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Abstract

We show that if a connected graph with n nodes has conductance φ then rumour spreading, also
known as randomized broadcast, successfully broadcasts a message within Õ(φ−1 · logn), many rounds
with high probability, regardless of the source, by using the PUSH-PULL strategy. The Õ(· · · ) notation
hides a polylog φ−1 factor. This result is almost tight since there exists graph of n nodes, and conductance
φ, with diameter Ω(φ−1 · logn).

If, in addition, the network satisfies some kind of uniformity condition on the degrees, our analysis
implies that both both PUSH and PULL, by themselves, successfully broadcast the message to every node
in the same number of rounds.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statistics.

General Terms
Algorithms, Theory.

Keywords
Conductance, rumor spreading, social networks.

1 Introduction

Rumour spreading, also known as randomized broadcast or randomized gossip (all terms that will be used
as synonyms throughout the paper), refers to the following distributed algorithm. Starting with one source
node with a message, the protocol proceeds in a sequence of synchronous rounds with the goal of broadcasting
the message, i.e. to deliver it to every node in the network. In round t ≥ 0, every node that knows the
message selects a neighbour uniformly at random to which the message is forwarded. This is the so-called
PUSH strategy. The PULL variant is symmetric. In round t ≥ 0 every node that does not yet have the message
selects a neighbour uniformly at random and asks for the information, which is transferred provided that
the queried neighbour knows it. Finally, the PUSH-PULL strategy is a combination of both. In round t ≥ 0,
each node selects a random neighbour to perform a PUSH if it has the information or a PULL in the opposite
case.

These three strategies have been introduced in [5] and since then have been intensely investigated (see
the related work section). One of the most studied questions concerns their completion time: how many
rounds will it take for one of the above strategies to disseminate the information to all nodes in the graph,
assuming a worst-case source? In this paper we prove the following two results:

∗This research is partially supported by a grant of Yahoo! Research and by an IBM Faculty Award.
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• If a network has conductance φ and n nodes, then, with high probability, PUSH-PULL reaches every

node within O
(

log2 φ−1

φ · log n
)

many rounds, regardless of the source.

• If, in addition, the network satisfies the following condition for every edge uv and some constant α > 0:

max

{
deg(u)

deg(v)
,

deg(v)

deg(u)

}
≤ α

then both PUSH and PULL, by themselves1, reach every node within

O(cα · φ−1 · log n · log φ−1)

many rounds with high probability regardless of the source, where cα is a constant depending only on
α.

The first result is a significant improvement with respect to best current bound of O(log4 n/φ6) [4]. (The
proof of [4] is based on an interesting connection with spectral sparsification [20]. The approach followed here
is entirely different.) The result is almost tight because Ω(log n/φ) is a lower bound2 — in particular, the
bound is tight in the case of constant conductance (for instance, this is the case for the almost-preferential-
attachment graphs of [15].) The second result can be proved using the same approach we use for the main
one. In this extended abstract we omit the details of its proof.

Our main motivation comes from the study of social networks. Loosely stated, we are looking for a
theorem of the form “Rumour spreading is fast in social networks”. There is some empirical evidence showing
that real social networks have high conductance. The authors of [14] report that in many different social
networks there exist only cuts of small (logarithmic) size having small (inversely logarithmic) conductance
– all other cuts appear to have larger conductance. That is, the conductance of the social networks they
analyze is larger than a quantity seemingly proportional to an inverse logarithm.

Our work should also be viewed in the context of expansion properties of graphs, of which conductance
is an important example, and their relationship with rumour spreading. In particular we observe how,
interestingly, the convergence time of the PUSH-PULL process on graph of conductance φ is a factor of φ
smaller than the worst-case mixing time of the uniform random walk on such graphs.

Conductance is one of the most studied measures of graph expansion. Edge expansion, and vertex
expansion are two other notable measures. In the case of edge expansion there are classes of graphs for
which the protocol is slow (see [3] for more details), while the problem remains open for vertex expansion.

In terms of message complexity, we observe first that it has been determined precisely only for very special
classes of graphs (cliques [12] and Erdös-Rényi random graphs [8]). Apart from this, given the generality of
our class, it is impossible to improve the trivial upper bound on the number of messages – that is, number
of rounds times number of nodes. For instance consider the “lollipop graph.” Fix ω(n−1) < φ < o(log−1 n),
and suppose to have a path of length φ−1 connected to a clique of size n − φ−1 = Θ(n). This graph has
conductance ≈ φ. Let the source be any node in the clique. After Θ(log n) rounds each node in the clique
will have the information. Furthermore, at least φ−1 steps will be needed for the information to be sent to
the each node in the path. So, at least n− φ−1 = Θ(n) messages are pushed (by the nodes in the clique) in
each round, for at least φ−1 − Θ(log n) = Θ(φ−1) rounds. Thus, the total number of messages sent will be
Ω(n · φ−1). Observing that the running time is Θ(φ−1 + log n) = Θ(φ−1), we have that the total number of
rounds times n is (asymptotically) less than or equal to the number of transmitted messages.

1We observe that the star, a graph of conductance 1, is such that both the PUSH and the PULL strategy by themselves require
Ω(n) many rounds to spread the information to each node, assuming a worst case, or even uniformly random, source. That is,
conductance alone is not enough to ensure that PUSH, or PULL, spread the information fast.

2Indeed, choose any n, and any φ ≥ n−1+ε. Take any 3-regular graph of constant vertex expansion (a random 3-regular
graph will suffice) on O(n · φ) nodes. Then, substitute each edge of the regular graph with a path of O(φ−1) new nodes. The
graph obtained is easily seen to have O(n) nodes, diameter O(φ−1 · logn) and conductance Ω(φ).
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2 Related work

The literature on the gossip protocol and social networks is huge and we confine ourselves to what appears
to be more relevant to the present work.

