] 1

k

≤ limk→∞

(
β
α

) 1
k

ρ =

ρ, as to be proven.
The idea of the proof of (13) can be found in [21] for the case of i.i.d. matrices; the construction applies

in the ergodic case (i.e. under Assumption 1 and applying (9)), mutatis mutandis.

In Proposition 2 we consider the infimum over all the possible candidate Lyapunov functions in (Fn)
|S|.

Since, usually, it is practical to restrict the search to a particular subset (e.g. quadratic norms, SOS-
polynomials, etcetera), we provide the following definition.

Definition 7. Consider A = {A1, . . . , AN} ⊂ R
n×n and a stochastic graph G. Consider a subclass of

candidate Lyapunov functions V ⊂ Fn, we define

ρ0,V(A,G) :=

inf {ρ > 0 | ∃ F ⊂ V LMF for S(A,G) w.r.t. ρ} .
(16)

In Proposition 2 we have proven that ρ0,Fn
(G,A) = supξ∈ΞS

ρ0(G,A, ξ), and thus, for any V ⊂ Fn,

sup
ξ∈ΞS

ρ0(G,A, ξ) ≤ ρ0,V(G,A). (17)
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(a) The graph H in Example 1.
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(1 1, 1
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(b) The 2-Step lift of H, H2.
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(1, 1
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3 )

(1, 1
4 )

(1, 1
3 )

(2, 2
3 )

(1, 1
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(2, 3
4 )
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4 )

(c) The Path lift of degree 1, H1 of the
graph H.

Figure 1: A stochastic graph and its 2-Step Lift and Path Lift of degree 1.

4 Approximation of the probabilistic spectral radius: Graph-Based

Lifts

In the following, we define some “expansion techniques” of stochastic switched systems, providing related
results concerning the computation of the probabilistic spectral radius.

4.1 The Step Lift

We introduce a formal expansion of stochastic graph which, intuitively, induces the same stochastic frame-
work on ΣM , while focusing not on the transition among letters (i.e. i ∈ 〈M〉), but among sub-words of the
form ı̂ = (iK−1, . . . , i0) ∈ 〈M〉K of arbitrary length K ∈ N.

Definition 8 (The Step Lift). Let us consider M ∈ N, a stochastic graph G = (S,E, p) on 〈M〉 and a set of
matrices A = {A1, . . . , AM}. Given the system S(A,G) and any integer K ≥ 1, the K-step lift of S(A,G)
denoted by LKS(A,G) is a stochastic system defined by a stochastic graph on 〈M〉K , GK = (SK , EK , pK)
and a set of matrices AK defined as follows:

1. SK ≡ S,

2. For any “candidate edge” for GK , (a, b, ı̂) ∈ S×S×〈M〉K , we inductively define its probability weight by

pKa,b,ı̂ :=
∑

c∈S

pK−1
a,c,ı̂− pc,b,ı̂f .

By convention, if pa,b,ı̂ = 0 then e = (a, b, ı̂) /∈ EK .

3. AK := {A(̂ı) | ı̂ ∈ 〈M〉K}, where, given ı̂ = (iK−1, . . . i0) we recall that A(̂ı) = AiK−1
· · ·Ai0 .

It is clear that L1 S(A,G) = S(A,G). In the following statement we collect the relations between the
probability measures induced by G and GK , respectively.

Lemma 2. Consider a stochastic graph G on 〈M〉 and K ∈ N; it holds that PGK = PK
G , where PG and PGK

are defined as in (5); this implies ξG = ξGK . Moreover, for any k ∈ N, K ∈ N \ {0}, any ξ ∈ ΞS and any
ı̂ ∈ 〈M〉kK we have

µG,ξ (̂ı) = µGK ,ξ (̂ı). (18)

Proof. The first part follows from the definition in (5) and from Item 2 of Definition 8. Equation (18) is a
consequence of PGK = PK

G , once recalled (2) and (3).

