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1. Let M be a differentiable manifold of dimension 3n. A G-structure
on M whose group G consists of all matrices of the form
A 0 0
B A 0
C B A

where A€ GL(R"), will be called an almost tangent structure of second
order.

Suppose that such a structure is defined on M. Then M is called an
almost tangent manifold of second order. Denote by P (M, G) the bundle
of adapted frames. We define a (1, 1) tensor field J on M by specifying
its components to be

0
1.1 J, = |1,

relative to any adapted frame. Any local cross-section of P(M, G) is an
adapted moving frame of M. It can be identified with an independent set
of vector fields X, ---, X;, such that

JXa = Xa+n ’ JXa.+n = a+2n

where a =1, +++, m.

The (1, 1) tensor field J has constant rank 2n and it satisfies the
equation J® = 0. We shall show that any such tensor field determines
an almost tangent structure of second order on M.

LEMMA 1.1. If a linear mapping F: R*— R** has rank 2n and if
F?* =0 then Im F = Ker F*.

Proor. Since Im F c Ker F'* it is sufficient to show that
dim Ker F* = dim Im F = 2n .

Let ey,4q, +++, €, be a basis for Ker F' and complete it to form a basis
e, *++, 6, for R*. The vectors Fe, -+, Fe,, belong to Ker F* and they
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are linearly independent. Consequently the dimension of Ker F'? is at
least 2n.

Suppose that dim Ker F* = 2n + s. Since Ker FFc Ker F? and since
dim Ker F = n, there exist linearly independent vectors f,, «- -, f.+, Which
belong to Ker F* and not to Ker F. The vectors Ff, -+, Ff,,, belong
to Ker F' and they are linearly independent. Since Ker F has dimension
n, it follows that s = 0. ]

ProprosITION 1.2. M is a differentiable manifold of dimension 3n.
Any (1, 1) tensor field J of constant rank 2n on M and such that J® = 0
determines an almost tangent structure of second order on M.

ProOF. Let m be a given point of M and choose a moving frame ¢
whose domain U contains m. The corresponding components of J form
a differentiable function .&# on U whose matrix values have rank 2u.

Let &# (m) = F. The lemma shows that the kernel of the linear funec-
tion F*. R*— R* has dimension 2n. Let e,,, -+, ¢, be a basis for
Ker F*® and complete it to form a basis e, +--, e, for R*. The non-zero
vectors

Feu "',Feszely "'9F26'n

belong to Ker F* and they are linearly independent. To prove this, sup-
pose that

N(Fe,) + p*(F,) = 0;
it follows that the vector
\e, + pi(Fe,)

belongs to Ker F and hence to Ker F* and so A\ =0(a =1, «+-, n); %,
will therefore belong to Ker F* and so p¢* = 0. We conclude that the
vectors

€, ***,¢e, Fe, -« Fe, F?, «-+, F?,

are linearly independent.
Consequently the differentiable function

[e“...,emﬁ'g“...,ﬂ'emﬁ'ze“...’ﬁ'zen]

on U is non-singular at m. So it is non-singular on a neighbourhood
U’ of m. Denote this restriction by 7. It now follows that

FT=[Fe, ), F €, F, o0y F %,0, -, 0] = TJ,

where we have defined the 3n x 3n matrix J, in equation (1.1). Therefore,
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the tensor field J has constant components J, relative to the moving
frame ¢T on U’.

We can construct a set of such moving frames whose domains cover
M. On any intersection of their domains, two such frames differ by a
matrix L such that

LJ,=J, L.
It is easy to deduce that L has values in the almost tangent group G.[]

We use the tensor field J to construct the Nijenhuis tensor N. This
(2, 1) tensor field on M is defined by

%N(X, Y) = [JX, JY] + J)[X, Y] — J[X, JY] — J[JX, Y]

where X, Y are two vector fields in M.

An almost tangent manifold M of second order is said to be integrable
if there exists a set of natural adapted frames whose domains cover M.
It has been proved by J. Lehmann-Lejeune [1] that this is the case if
and only if its Nijenhuis tensor is zero.

We give some examples of almost tangent manifolds of second order.