Clearly, at least diameter-many rounds are needed for the gossip protocol to reach all nodes. It has been
shown that O(n log n) rounds are always sufficient for each connected graph of n nodes [9]. The problem has
been studied on a number of graph classes, such as hypercubes, bounded-degree graphs, cliques and Erdös-
Rényi random graphs (see [9, 11, 17]). Recently, there has been a lot of work on “quasi-regular” expanders
(i.e., expander graphs for which the ratio between the maximum and minimum degree is constant) — it has
been shown in different settings [1,6,7,10,18] that O(log n) rounds are sufficient for the rumour to be spread
throughout the graph. See also [13, 16]. Our work can be seen as an extension of these studies to graphs of
arbitrary degree distribution. Observe that many real world graphs (e.g., facebook, Internet, etc.) have a
very skewed degree distribution — that is, the ratio between the maximum and the minimum degree is very
high. In most social networks’ graph models the ratio between the maximum and the minimum degree can
be shown to be polynomial in the graph order.

Mihail et al. [15] study the edge expansion and the conductance of graphs that are very similar to
preferential attachment (PA) graphs. We shall refer to these as “almost” PA graphs. They show that edge
expansion and conductance are constant in these graphs. Their result and ours together imply that rumor
spreading requires O(log n) rounds on almost PA graphs.

For what concerns the original PA graphs, in [3] it is shown that rumour spreading is fast (requires time
O(log2 n)) in those networks.

In [2] it is shown that high conductance implies that non-uniform (over neighbours) rumour spreading
succeeds. By non-uniform we mean that, for every ordered pair of neighbours i and j, node i will select j
with probability pij for the rumour spreading step (in general, pij 6= pji). This results does not extend to the
case of uniform probabilities studied in this paper. In our setting (but not in theirs), the existence of a non
uniform distribution that makes rumour spreading fast is a rather trivial matter. A graph of conductance
φ has diameter bounded by O(φ−1 log n). Thus, in a synchronous network, it is possible to elect a leader
in O(φ−1 log n) many rounds and set up a BFS tree originating from it. By assigning probability 1 to the
edge between a node and its parent one has the desired non uniform probability distribution. Thus, from
the point of view of this paper the existence of non uniform problem is rather uninteresting.

In [16] the authors consider a problem that at first sight might appear equivalent to ours. They consider
the conductance φP of the connection probability matrix P , whose entry Pi,j , 1 ≤ i, j ≤ n, gives the
probability that i calls j in any given round. They show that if P is doubly stochastic then the running time
of PUSH-PULL is O(φ−1

P · log n). This might seem to subsume our result but this is not the case. The catch
is that they consider the conductance of a doubly stochastic matrix instead of the actual conductance of
the graph, as we do. Observe that the are graphs of high conductance that do not admit doubly stochastic
matrices of high conductance. For instance, in the star, no matter how one sets the probabilities Pij , there
will always exist a leaf ` that will be contacted by the central node with probability ≤ 1

n−1 . Since the matrix

is doubly-stochastic this implies that ` will contact the central node with probability O(n−1). Thus, at
least Ω(n) rounds will be needed. Therefore their result gives too weak a bound for the uniform PUSH-PULL

process that we analyze in this paper.

3 Preliminaries

Observe that 1
2 vol(V ) = |E|. Given S ⊆ V , and v ∈ S, we define

N+
S (v) = {w | w ∈ V − S ∧ {v, w} ∈ E}

3



and d+
S (v) =

∣∣N+
S (v)

∣∣. Analogously, we define N−S (w) = N+
V−S(w) and d−S (w) =

∣∣N−S (w)
∣∣. Recall that the

conductance (see [19]) of a graph G(V,E) is:

Φ(G) = min
S⊂V

vol(S)≤|E|

cut(S, V − S)

vol(S)

Where cut(S, V − S) is the number of edges in the cut between S and V − S and vol(S) is the volume of S.

We recall three classic concentration results for random variables using, respectively, the first moment,
the second moment and every moment of a random variable X.

Theorem 1 (Markov inequality) Let X be a random variable. Then, if

Pr

[
|X| ≥ E[|X|]

ε

]
≤ ε.

Theorem 2 (Chebyshev inequality) Let X be a random variable. Then, if

Pr
[
|X − E[X]| ≥

√
Var[X]/ε

]
≤ ε,

where Var[X] is the variance of X, Var[X] = E[X2]− E[X]2.

Theorem 3 (Chernoff bound) Let X =
∑n
i=1Xi, where Xi are independently distributed random vari-

ables in [0, 1]. Then,

Pr [|X − E[X]| > ε · E[X]] ≤ exp

(
−ε

2

3
· E[X]

)
.

We now state and prove some technical lemmas that we will use in our analysis. The first one can be
seen as an “inversion” of Markov’s inequality.

Lemma 4 Suppose X1, X2, . . . , Xt are random variables, with Xi having co-domain {0, vi} and such that
Xi = vi with probability pi. Fix p ≤ min pi. Then, for each 0 < q < p,

Pr

[∑

i

Xi ≥
(

1− 1− p
1− q

)
·
∑

i

vi

]
≥ q.

Proof Let Xi = vi − Xi. Observe that each Xi and each Xi is a non-negative random variable, of mean
pi · vi and (1− pi) · vi, respectively. We use µ to denote the expected sum of the Xi, µ =

∑
(pi · vi), and µ

to denote the expected sum of the Xi, µ =
∑

((1− pi) · vi). Observe that µ ≤ (1− p) ·
∑
vi.

By Markov’s inequality, we have

Pr

[∑

i

Xi ≤
(

1− 1− p
1− q

)∑

i

vi

]
≤

Pr

[∑

i

Xi ≤
∑

i

vi −
1

1− q
· µ

]
=

Pr

[∑

i

Xi ≥
1

1− q
· µ

]
≤ 1− q

Thus the claim. 2

The next lemma gives some probabilistic bounds on the sum of binary random variables having close
expectations.
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Lemma 5 Let p ∈ (0, 1). Suppose X1, . . . , Xt are independent 0/1 random variables, the i-th of which such
that Pr[Xi = 1] = pi, with 1

2 · p ≤ pi ≤ p. Then,

1. if pt
2 > 1, then Pr[

∑
Xi ≥ pt

4 ] ≥ 1
32 ;

2. if pt
2 ≤ 1, then Pr[

∑
Xi ≥ 1] ≥ pt

4 ;

3. in general, for P = min
(

1
32 ,

pt
4

)
, we have

Pr

[∑
Xi ≥

pt

128 · P

]
≥ P.