Example 1. Consider the stochastic graph H in Figure 1a. It represents the case of a (strongly connected)

Markov chain, with transition matrix given by P = PH =
[
1/3 2/3
1/4 3/4

]
and ξH = [3/11, 8/11]⊤. The corre-

sponding step lift of degree 2, denoted by H2 is depicted in Figure 1b. Recalling the definition of PG given

by (5) is easy to see that PH2 =
[

5/18 13/18
13/48 35/48

]
= P 2

H, as predicted by Lemma 2.
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Theorem 1 (Properties of Step Lift). Consider M ∈ N, a stochastic graph G on 〈M〉 and A = {A1, . . . , AM} ⊂
R

n×n. For any K ∈ N \ {0}, and any ξ ∈ ΞS it holds that

ρ0(A
K ,GK , ξ) = [ρ0(A,G, ξ)]K . (19)

For any (non-empty) subclass of candidate functions V ⊂ Fn, we have

sup
ξ∈Ξ

ρ0(A,G, ξ) ≤ K

√
ρ0,V(AK ,GK) ≤ ρ0,V(A,G), (20)

and moreover, if G satisfies Assumption 1, we have

ρ0(A,G, ξG) = lim
K→+∞

K

√
ρ0,V(AK ,GK). (21)

Proof. The equivalence in (19) follows by (18). Indeed, consider any K ∈ N and any ξ ∈ ΞS computing,

ρ0(A,G, ξ) = lim sup
k→∞


 ∏

ı̂∈〈M〉k

‖A(̂ı)‖µG,ξ(ı̂)




1
k

=


lim sup

k′→∞


 ∏

̂∈(〈M〉K)k′

‖A(̂)‖µGK,ξ
(̂)




1

k′




1
K

= ρ0(A
K ,GK , ξ)

1
K .

For (20), the left-inequality follows by (19) and (17). For the right inequality in (20), let us consider any
ρ̃ > ρ0,V(A,G). We recall that, by definition, there exists F := {fs | s ∈ S} ∈ V |S|, such that

∏

i∈〈M〉

∏

b∈S

fb(Aix)
pa,b,i ≤ ρ̃fa(x), ∀x ∈ R

n, ∀a ∈ S.

Firstly, we prove by induction that, ∀K ∈ N \ {0},

∏

ı̂∈〈M〉K

∏

b∈S

fb(A(̂ı)x)
pa,b,ı̂ ≤ ρ̃Kfa(x), ∀x ∈ R

n, ∀a ∈ S. (22)

The case K = 1 is trivial, let us suppose the statement is true for K − 1, computing, for any a ∈ A and any
x ∈ R

n we have

∏

ı̂∈〈M〉K

∏

b∈S

fb(A(̂ı)x)
pK
a,b,ı̂ =

∏

ı̂∈〈M〉K

∏

b∈S

fb(A(̂ı)x)
∑

c∈S pK−1

a,c,ı̂−
pc,b,ı̂f

=
∏

ĵ∈〈M〉K−1

∏

c∈S




∏

h∈〈M〉

∏

b∈S

fb(AhA(ĵ)x)
pc,b,h



pK−1

a,c,ĵ

≤ ρ̃
∏

ĵ∈〈M〉K−1

∏

c∈S

fc(A(ĵ )x)
pK−1

a,c,ĵ ≤ ρ̃Kfa(x).