ExaMPLE 1.1. The tangent vectors of second order of any differentiable
manifold M form a manifold T*M. Corresponding to any chart 2 of M
we can define a standard chart (z,y, 2) of T*M. Two such charts with
intersecting domains are related by a change of co-ordinates which has
Jacobian matrix

- 9% 1

0 0
ox®
rz o5°
— Yy 0
oo P
1 e, P, PE ., o0
B T rr i

The natural moving frames associated with these standard charts there-
fore define an integrable almost tangent structure of second order on
T*M.

ExAMPLE 1.2. We define a non-integrable almost tangent structure
of second order on the sphere S® S*® has a Lie group structure and its
Lie algebra is isomorphic to the algebra of the purely imaginary quater-

nions (using standard multiplication). So there exists left-invariant vector
fields X,, X,, X, on S® such that
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[Xu Xz] = Xay [Xzy Xs] = Xu [Xay Xl] = Xz .

We specify an almost tangent structure on S°® by defining a (1.1) tensor
field J on S* by

JXl == Xz, JX2 == Xa, JX3 = 0 .

If this structure is integrable its Nijenhuis tensor N must be zero. But

%N(Xz, X)=X,#0.

We shall see in paragraph 5 that any manifold of dimension 8% car-
rying an almost tangent structure of second order admits distributions
of dimensions % and 2n. It follows from results given by N. Steenrod
([2] p.144) that no sphere of even dimension can carry such a structure.
Neither can S° or S*. After S3 the first possibilities are S* and S¥.

ExAMPLE 1.8. Using a technique described by S. Kobayashi and K.
Nomizu ([3], p.138), we can use the structure on S*® defined in the pre-
vious example to construct an almost tangent structure of second order
on any orientable hypersurface M in R*‘. Let g: M — S® be the spherical
map of Gauss. The tangent spaces T,M and 7T,,S® are parallel in R*
and so they can be identified in a natural manner. From the (1.1) tensor
field J on S® we can therefore construct a similar tensor field on M.

2. A positive-definite Riemannian metric S on an almost tangent
manifold M of second order determines an O(R**) structure on M. S is
said to be an almost tangent metric if the two structures on M have a
common subordinate structure.

We show how to construct such a metric starting from any given
positive-definite Riemannian metric on M. This will show that such
metrics exist when M is paracompact.

LEMMA 2.1 S s a given positive-definite Riemannian metric on an
almost tangent manifold M of second order and m is any given point of
M. There exists an adapted moving frame p whose domain contains m
and relative to which S has components of the form

a b 0
(2.1) ¥ e 0
0 0 I,

where b s the transpose of the m X m matrix b.

ProorF. Choose any adapted moving frame o whose domain includes
m and relative to o let S have components
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T T, S,
2.2) T T, S,
S/ 8! S,

Because this matrix is positive-definite, we can choose a differentiable
function A (with non-singular matrix values) on a neighbourhood of m
such that

A'S;A=1,.
Consider the adapted moving frame
A 0 0
p=0|B A 0
C B A

on a neighbourhood of m, where B, C are defined by the equations
S;B+ S;A=0, SSC+S,B+8S4A=0.

It is easy to check that S has components of the required form relative
to p. Ol

PROPOSITION 2.2. A positive-definite Riemannian metric S on an almost
tangent manifold M of second order is an almost tangent metric iff

HJ + JPH* = I

where H = S™(SJ)'.

Proor. If S is an almost tangent metric there exists a set of adapted
moving frames whose domains cover M and relative to which S has com-
ponents I,,. It is therefore easy to verify that the above condition is
necessary.

Suppose it is satisfied. Choose a special adapted moving frame p
whose domain contains a given point m e M and relative to which S has
components (2.1). Denote the inverse of this matrix by

a B 0
B v 0
0 0 I,
The corresponding components of the tensor fields HJ and J2H*® reduce to

ac B 0 000
ge v 0|, [0 0 O
0 00 0 0 «a
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and so the given condition shows that &« = v = I, and g8 = 0. S therefore
has components I,, relative to the adapted moving frame p. We can
construct a family of such moving frames whose domains cover M. []

PROPOSITION 2.3. A given positive-definite Riemannion metric S on

an almost tangent manifold M of second order determines an almost
tangent metric on M.