Proof Let X =
∑t
i=1Xi. In the first case, E[X] ≥ t · p2 ; in particular, E[X] ≥ 1. Therefore, by Chernoff’s

bound, we have

Pr

[
X <

1

2
· E[X]

]
≤ e−

1
16E[X]

≤ e−
1
16 ≤ 1− 1

32
,

where the last inequality follows from e−x ≤ 1− x
2 if x ∈ [0, 1].

In the second case, we compute the probability that for no i, Xi = 1:

t∏

i=1

Pr [Xi = 0] ≤
t∏

i=1

(
1− p

2

)

=
(

1− p

2

)t
=

((
1− p

2

) 2
p

) p
2 ·t

≤ e−
p
2 ·t ≤ 1− pt

4
.

So, with probability ≥ pt
4 at least one Xi will be equal to 1.

The third case, follows directly from the former two, by choosing — respectively — P = 1
32 , and P = pt

2 .
2

The following lemma, which we will use later in the analysis, gives a probability bound close to the one
that one could obtain via Bernstein Inequality. We keep it this way, for simplicity of exposition of our later
proofs.

Lemma 6 Suppose a player starts with a time budget of B time units. At each round i, an adversary
(knowledgeable of the past) chooses a number of time units 1 ≤ `i ≤ L. If the remaining budget of the player
is at least `i then a game, lasting for `i time units, is played. The outcome of the game is determined by an
independent random coin flip: with probability pi ≥ P the gain is equal to `i, the length of the round, and
with probability 1− pi the gain is zero. The game is then replayed.

If B ≥ 193 · LP · ln
dlog2 Le

δ with probability at least 1− δ the gain is at least 24
193 ·B · P .

Proof Let the game go on until the end. Suppose the adversary chose games’ lengths `1, `2, . . . , `t, with∑t
i=1 `t > B − L ≥ 192

193B.
Let Xj be the set containing all the rounds whose `i’s were such that 2j ≤ `i < 2j+1, Xj = {i | 2j ≤ `i <

2j+1}. The sets X0, X1, . . . , Xdlog2 Le partition the rounds in O(logL) buckets.

Assign to each bucket Xj the total number S(Xj) of time units “spent” in that bucket, S(Xj) =
∑
i∈Xj `i.
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Let X be the set of buckets Xj for which S(Xj) ≥ 12
P · 2

j+1 · ln dlog2 Le
δ . The total number of time units

spent in buckets not in X will then be at most

dlog2 Le∑

j=0

(
12

P
· 2j+1 · ln dlog2 Le

δ

)
=

12

P
· ln dlog2 Le

δ
·
dlog2 Le∑

j=0

2j+1 ≤ 96

P
· L · ln dlog2 Le

δ
.

Therefore the total number of units spent in buckets of X , S(X ) =
∑
Xj∈X S(Xj), will be at least S(X ) ≥

96
193B. Furthermore, the number of rounds |Xj | played in bucket Xj ∈ X will be at least S(Xj) · 2−(j+1) ≥
12
P · ln

dlog2 Le
δ . Each such round will let us gain a positive amount with probability at least P . Therefore,

the expected number of rounds E[W (Xj)] in bucket Xj ∈ X having positive gain will be at least

E[W (Xj)] ≥ 2−(j+1) · S(Xj) · P ≥ 12 · ln dlog2 Le
δ

.

By the Chernoff bound,

Pr

[
W (Xj) <

1

2
· 2−(j+1) · S(Xj) · P

]
≤ Pr

[
W (Xj) <

1

2
· E[W (Xj)]

]

≤ exp

(
− 1

12
· E[W (Xj)]

)

≤ exp

(
− ln

dlog2 Le
δ

)
=

δ

dlog2 Le
.

Observe that the gain G(Xj) in bucket Xj ∈ X is at least 2j ·W (Xj). By union bound, the probability that
at least one bucket Xj ∈ X is such that G(Xj) <

1
4 · S(Xj) · P is at most δ. Therefore with probability at

least 1− δ, the total gain is at least

P

4

∑

Xj∈X
S(Xj) =

P

4
· S(X ) ≥ 24

193
B · P.

2

Finally we give a lemma that underlines symmetries in the PUSH-PULL strategy. Let u
t−→ v be the event

that an information originated at u arrives to v in t rounds using the PUSH-PULL strategy. And let u
t←− v

the event that an information that is originally in v arrives to u in t rounds using the PUSH-PULL strategy.
We have that:

Lemma 7 Let u, v ∈ V , then

Pr[u
t−→ v] = Pr[u

t←− v]

Proof Look at each possible sequence of PUSH-PULL requests done by the nodes of G in t rounds. We define
the “inverse” of some sequence, as the sequence we would obtain by looking at the sequence starting from
the last round to the first. Now the probability that the information spreads from u to v (resp., from v to
u) in at most t steps is equal to the sum of the probabilities of sequences of length at most t that manage to
pass the information from u to v (from v to u) — given that the probability of a sequence, and that of its
inverse, are the same, the claim follows. 2

4 Warm-up: a weak bound

In this section we prove a completion time bound for the PUSH-PULL strategy of O(φ−2 · log n). Observe that
this bound happens to be tight if φ ∈ Ω(1). The general strategy is as follows:
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• we will prove that, given any set S of informed nodes having volume ≤ |E|, after O(φ−1) rounds (that
we call a phase) the new set S′ of informed vertices, S′ ⊇ S, will have volume vol(S′) ≥ (1+Ω(φ))·vol(S)
with constant probability (over the random choices performed by nodes during those O(φ−1) rounds)
— if this happens, we say that the phase was successful; this section is devoted to proving this lemma;

• given the lemma, it follows that PUSH-PULL informs a set of nodes of volume larger than |E|, starting
from any single node, in time O(φ−2 · log n).