We have thus obtained that for any ρ̃ > ρ0,V(A,G) there exist a set F = {fs, | s ∈ S} ∈ V |S| such that (22)
holds, and recalling Definition 7, we have ρ0,V(AK ,GK) < ρ̃K and thus ρ0,V(AK ,GK) ≤ ρ0,V(A,G)K , as to
be proven. We now prove (21); we denote ρ := ρ0(A,G, ξG). Let us consider any f ∈ V ⊂ Fn by homogeneity
there exist 0 < α ≤ β such that

α|x| ≤ f(x) ≤ β|x|, ∀ x ∈ R
n. (23)

For any a ∈ S, we will denote by ξa ∈ ΞS the indicator measure of a ∈ S, i.e. the probability measure
defined by ξa(a) = 1 and ξa(s) = 0 for all s ∈ S, s 6= a. By (8) and (9), for any ε1 > 0 there exists a K1 ∈ N

such that 


∏

ı̂∈〈M〉K1

‖A(̂ı)‖µG,ξa (ı̂)




1
K1

≤ ρ+ ε1, ∀a ∈ S.
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Recalling (4), it is clear that µG,ξa (̂ı) =
∑

b∈S pK1

a,b,ı̂, and we can thus write


 ∏

ı̂∈〈M〉K1

∏

b∈S

‖A(̂ı)‖p
K1
a,b,ı̂




1
K1

≤ ρ+ ε1, ∀a ∈ S.

Developing 


∏

ı̂∈〈M〉K1

∏

b∈S

(
max
x 6=0

|A(̂ı)x|

|x|

)p
K1
a,b,ı̂




1
K1

≤ ρ+ ε1, ∀ a ∈ S,

implies that, for all x ∈ R
n, we have




∏

ı̂∈〈M〉K1

∏

b∈S

|A(̂ı)x|p
K1
a,b,ı̂




1
K1

≤ (ρ+ ε1) |x|
1

K1 , ∀ a ∈ S.

Now, identifying fs ≡ f , for all s ∈ S and using (23) we obtain that, for all x ∈ R
n,

∏

ı̂∈〈M〉K1

∏

b∈S

fb(A(̂ı)x)
p
K1
a,b,ı̂ ≤

β

α
(ρ+ ε1)

K1 fa(x), ∀ a ∈ S.

Recalling the definition in (16) and by induction step in the proof of (20), we have thus proven that, for every
ε > 0, there exists a K1 ∈ N such that ρV(GK ,AK) ≤ β

α (ρ+ ε1)
K , for every K ≥ K1. Now, given any ε > 0,

it suffices to choose ε1 < ε small enough and K ∈ N, K ≥ K1 big enough such that β
α (ρ+ ε1)

K ≤ (ρ+ ε)K .
This implies that, ∀ε > 0 there exists K ∈ N such that

ρV(G
K ,AK) ≤ (ρ+ ε)K

and thus limK→∞ ρV(GK ,AK) = ρK = ρ0(G,A, ξG)
K , concluding the proof.

We note here that in Lemma 2 and Theorem 1, Assumption 1 is not required, except for the convergence
property in (21). In other words, since the K-step lift conserves the probabilistic structure for any G and
with respect to any initial probability ξ ∈ ΞS , the ergodicity is not required.

Remark 2. Theorem 1 provides a technique to approximate the probabilistic spectral radius. Once a “prac-
tical” (in terms of optimization purposes) family of functions is fixed, choose a K ∈ N, construct the K-step
lift of the considered system S(A,G). Then, solve (or approximate) the optimization problem in (16) and

find (an upper bound for) ρ0,V(AK ,GK). The K-root, ρ0,V(AK ,GK)
1
K by Theorem 1 provides an upper

bound for the probabilistic spectral radius of S(A,G). Under Assumption 1 this upper bound also converges
to ρ0(A,G, ξG) no matter the chosen family V ; of course, the “speed of convergence” will depend on V .

4.2 The Path Lift

In this subsection we propose another lift, defining an augmented graph which, intuitively, adds memory to
the framework, considering paths of given length as new states.