ProoF. There exists a set of special adapted moving frames whose
domains cover M and which satisfy the conditions of Lemma 2.1. Any

two such frames p, @ with intersecting domains are related by an
equation

D 0 0

F E D

Since the components of S relative to o are
D E' F' a b 0 D 0 0 * * F'D
0 D FE ¥ ¢ 0 E D O0O|=| * * ED

0o o0 D 0 0 I, F E D D'F D'E D'D

it follows that De O(R") and E = F = 0. These special adapted moving

frames therefore determine a G N O(R*) structure, and hence an almost
tangent metric on M. |

LEMMA 2.4. S is a positive-definite Riemannian metric on an almost
tangent manifold M of second order. If its components relative to an
adapted moving frame o are given in (2.2) then the corresponding com-
ponents of the almost tangent metric constructed from S are

S; + S:8:*S; + 8.5:'S! S; + 8.S:'S; S,

2.3 S; + S,S;'S/! S, + 8878, S
S/ S, Sy

PROOF: o can be expressed locally as

A 0 O

o|lB A 0

C B A

where o is a special adapted moving frame relative to which S has com-
ponents (2.1). Then
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A" B’ C' a b 0 A 0 0 T T, S
0 A B ¥ ¢ 0 B A 0|=|T/T, S,
0 0 A 0 0 I, C B A S!S, S,
and consequently
(2.4) C,A == Sl’ B’A = Sg, A’A = S3 .

Relative to o, the almost tangent metric has components I,,. Its com-
ponents relative to ¢ are therefore

A" B C' A 0
0 4 B B A
0o 0 A C B A

and, by using equations (2.4), this reduces to the form stated above. []

0
0

As a simple consequence of this lemma we have

PROPOSITION 2.5. Two positive-definite Riemannian metrics S, S
determine the same almost tangent metric on an almost tangent manifold
if SJ* = SJ%

If we start with an almost tangent metric S, then the metric con-
structed in proposition (2.3) is S itself. Lemma 2.4 therefore leads to

PROPOSITION 2.6. Relative to any adapted moving frame, any almost
tangent metric has components of the form (2.3).

Suppose that U is an open set of M on which is defined an adapted
moving frame o and that we are also given differentiable n X » matrix
valued functions S, S, S; on U, the last of which is positive-definite.
We can construct an almost tangent metric on U by specifying its com-
ponents relative to o to be of the form (2.2) where

T =28+ S.5S; + S.87'S/
T, =8:+ S.S8'S;,
T, = S; + S.S:'S,
Suppose that an almost tangent metric is defined on an intersecting open

set U using a moving frame & and functions S, S, S, and that on
unvU

A
=0|B

(o I N

0
0
Cc A
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A straightforward calculation shows that the two metrics agree on UNU
iff

S, = A'S,A+ B'S, A+ C'SA,
(2.5) S. = A'S5,A + B'S,A,

S3 = A’gaA .

ExaMpLE 2.1. Starting from a positive-definite Riemannian metric on
any given manifold M we use the previous results to construct an almost
tangent metric on the tangent manifold T2M.

The moving frames associated with the standard charts (x, v, 2) of
T*M are adapted for the almost tangent structure on 7T°M. We can
therefore construct an almost tangent metric on T*M by specifying fune-
tions

S. = [fuly S: = [ha]ly, Ss = [9ar]

on the domain U of such chart (x, y, ) provided that these are related
to the corresponding functions on U by equations (2.5), where

ox*® 0*x° 1 0°z® 0°Z°
a=[3] B=ammrr] ¢ =5 e + st |-

ox® 0xbox° y 2 o0xtoxtox? + o0xtox’ i
We define the funections g,, to be the lifts into 7°*M of the components

of the given metric on M associated with the chart x. Then if I}, are
the lifts of the corresponding Christoffel symbols we define

hab = gcbrfiayd ’

Sap = % {aixc Qal%) — 9ol ng} Yyt + g ld2° .

It is not difficult to show that equations (2.5) are satisfied.

3. Suppose that M is an almost tangent manifold of second order.
Apart from almost tangent metrics on M (which are necessarily positive-
definite) we shall consider Riemannian metrics S on M such that

3.1) ST = (SJ) .