Indeed, by applying the Chernoff bound one can prove that, by flipping c · φ−1 · log n IID coins,
each having Θ(1) head probability, the number of heads will be at least f(c) · φ−1 · log n with high
probability — with f(c) increasing, and unbounded, in c. This implies that we can get enough (that
is, Θ(φ−1 · log n)) successful phases for covering more than half of the graph’s volume in at most
Θ(φ−1) ·Θ(φ−1 · log n) = Θ(φ−2 · log n) rounds;

• applying lemma 7, we can then show that each uninformed node can get the information in the same
amount of steps, if a set S of volume > |E| is informed — completing the proof. Recall that the
probability that the information spreads from any node v to a set of nodes with more than half
the volume of the graph is 1 − O(n−2). Then, with that probability the source node s spreads the
information to a set of nodes with such volume. Furthermore, by lemma 7, any uninformed node
would get the information from some node — after node s successfully spreads the information — with
probability 1 − O(n−2). By union bound, we have that with probability 1 − O(n−1) PUSH-PULL will
succeed in O(φ−2 · log n).

Our first lemma shows how one can always find a subset of nodes in the “smallest” part of a good
conductance cut, that happen to hit many of the edges in the cut, and whose nodes have a large “fraction”
of their degree that cross the cut.

Lemma 8 Let G(V,E) be a simple graph.
Let A ⊆ B ⊆ V , with vol(B) ≤ |E| and cut(A, V − B) ≥ 3

4 · cut(B, V − B). Suppose further that the
conductance of the cut (B, V −B) is at least φ, cut(B, V −B) ≥ φ · vol(B). If we let

U = UB(A) =

{
v ∈ A

∣∣∣d
+
B(v)

d(v)
≥ φ

2

}
,

then cut(U, V −B) ≥ 1
4 · cut(B, V −B).

Proof We prove the lemma with the following derivation:

∑

v∈A
d+
B(v) +

∑

v∈B−A
d+
B(v) = cut(B, V −B)

∑

v∈A
d+
B(v) = cut(B, V −B)−

∑

v∈B−A
d+
B(v)

∑

v∈A∩U
d+
B(v) +

∑

v∈A−U
d+
B(v) = cut(A, V −B)

∑

v∈U
d+
B(v) +

∑

v∈A−U
d+
B(v) ≥ 3

4
· cut(B, V −B),
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then,

∑

v∈U
d+
B(v) ≥ 3

4
· cut(B, V −B)−

∑

v∈A−U
d+
B(v)

∑

v∈U
d+
B(v) ≥ 3

4
· cut(B, V −B)−

∑

v∈A−U

(
φ

2
· d(v)

)

∑

v∈U
d+
B(v) ≥ 3

4
· cut(B, V −B)− φ

2
· vol(B)

∑

v∈U
d+
B(v) ≥ 3

4
· cut(B, V −B)− 1

2
· cut(B, V −B)

∑

v∈U
d+
B(v) ≥ 1

4
· cut(B, V −B).

2

Given v ∈ U = UB(A), we define N#�
U (v) (to be read “N-push-U-v”) and N#�

U (v)(to be read “N-pull-U-v”)
as follows

N#�
U (v) = {u ∈ N+

U (v) | d(u) ≥ 1

3
d+(v)}

and

N#�
U (v) = {u ∈ N+

U (v) | d(u) <
1

3
d+(v)}.

Then,
U#� = {v ∈ U |

∣∣N#�
B (v)

∣∣ ≥
∣∣N#�

B (v)
∣∣}

and
U#� = {v ∈ U |

∣∣N#�
B (v)

∣∣ >
∣∣N#�

B (v)
∣∣}.

Observe that U#� ∩ U#� = ∅ and U#� ∪ U#� = U . In particular, (at least) one of vol(U#�) ≥ 1
2 · vol(U) and

vol(U#�) ≥ 1
2 · vol(U) holds. In the following, if vol(U#�) ≥ 1

2 · vol(U) we will “apply” the PUSH strategy on
U ; otherwise, we will “apply” the PULL strategy.

Given a vertex v ∈ U , we will simulate either the PUSH the PULL strategy, for O
(

1
φ

)
steps over it. The

“gain” g(v) of node v is then the volume of the node(s) that pull the information from v, or that v pushes
the information to.

Our aim is to get a bound on the gain of the whole original vertex set S. This cannot be done by summing
the gains of single vertices in S, because of the many dependencies in the process. For instance, different
nodes v, v′ ∈ S might inform (or could be asked the information by) the same node in V − S.

To overcome this difficulty, we use an idea similar in spirit to the deferred decision principle. First of
all, let us remark that, given a vertex set S having the information, we will run the PUSH-PULL process for

O
(

1
φ

)
rounds. We will look at what happens to the neighbourhoods of different nodes in S sequentially, by

simulating the O
(

1
φ

)
steps (which we call a phase) of each v ∈ S and some of its peers in N+

S (v) ⊆ V − S.

Obviously, we will make sure that no node in V −S performs more than O
(

1
φ

)
PULL steps in a single phase.

Specifically, we consider Process 1 with a phase of k =
⌈

10
φ

⌉
steps.

Observe that — in Process 1 with k =
⌈

10
φ

⌉
— no vertex in V − S will make more than O

(
1
φ

)
PULL

steps in a single phase. Indeed, each time we run point 3 in the process, we only disclose whether some node
u ∈ V − S actually makes, or does not make, a PULL from v. If the PULL does not go through, and node u

8



Process 1 The expansion process of the O
(

logn
φ2

)
bound, with a phase length of k steps.