Definition 9 (The Path Lift). Consider M ∈ N, a stochastic graph G = (S,E, p) on 〈M〉 and A =
{A1, . . . , AM} ⊂ R

n×n. Given any integer R ≥ 1, the path lift of degree R of S(A,G) denoted by LRS(A,G)
is a stochastic system composed by a stochastic graph on 〈M〉, GR = (SR, ER, pR) defined recursively as
follows:

1. For any path of length R, q = (e1, . . . , eR) ∈ PathR(G) in G, add a node sq ∈ SR;
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2. For each path r = (e1, e2, . . . eR, eR+1) of length R + 1 in G, with i ∈ 〈M〉 the label of eR+1, add in ER

the edge (sq1 , sq2 , i), where q1 = (e1, . . . , eR) and q2 = (e2, . . . , eR+1);

3. For any path r = (e1, e2, . . . eR, eR+1) ∈ ER of length R+ 1, set pR(r) = p(eR+1).

Given any ξ ∈ ΞS , we consider the path lift measure of degree R ξR ∈ ΞSR
defined as follows: for every

sq ∈ SR with q = (e1, . . . , eR) and e1 = (a, b, i) ∈ E, define:

ξR(sq) := ξ(a)p(e1) · · · p(eR). (24)

From Definition 9 we have that, for any R ∈ N, GR+1 = (GR)1 and, similarly, for any ξ ∈ ΞS , ξR+1 = (ξR)1
i.e. the path lift of degree R + 1 is the path lift (of degree 1) of the path lift of degree R. It can be
seen that, given any stochastic graph G and any ξ ∈ ΞS and any R ∈ N, GR and ξR ∈ ΞSR

introduced
in Definition 9 are a well-defined stochastic graph and a probability measure, respectively. Moreover, if G
satisfies Assumption 1, so does GR.

Lemma 3. Consider a stochastic graph G satisfying Assumption 1, and consider ξG its invariant measure.
Then, for every R ∈ N, we have that (ξG)R = ξGR

, i.e. the path lift measure of degree R of ξG is the invariant
measure of GR.

Proof. Consider any stochastic graph G = (S,E, p). Since, for any R ∈ N we have that GR+1 = (GR)1 it
suffices to prove the claim for R = 1. We want to prove that (ξG)1 = ξG1

; since ξG is the invariant measure
of G, recalling (5), we have that ξG(r) =

∑
s∈S ξG(s)

∑
i∈〈M〉 ps,r,i, ∀r ∈ S. Consider any e = (a, b, i) ∈ G,

we have that
(ξG)1(e) = ξG(a)p(e) =

∑

s∈S

ξG(s)
∑

i∈〈M〉

ps,a,i p(e)

=
∑

s∈S

∑

i∈〈M〉

ξG(s)ps,a,i p(e)

=
∑

f∈E,
end(f)=st(e)

(ξG)1(f) p(e) =
∑

f∈E

(ξG)1(f) p1((f, e)),

recalling that, by Item 3 of Definition 9, we have p1((f, e)) = p(e). We have thus proven that (ξG)1 is
Lyapunov for G1, and by uniqueness of invariant measure, we conclude.

Example 2. Consider again the stochastic graph H in Figure 1a. The corresponding path lift of degree 1,
H1 is represented in Figure 1c. It can be seen that (considering the lexicographic order on the nodes), we
have

PH1
=

[
1/3 2/3 0 0
0 0 1/4 3/4

1/3 2/3 0 0
0 0 1/4 3/4

]
,

and computing, we obtain ξH1
= [ 1/11 2/11 2/11 6/11 ]⊤, which is equal to (ξH)1, as proven in Lemma 3.

Now we can prove the main result of this subsection, establishing relations between the probability
measure on (ΣM ,B(ΣM )) induced by a stochastic G and ξ ∈ ΞS and by GR, its path lift of degree R, and
the corresponding ξR.