We shall see that such a metric cannot be positive-definite but we shall
suppose that it is non-singular. We call it a self-adjoint metric on M.
That such metrics exist when M is paracompact follows from

ProposiTION 3.1. If S is any positive-definite Riemannian metric on
an almost tangent manifold M of second order, then the tensor field

SJ* 4 (SJ?) + J'SJ — J"SJ*

s a self-adjoint metric on M.
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Proor. This (2, 0) tensor field is symmetric and it satisfies the
equation (3.1). It is non-singular since if relative to any adapted moving
frame S has components given in (2.2), where S, is necessarily positive-
definite, then it has components

S +S8/+T.—8; S;.+ 8, S,
(3.2) S, + 8! S, o0]. !
S, 0 0

ExaMPLE 3.1. Starting with the almost tangent metric on T°:M
described in example 2.1 leads to a self-adjoint metric on T:M. Its com-
ponents associated with a standard chart (z, y, 2) are of the form (3.2),
where S, S,, S, are defined in example 2.1 and T, = S; + S.S;*S,. It is
easy to verify that this is the lift into T°M of the original Riemannian
metric on M as defined by K. Yano and S. Ishihara [4].

PROPOSITION 3.2. Relative to any adapted moving frame, any self-
adjoint metric has components

T T, T,
(3.3) T, T, O
T, 0 0
where T, T, T, are symmetric n X n matrices and det T, 0.

ProoF. Suppose that the metric has components of the form (2.2)
where T, T, S, are symmetric. The condition (3.1) shows that
T, S 0 T T S,
T. S, 0|=|8' S, S;
S, S, 0 0 0 O
and this leads to the result stated. |
LEMMA 3.3. S is a given self-adjoint metric on an almost tangent
manifold M of second order and m is any given point of M. There exists

an adapted moving frame o, whose domain contains m, relative to which
S has constant components of the form

0 0 K
(3.4) 0 K0
K 00

where K is some diagonal n X n matrixz of the form
diag {1, 1, «+o — 1, ¢} .
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Proor. Choose any adapted moving frame o whose domain includes
m and, relative to o, let S have components (8.3). The differentiable
function 7, is symmetric and non-singular. Consequently we can find a
differentiable function A (with values in GL(R")) on some neighbourhood
U of m such that
AT,A=K
on U, where K is some fixed matrix diag {1, 1, ---, —1, ---}. Then using
the differentiable functions B, C defined by
T.A+2T,B=0, 2TA + 8T.B + 4T,C =0

we define the adapted moving frame

A 0 0
o=0B A 0
C B A
on a neighbourhood of m. This has the property required. O

From this lemma we deduce

PROPOSITION 3.4. Ewvery self-adjoint metric S on a conmected almost
tangent manifold of second order and dimension 3n has constant signature
(n + s, 2n — 8), where 0 < s < n.

ProOOF. Since any Riemannian metric on a connected manifold has
constant signature, we need only calculate the signature of S at just
one point. Suppose that S has components of the form (3.4). If the
diagonal matrix K has signature (s, n—s) then this matrix, which is
congruent to

has signature (n + s, 2n — s). O

4. Suppose that M is an almost tangent manifold of second order.
A connection on the frame bundle H(M, GL(R*)) is called an almost
tangent connection if every horizontal vector at each point pe P is
tangent to the submanifold P of H. Such a linear connection determines
a connection on the adapted frame bundle P(M, G). Conversely any
connection on P(M, G) arises in this way from a unique almost tangent
connection.
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Suppose that / is any linear connection on M. Corresponding to any
moving frame ¢ = X, .-+, X,, in M with domain U, the connection / has
coefficients "}, defined on U by

VX;=T4hX, .
The corresponding local connection form
® = [I} 0]
on U has values in the Lie algebra of GL(R®*). V is an almost tangent

connection iff such local forms ® have values in the Lie algebra of G
whenever ¢ is an adapted moving frame. We deduce

PROPOSITION 4.1. A linear connection on an almost tangent manifold
M of second order is an almost tangent connection iff its coefficients cor-
responding to each adapted moving frame satisfy the conditions

a a+n — a+t2n a+n ___ a--2n
he — het+n — het2ny he — he+mn

Ifein = It rsn =T340, =0,
for all h=1, «+«,3n;a,¢ =1, «++, m.