1: at step i, we consider the sets Ai, Bi; at the first step, i = 0, we take A0 = B0 = S and H0 = ∅;
2: if cut(Ai, V −Bi) < 3

4 · cut(Bi, V −Bi), or vol(Bi) > |E|, we stop; otherwise, apply lemma 8 to Ai, Bi,
obtaining set Ui = UBi(Ai);

3: we take a node v out of Ui, and we consider the effects of either the push or the pull strategy, repeated
for k steps, over v and N+

Bi
(v);

4: Hi+1 ← Hi;
5: each node u ∈ N+

Bi
(v) that gets informed (either by a push of v, or by a pull from v) is added to the set

of the “halted nodes” Hi+1; v is also added to the set Hi+1;
6: let Ai+1 = Ai − {v}, and Bi+1 = Bi ∪Hi+1; observe that Bi+1 −Ai+1 = Hi+1;
7: iterate the process.

later tries to make a PULL to another node v′, the probability of this second batch of PULL’s (and in fact,
of any subsequent batch) to succeed is actually larger than the probability of success of the first batch of
PULL’s of u (since at that point, we already know that the previous PULL batches made by u never reached
any previous candidate node v ∈ S).

The next lemma summarize the gain, in a single step, of a node v ∈ Ui.

Lemma 9 If v ∈ U#�
i , then

Pr

[
g(v) ≥ 1

3
· d+
Bi

(v)

]
≥ φ

4
.

On the other hand, if v ∈ U#�
i then

Pr

[
g(v) ≥ 1

20
· d+
Bi

(v)

]
≥ 1

10
.

In general, if v ∈ Ui,

Pr

[
g(v) ≥ 1

20
· d+
Bi

(v)

]
≥ φ

10
.

Proof Suppose that v ∈ U#�
i . Then, at least 1

2d
+
Bi

(v) of the neighbours of v that are not in Bi have degree

≥ 1
3d

+
Bi

(v). Since v ∈ Ui, we have that
d+Bi

(v)

d(v) ≥
φ
2 . Thus, the probability that v pushes the information to

one of its neighbours of degree ≥ 1
3d

+
Bi

(v) is ≥
1
2d

+
Bi

(v)

d(v) ≥ φ
4 .

Now, suppose that v ∈ U#�
i . Recall that g(v) is the random variable denoting the gain of v; that is,

g(v) =
∑

u∈N#�
Bi

(v)

gu(v),

where gu(v) is a random variable equal to d(u) if u pulls the information from v, and 0 otherwise.

Observe that E[gu(v)] = 1, so that E[g(v)] =
∣∣N#�

Bi
(v)
∣∣, and that the variance of gu(v) is

Var[gu(v)] = E[gu(v)2]− E[gu(v)]2

=
1

d(u)
· d(u)2 − 1

= d(u)− 1.

9



Since the gu1(v), gu2(v), . . . are independent, we have

Var[g(v)] =
∑

u∈N#�
Bi

(v)

Var[gu(v)] =
∑

u∈N#�
Bi

(v)

(d(u)− 1)

≤ vol(N#�
Bi

(v))

≤ 1

3

(
d+
Bi

(v)
) ∣∣N#�

Bi
(v)
∣∣.

In the following chain of inequalities we will apply Chebyshev’s inequality to bound the deviation of g(v),
using the variance bound we have just obtained:

Pr

[
g(v) ≤ 1

20
· d+
Bi

(v)

]
≤

Pr

[
g(v) ≤ E[g(v)]− E[g(v)] +

1

20
· d+
Bi

(v)

]
≤

Pr

[
−g(v) + E[g(v)] ≥

∣∣N#�
Bi

(v)
∣∣− 1

20
· d+
Bi

(v)

]
≤

Pr

[
|g(v)− E[g(v)]| ≥

∣∣N#�
Bi

(v)
∣∣− 1

20
· d+
Bi

(v)

]
≤

Pr


|g(v)− E[g(v)]| ≥

∣∣N#�
Bi

(v)
∣∣− 1

20d
+
Bi

(v)√
1
3d

+
Bi

(v)
∣∣N#�

Bi
(v)
∣∣
·
√

Var[g(v)]


 ≤

1
3d

+
Bi

(v)
∣∣N#�

Bi
(v)
∣∣

(∣∣N#�
Bi

(v)
∣∣− 1

20d
+
Bi

(v)
)2 ≤

1
6

(
d+
Bi

(v)
)2

(
1
2d

+
Bi

(v)− 1
20d

+
Bi

(v)
)2 ≤

(
20

9 ·
√

6

)2

≤ 9

10
.

This concludes the proof of the second claim. The third one is combination of the other two. 2

Now we focus on v, and its neighbourhood N+
Bi

(v), for
⌈

10
φ

⌉
many steps. What is the gain G(v) of v in

these many steps?

Lemma 10 Pr[G(v) ≥ 1
20 · d

+
Bi

(v)] ≥ 1− e−1.

Proof Observe that the probability that the event “g(v) ≥ 1
20 · d

+
Bi

(v)” happens at least once in
⌈

10
φ

⌉

independent trials is lower bounded by

1−
(

1− φ

10

)d 10
φ e
≥ 1−

(
1− φ

10

) 10
φ

≥ 1− e−1.

The claim follows. 2

We now prove the main theorem of the section:

Theorem 11 Let S be the set of informed nodes, vol(S) ≤ |E|. Then, if S′ is the set of informed nodes
after Ω(φ−1) steps, then with Ω(1) probability,

vol(S′) ≥ (1 + Ω(φ)) · vol(S).

10



Proof Consider Process 1 with a phase of length k =
⌈

10
φ

⌉
. For the process to finish, at some step t

it must happen that either vol(Bt) > |E| (in which case, we are done — so we assume the contrary), or
cut(At, V −Bt) < 3

4 · cut(Bt, V −Bt). Analogously,

1

4
· cut(Bt, V −Bt) ≤ cut(Bt −At, V −Bt) = cut(Ht, V −Bt).