Theorem 2 (Properties path lift of degree R). Consider any stochastic graph G, any distribution ξ ∈ ΞS

and any R ∈ N. For all k ∈ N, for all ı̂ ∈ 〈M〉k, we have

µGR,ξR (̂ı) = µG,ξ(ℓ
−R( [̂ı]))

=
∑

̂∈ℓ−R([ı̂])

µG,ξ(̂), ∀ı̂ ∈ 〈M〉k, ∀k ∈ N. (25)

If G satisfies Assumption 1, we have
µGR,ξGR

= µG,ξG , (26)
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and, for any A = {A1 . . . , AM} ⊂ R
n×n and any V ⊂ Fn,

ρ0(A,G, ξG)=ρ0(A,GR, ξGR
)≤ ρ0,V(A,GR) ≤ ρ0,V(A,G). (27)

Proof. Since, we recall, for any R ∈ N, we have that GR+1 = (GR)1 and, similarly, for any ξ ∈ ΞS , ξR+1 =
(ξR)1, it suffices to prove the claims for R = 1. Let us prove (25); consider any k ∈ N and any ı̂ ∈ 〈M〉k,
recalling (4) and Definition 9, we compute

µG1,ξ1 (̂ı) =
∑

e∈E

ξ1(e)
∑

q∈Path
k(G)

end(e)=st(q),
lab(q)=ı̂

p(q) =
∑

s∈S

ξ(s)
∑

e∈E
st(e)=s

p(e)
∑

q∈Path
k(G)

end(e)=st(q),
lab(q)=ı̂

p(q)

=
∑

j∈〈M〉

∑

s∈S

ξ(s)
∑

e∈E
st(e)=s
lab(e)=j

p(e)
∑

q∈Path
k(G)

end(e)=st(q),
lab(q)=ı̂

p(q) =
∑

j∈〈M〉

∑

s∈S

ξ(s)
∑

r∈Path
k+1(G)

st(r)=s,
lab(r)=(ı̂,j)

p(r)

=
∑

̂∈ℓ−1([ı̂])

µG,ξ(̂) = µG,ξ(ℓ
−1( [̂ı])),

concluding the proof of (25). For (26), it suffices to recall Lemma 3, and the fact that, by Lemma 1, µG,ξG is
shift-invariant and ergodic, i.e. µG,ξG (̂ı) = µG,ξ(ℓ

−1( [̂ı])), ∀ ı̂ ∈ 〈M〉k, ∀k ∈ N. For (27), the equality and the
first inequality are straightforward by (25) and (26). Let us thus prove, given any family of function V ⊂ Fn,
that ρ0,V(A,G1) ≤ ρ0,V(A,G). Consider any ρ > ρ0,V(A,G), then recalling there existsW = {gs | s ∈ S} ⊂ V ,
a set of Lyapunov function for S(A,G) w.r.t. ρ, i.e., we recall, implies that

∏

i∈〈M〉

∏

b∈S

fb(Aix)
pa,b,i ≤ ρfa(x), ∀x ∈ R

n, ∀a ∈ S,

or, rewriting it in a more convenient form for our purposes,

∏

e∈E, st(e)=a

fend(e)(Alab(e)x)
p(e) ≤ ρfa(x), ∀x ∈ R

n, ∀a ∈ S.

We want to construct, from W , a set of Lyapunov function for G1 w.r.t. ρ. Let thus define W1 := {ge ≡
fend(e) | e ∈ E}, consider any e = (c, a, i) ∈ E, we have

∏

ẽ∈E
st(ẽ)=a

gẽ(Alab(ẽ)x)
p(ẽ) =

∏

ẽ∈E
st(ẽ)=a

fend(ẽ)(Alab(ẽ)x)
p(ẽ) ≤ ρfa(x) = ρge(x), ∀x ∈ R

n,

proving that W1 is a set of Lyapunov function for S(A,G1) w.r.t. ρ, thus concluding the proof. �

5 Numerical Example

In this section, we consider a positive stochastic switched system as in (1), denoted by S(H,A), with the
stochastic graph H on 〈2〉 in Figure 1a, already studied in Examples 1 and 2, while the set of positive
matrices A = {A1, A2} ⊂ R

2×2
≥0 is defined by

A1 :=

[
0.5 1
0 0.5

]
, A2 :=

[
1 0
0.1 1

]
.