It is sufficient to verify this condition for a set of adapted moving
frames whose domains cover M and so we have

ExXAMPLE 4.1. Starting with a linear connection / for any given
manifold M whose coefficients associated with a chart x are I'¢,, K. Yano
and S. Ishihara [4] have defined a connection for 7*M whose coefficients
I'i, associated with a standard chart (z, y, 2) are all zero except

Al al — Jet+n _ Jlatem __ a4 — Jaten
ﬁc = F:tr'n = Fg+:c - Fgc+gn = Fg+nnc+n = Fg+2:c = [‘gc ’

fia+n __ Jaten . Jlaten __ ,,d a 2
be = 4 pcin = Lpine =Y =L bes
oxt

o .

be 9

= 0 1
a+2n —_ zd___ ac - dyye
be T oYY e

for all @, ++<,e=1, -+, n. This connection is therefore an almost tan-
gent connection for T°M.

An alternative condition that a linear connection on M is an almost
tangent connection was given in [5]:

PROPOSITION 4.2. A linear conmnection V on an almost tangent mani-
fold M is an almost tangent conmection iff

VXJ=0
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for all vector fields X in M.
This is equivalent to the condition
VelJY) —JFY)=0
for all vector fields X, Y in M.

5. Suppose that M is an almost tangent manifold of second order.
Consider the group G* consisting of the matrices
A 0 0
D B 0
E F C
where A, B, Ce GL(R™. Since G* contains the almost tangent group G
as a subgroup, it follows that M carries a G*-structure with respect to
which its almost tangent structure is subordinate.
We shall study G*+-conmections on M. Any adapted moving frame of
M is also adapted for the G*-structure. Consequently a linear connection
on M is a Gt-connection iff the local connection forms associated with

the adapted moving frames of M have values in the Lie algebra of G*.
This leads to

PropPoSITION 5.1. A linear connection on an almost tangent manifold
M of second order is a Gt-conmection iff its coefficients corresponding to
each adapted moving frame of M satisfy the conditions

F?Lc—%n = ["llu:+2'n = thzzn =0
for all h=1, -+, 3n;a,¢c=1, «++, n.
An analogue of proposition 4.2 is given in

PrROPOSITION 5.2. A linear conmection V on an almost tangent mani-
fold M of second order is a G+-connection iff

(5.1) JWxJ?) =0, J*FxJ) =0
for all vector fields X in M.

PRrROOF. Proposition (5.1) implies that 7 is a G*-connection iff
(5.2) T (T X)) = 0, (72 (JX,)) = 0

(for all ¢,5=1, ---,3n) whenever X, ---, X,, is an adapted moving
frame in M. Condition (5.1) is equivalent to the condition

(5.3) JTxJ?Y) =0, J*FJY)) =0
for all vector fields X, Y in M. Clearly if condition (5.3) is satisfied
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then so is condition (5.2). Using the fact that J° = 0, it is easy to prove
that the converse is true also. O

The (1.1) tensor field J determines a linear mapping
Im: vV —> J(m)v
on each tangent vector space T,M. The function
Ker J: m — kernel J,

is an n-dimensional distribution on M. If vector fields X, .-, X,, form
an adapted moving frame in M, then X,,,, +-+, X;, form a local basis for
Ker J. It therefore defines a structure on M whose group G, consists of
the non-singular matrices

A H O
D B 0
E F C

with respect to which the G*-structure on M is subordinate.

A similar argument shows that the 2n-dimensional distribution Ker J*
determines a structure on M whose group G, consists of the non-singular
matrices

A 0 O
D B H
E F C

with respect to which the G*-structure on M is also subordinate.
A linear connection on M is a Gt-connection iff it is a connection for
both the G, and G, structures. This leads to

PROPOSITION 5.3. V 4s a linear commection on an almost tangent
manifold M. v(0) is any wvector at a point m(0) of M and v(t) are the
vectors obtained by parallel displacement along a curve m(t). If V is a
Gt-conmection, then the vectors v(t) belong to Ker J if v(0) belongs to Ker J
and they belong to Ker J* if v(0) belongs to Ker J*.

As another consequence of the previous remark we have

ExaMPLE 5.1. Consider the sphere S® with its almost tangent strue-
ture as defined in example 1.2. In this case the distribution Ker J*
admits a global basis X,, X; and it is not integrable since [X,, X;] = X,
which is not tangent to the distribution Ker J?  Therefore the G,
structure on S® is not integrable and does not admit a torsion-free con-
nection. It follows that S® cannot carry a torsion-free G+-connection.
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Consequently the G*-structure on S® is not integrable.
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