But then,

1

4
· φ · vol(S) ≤ 1

4
· φ · vol(Bt)

≤ 1

4
· cut(Bt, V −Bt)

≤ cut(Ht, V −Bt)
=

∑

v∈Ht∩S
d+
Bt

(v) +
∑

v∈Ht∩(V−S)

d+
Bt

(v)

≤
∑

v∈Ht∩S
d+
Bt

(v) +
∑

v∈Ht∩(V−S)

vol(v)

Consider the following two inequalities (that might, or might not, hold):

(a)
∑
v∈Ht∩(V−S) vol(v) ≥ 1

1000 · φ · vol(S), and

(b)
∑
v∈Ht∩S d

+
Bt

(v) ≥ 249
1000 · φ · vol(S).

At least one of (a) and (b) has to be true. We call two-cases property the disjunction of (a) and (b). If
(a) is true, we are done, in the sense that we have captured enough volume to cover a constant fraction of
the cut induced by S.

We lower bound the probability of (a) to be false given the truth of (b), since the negation of (b) implies
the truth of (a).

Recall lemma 10. It states that — for each vi ∈ Ht ∩ S — we had probability at least 1− e−1 of gaining
at least 1

20 · d
+
Bi

(vi) ≥ 1
20 · d

+
Bt

(vi), since i ≤ t implies Bi ⊆ Bt.

For each vi, let us define the random variable Xi as follows: with probability 1 − e−1, Xi has value
1
20 · d

+
Bt

(vi) , and with the remaining probability it has value 0. Then, the gain of vi is a random variable

that dominates Xi. Choosing q = 1− 2e−1, in lemma 4, we can conclude that

Pr

[ ∑

i: vi∈Ht∩S
Xi ≥

1

2
·
∑

vi∈Ht∩S

(
1

20
· d+
Bt

(vi)

)]
≥ 1− 2e−1.

Thus, with constant probability (≥ 1− 2e−1) we gain at least 1
40 ·

∑
vi
d+
Bt

(vi), which in turn, is at least

1

40
·
∑

vi∈Ht∩S
d+
Bt

(vi) ≥
1

40
· 249

1000
· φ · vol(S) ≥ 6

1000
· φ · vol(S).

Hence, (a) is true with probability at least 1 − 2e−1. So with constant probability there is a gain of
1

1000 · φ · vol(S) in 1
φ steps. Thus using the proof strategy presented at the beginning of the section we get a

O
(
φ−2 log n

)
bound on the completion time. 2

11



5 A tighter bound

In this section we will present a tighter bound of

O

(
log2 1

φ

φ
· log n

)
= Õ

(
log n

φ

)
.

Observe that, given the already noted diametral lower bound of Ω
(

logn
φ

)
on graphs of conductance

φ ≥ 1
n1−ε , the bound is almost tight (we only lose an exponentially small factor in φ−1).

Our general strategy for showing the tighter bound will be close in spirit to the one we used for the

O
(

logn
φ2

)
bound of the previous section.

The new strategy is as follows:

• we will prove in this section that, given any set S of informed nodes having volume at most |E|, for
some p = p(S) ≥ Ω(φ), after O(p−1) rounds (that we call a p-phase) the new set S′ of informed vertices,

S′ ⊇ S, will have volume vol(S′) ≥
(

1 + Ω
(

φ
p·log2 φ−1

))
· vol(S) with constant probability (over the

random choices performed by nodes during those O(p−1) rounds) — if this happens, we say that the
phase was successful;

• using the previous statement we can show that PUSH-PULL informs a set of nodes of volume larger than
|E|, starting from any single node, in time T ≤ O(φ−1 · log2 φ−1 · log n) with high probability.

Observe that at the end of a phase one has a multiplicative volume gain of

1 + Ω

(
φ

p · log2 φ−1

)

with probability lower bounded by a positive constant c. If one averages that gain over the O(p−1)
rounds of the phase, one can say that with constant probability c, each round in the phase resulted in

a multiplicative volume gain of 1 + Ω
(

φ
log2 φ−1

)
.

We therefore apply lemma 6 with L = Θ
(

log2 φ−1

φ

)
, B = Θ

(
log2 φ−1

φ · log n
)

, P = c and δ equal to

any inverse polynomial in n, δ = n−Θ(1). Observe that B ≥ Θ
(
L
P log logL

δ

)
. Thus, with probability

1− δ = 1− n−Θ(1), we have Θ(B ·P ) = Θ
(

log2 φ−1

φ · log n
)

successful steps. Since each successful step

gives a multiplicative volume gain of 1 + Ω
(

φ
log2 φ−1

)
, we obtain a volume of

(
1 + Ω

(
φ

log2 φ−1

))Θ
(

log2 φ−1

φ ·logn
)

= eΘ(logn),

which, by choosing the right constants, is larger than |E|.

• by applying lemma 7, we can then then show by symmetry that each uninformed node can get the
information in T rounds, if a set S of volume > |E| is informed — completing the proof.

Given v ∈ U = UB(A), we define N̂#�
U (v) (to be read “N-hat-push-U-v”) and N̂#�

B (v)(to be read “N-hat-
pull-U-v”) as follows

N̂#�
B (v) = {u ∈ N+

B (v) | d(u) ≥ 1

3
· φ−1 · d+

B(v)}

12



and

N̂#�
B (v) = {u ∈ N+

B (v) | d(u) <
1

3
· φ−1 · d+

B(v)}.

Then, we define,

Û#� =
{
v ∈ U |

∣∣∣N̂#�
B (v)

∣∣∣ ≥
∣∣∣N̂#�

B (v)
∣∣∣
}

and
Û#� =

{
v ∈ U |

∣∣∣N̂#�
B (v)

∣∣∣ >
∣∣∣N̂#�

B (v)
∣∣∣
}
.