The same set of matrices was studied in [16, Example 3.2] (with a different underlying irreducible Markov
chain). We note that system S(H,A) is first moment unstable (or unstable in mean) i.e., there exists x0 ∈ R

n
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for which limk→∞ EH,ξH (|x(k, x0, σ)|) > 0, i.e., the expected norm with respect to the measure µH,ξH does
not asymptotically converge to 0. Indeed, by positivity of A1 and A2 and applying [14, Theorem 2.4],
S(H,A) is unstable in mean since the “averaged” matrix

B = ξH(a)A1 + ξH(b)A2 = 3
11A1 +

8
11A2 =

[
19/22 3/11
4/55 19/22

]

is Schur unstable, i.e. ρ(B) > 1. It can be also shown that the sufficient and necessary LMI conditions for
mean square stability illustrated in [6] are infeasible for S(H,A). In what follows we show that S(H,A) is
almost sure stable, using the ideas developed in Section 4.

First, we consider, as set of candidate Lyapunov functions, the set Q ⊂ F2 of quadratic norms, defined
by Q := {fQ : R2

≥0 → R | Q ≻ 0}, with fQ(x) :=
√
x⊤Qx. To compute an upper bound of the minimal ρ

satisfying (11) we use the techniques presented in [16, Corollary 2.2.]. In this case, simply considering the
original Markov chainH, we are unable to provide a stability certificate, since we have obtained ρ0,Q(A,H) ≤
1.002. Instead, considering the lifts H2 and H1 depicted in Figures 1, we obtain certificates of almost sure
stability, since we have that ρ0,Q(A,H2) < 1 and ρ0,Q(A,H1) < 1. The obtained numeric values are reported
in Table I.

For the sake of completeness, we report that we have also considered the set of candidate Lyapunov
functions D ⊂ F2 of dual copositive norms defined by D := {f⋆

v : R2
≥0 → R | v ∈ R

2
>0}, where, given

v ∈ R
2
>0, we define f⋆

v (x) := maxi∈{1,2}

{
xi

vi

}
, ∀ x ∈ R

2
≥2. These functions are valid norms in this case,

since A1 and A2 are positive, for further discussion regarding copositive norms, we refer to [25, Section 4].
This family of functions was chosen for optimization purposes: indeed, inequalities of the form (11) can be
rewritten as follows ∏

i∈〈M〉

∏

b∈S

(f⋆
vb
(Aix))

pa,b,i ≤ ρf⋆
va(x), ∀x ∈ R

n
≥0, iff

∏

i∈〈M〉

∏

b∈S

(f⋆
vb
(Aiva))

pa,b,i ≤ ρ,

simplifying the minimization of the parameter ρ (the upper bound for the probabilistic spectral radius),
see [25, Section 4] for the details. In Table I we collect the values of the obtained upper bounds on
ρ0(A,H, ξH).

Concluding, we underline how, as proven in Theorem 1 and Theorem 2, the 2-steps lift H2 and the
path lift of degree 1, H1, provide a better over appoximation of ρ0(A,H, ξH) with respect to the original
graph-based conditions imposed on H, for these 2 different sets of candidate functions, Q and D.

6 Conclusion

In this work, we have generalized stochastic stability notions, and related algorithms, from arbitrarily switch-
ing systems to systems whose switching signal is ruled by a Markov Chain (aka MJLS). Inspired by techniques
developed for deterministic switched systems, we presented some numerical schemes to provide tight upper
bounds for the probabilistic spectral radius. These techniques rely on formal expansions of the underly-
ing stochastic graph, called lifts. Future research will investigate the numerical aspects related with our
approximation technique, and the application of the proposed scheme for more general stochastic systems
settings.

Table 1: Numerical upper bounds of the probabilistic spectral radius obtained with different lifts and different candidate

functions templates.

Lift G: H H2 H1

ρ0,Q(A,G) 1.002 0.896 0.998
ρ0,D(A,G) 1.169 1.045 1.036
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