As before, if vol(Û#�) ≥ 1
2 · vol(U) we “apply” the PUSH strategy on U ; otherwise, we “apply” the PULL

strategy.
The following lemma is the crux of our analysis. It is a strengthening of lemma 9. A corollary of the

lemma is that there exists a p = pv ≥ Ω(φ), such that after p−1 rounds, with constant probability, node v

lets us gain a new volume proportional to Θ

(
d+Bi

(v)

p·log φ−1

)
.

Lemma 12 Assume v ∈ Ui. Then, N̂#�
Bi

(v) can be partitioned in at most 6 + log φ−1 parts, S1, S2, . . ., in

such a way that for each part i it holds that, for some PSi ∈
(
2−i+1, 2−i

]
,

Pr

[
GSi(v) ≥ |Si|

256 · PSi

]
≥ 1− 2e−1,

where GSi(v) is the total volume of nodes in Si that perform a PULL from v in P−1
Si

rounds.

Lemma 9, that we used previously, only stated that with probability Ω(φ) we gained a new volume of
Θ(d+

Bi
(v)) in a single step. If we do not allow v to go on for more than one step than the bounds of lemma 9

are sharp3.

The insight of lemma 12 is that different nodes might require different numbers of rounds to give their
“full” contribution in terms of new volume, but the more we have to wait for, the more we gain.

We now prove Lemma 12.

Proof of Lemma 12. We bucket the nodes in N̂#�
Bi

(v) in K = KBi(v) =

⌈
lg

d+Bi
(v)

3·φ

⌉
buckets in a power-of-

two manner. That is, for j = 1, . . . ,K, Rj contains all the nodes u in N̂#�
Bi

(v) having degree 2j−1 ≤ d(u) < 2j .

Observe that the Rj ’s are pairwise disjoint and that their union is equal to N̂#�
Bi

(v).

Consider the buckets Rj , with j > lg φ−1. We will empty some of them, in such a way that the total
number of nodes removed from the union of the bucket is an ε fraction of the total (that is, of d+

Bi
(v)). This

node removal step is necessary for the following reason: the buckets Rj , with j > lg φ−1, contain nodes
with a degree so high that any single one of them will perform a PULL operation on v itself with probability
strictly smaller than φ. We want to guarantee that the probability of a “gain” is at least φ we are forced to
remove nodes having too high degree, if their number is so small that — overall — the probability of any
single one of them to actually perform a PULL on v is smaller than φ.

3To prove this, we give two examples. In the first one, we show that the probability of informing any new node might be
as small as O(φ). In the second, we show that a single step the gain might be only a φ fraction of the volume of the informed
nodes. Lemma 12 implies that these two phenomena cannot happen together.

So, for the first example, take two stars: a little one with Θ
(
φ−1

)
leaves, and a large one with Θ(n) leaves. Connect the

centers of the two stars by an edge. The graph will have conductance Θ(φ). Now, suppose that the center and the leaves of
the little star are informed, while the nodes of the large star are not. Then, the probability of the information to spread to any
new node (that is, to the center of the large star), will be O(φ).

For the second example, keep the same two stars, but connect them with a path of length 2. Again, inform only the nodes of
the little star. Then, in a single step, only the central node in the length-2 path can be informed. The multiplicative volume
gain is then only 1 +O(φ).
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The node removal phase is as follows. If R′j is the set of nodes in the j-th bucket after the node removal
phase, then

R′j =

{
Rj |Rj | ≥ 1

16 · 2
j · φ

∅ otherwise

Observe that the total number of nodes we remove is upper bounded by

K∑

i=1

(
1

16
· 2i · φ

)
≤ φ

16

K∑

i=0

2i ≤ φ

8
2K+1

≤ φ

8
· 4 ·

d+
Bi

(v)

3 · φ
=

1

6
· d+
Bi

(v).

Therefore,
∑
j

∣∣R′j
∣∣ ≥ 1

3d
+
Bi

(v), since
∑
j |Rj | ≥

1
2d

+
Bi

(v).

Consider the random variable g(v), which represent the total volume of the nodes in the different R′j ’s
that manage to pull the information from v. If we denote by gj(v) the contribution of the nodes in bucket

R′j to g(v), we have g(v) =
∑K
j=1 gj(v).

Take any non-empty bucket R′j . We want to show, via lemma 5, that

Pr

[
gj(v) ≥ 1

128
·
∣∣R′j
∣∣

pj

]
≥ pj .

(If this event occurs, we say that bucket j succeeds.)
This claim follows directly from 5 by creating one Xi in the lemma for each u ∈ R′j , and letting Xi = 1

iff node u pulls the information from v. The probability of this event is pi ∈
(
2−j , 2−j+1

]
, so we can safely

choose the p of lemma 5 to be p = 2−j+1.

Consider the different pj ’s of the buckets. Fix some j. If pj came out of case 2 then, since
∣∣R′j
∣∣ ≥ 1

16 ·2
j ·φ,

we have pj ≥ 1
32 · φ. If pj came out of case 1, then pj = 1

32 . In general, pj ≥ φ
32 , and pj ≤ 1.

Let us divide the unit into segments of exponentially decreasing length: that is,
[
1, 1

2

)
,
[

1
2 ,

1
4

)
, . . . ,

[
2−j+1, 2−j

)
, . . ..

For each j, let us put each bucket R′j into the segment containing its pj . Observe that there are at most⌈
lg 32

φ

⌉
≤ 6 + lg φ−1 segments.

Fix any non-empty segment `. Let S` be the union of the buckets in segment `. Observe that if we let
the nodes in the buckets of S` run the process for 2` times, we have that, for each bucket R′j ,

Pr

[
Gj(v) ≥ 1

128
·
∣∣R′j
∣∣

pj

]
≥ 1− (1− pj)2` ≥ 1− e−1,

where Gj(v) is the total volume of nodes in R′j that perform a PULL from v in 2` rounds.

Now, we can apply lemma 4, choosing Xj to be equal vj = 1
128 ·

|R′j|
pj

if bucket R′j in segment ` (buckets

can be ordered arbitrarily) is such that Gj(v) ≥ vj , and 0 otherwise. Choosing p = 1−e−1 and q = 1−2e−1,
we obtain:

Pr

[
GS`(v) ≥ 1

256
· |S`|

2−`

]
≥ 1− 2e−1.

2

The following corollary follows from lemma 12. (We prove in Appendix A that, constants aside, it is the
best possible.)
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Corollary 13 Assume vi ∈ Ui. Then, there exists pi ∈
(
φ
64 , 1

]
such that

Pr

[
G(vi) ≥

d+
Bi

(vi)

5000 · pi · lg 2
φ

]
≥ 1− 2e−1.

where G(vi) is the total volume of nodes in N+
Bi

(vi) that perform a PULL from vi, or that vi pushes the

information to, in p−1
i rounds.

Proof If vi ∈ Û#�
i , the same reasoning of lemma 9 applies. If vi ∈ Û#�

i , then we apply lemma 12 choosing
the part S with the largest cardinality. By the bound on the number of partitions, we will have

S ≥
d+
Bi

(vi)

3
· 1

6 + lg φ−1
≥

d+
Bi

(vi)

18 · lg 2
φ

,

which implies the corollary. 2

We now prove the main theorem of the section:

Theorem 14 Let S be the set of informed nodes, vol(S) ≤ |E|. Then, if S′ is the set of informed nodes
then there exists some Ω(φ) ≤ p ≤ 1 such that, after O

(
p−1
)

steps, then with Ω(1) probability,

vol(S′) ≥

(
1 + Ω

(
φ

p · log2 1
φ

))
· vol(S).

Corollary 13 is a generalization of lemma 9, which would lead to our result if we could prove an analogous of
the two-cases property of the previous section. Unfortunately, the final gain we might need to aim for, could
be larger than the cut — this inhibits the use of the two-cases property. Still, by using a strenghtening of
the two-cases property, we will prove Theorem 14 with an approach similar to the one of Theorem 11.

Proof We say that an edge in the cut (S, V − S) is easy if its endpoint w in V − S is such that
d−S (w)

d(w) ≥ φ.

Then, to overcome the just noted issue, we consider two cases separately: (a) at least half of the edges in
the cut are easy, or (b) less than half of the edges in the cut are easy.

In case (a) we bucket the easy nodes in Γ(S) (the neighbourhood of S) in
⌈
lg 1

φ

⌉
buckets in the following

way. Bucket Di, i = 1, . . . ,
⌈
lg 1

φ

⌉
, will contain all the nodes w in Γ(S) such that 2−i <

d−S (w)

d(w) ≤ 2−i+1. Now

let Dj be the bucket of highest volume (breaking ties arbitrarily).

For any node v ∈ Dj we have that its probability to pull the information in one step is at least 2−j . So,
the probability of v to pull the information in 2j rounds is at least 1 − e−1. Hence, by applying lemma 4,
we get that with probability greater than or equal to 1− 2e−1 we gain a set of new nodes of volume at least
vol(Dj)

2 in 2j rounds. But,

vol(Dj)

2
≥ 2j · cut(S,Dj)

2
≥ 2j · cut(S,Γ(S))

2
⌈
lg 1

φ

⌉ ≥ 2j · φ · vol(S)

2
⌈
lg 1

φ

⌉ .

Thus in this first case we gain with probability at least 1 − 2e−1 a set of new nodes of volume at least

2j · φ·vol(S)

2dlg 1
φe

in 2j rounds. By the reasoning presented at the beginning of section 5 the claim follows.

Now let us consider the second case, recall that in this case half of the edges in the cut point to nodes u

in Γ(S) having d−(u)
d(u) ≥

1
φ .

We then replace the original two-cases property with the strong two-cases property:
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(a’)
∑
v∈Ht∩(V−S) d

−
Bt

(v) ≥ 1
1000 · cut(S, V − S), and

(b’)
∑
v∈Ht∩S d

+
Bt

(v) ≥ 249
1000 · cut(S, V − S).

As before, at least one of (a’) and (b’) has to be true. If (a’) happens to be true then we are done since the
total volume of the new nodes obtains will be greater than or equal

∑
v∈Ht∩(V−S) d(v) ≥ φ−1

∑
v∈Ht∩(V−S) d

−
Bt

(v) ≥
1

1000 · φ
−1 · cut(S, V − S). By Corollary 13, we will wait at most w rounds for the cut (S, V − S), for

some w ≤ O
(
φ−1

)
. Thus, if (a’) holds, we are guaranteed to obtain a new set of nodes of total volume

Ω
(

cut(S,V−S)
w

)
in w rounds. Which implies our main claim.

We now show that if (b’) holds, then with Θ(1) probability our total gain will be at least Ω
(

cut(S,V−S)
w log2 φ−1

)

in w rounds, for some w ≤
(
φ−1

)
.

Observe that each vi ∈ Ht ∩ S, when it was considered by the process, was given some probability

pi ∈
(
φ
64 , 1

]
by Corollary 13. We partition Ht ∩ S in buckets according to probabilities pi. The j-th bucket

will contain all the nodes vi in Ht ∩ S such that 2−j < pi ≤ 2−j+1. Recalling that Bi is the set of informed
nodes when node vi is considered, we let F be the bucket that maximizes

∑
vi∈F d

+
Bt

(vi).

Then, ∑

vi∈F
d+
Bt

(vi) ≥
249

1000
⌈
lg 64

φ

⌉ · cut(S, V − S) (1)

By Corollary 13, we have that for each vi ∈ F , there exists p = p(F ) ≥ φ
64 , such that with probability at

least 1− 2e−1, after
⌈

2
p

⌉
round, we gain at least 1

5000·p·lg 2
φ

· d+
Bi

(vi) ≥ 1
5000·p·lg 2

φ

· d+
Bt

(vi) (since i ≤ t implies

Bi ⊆ Bt). For each vi, let us define the random variable Xi as follows: with probability 1 − 2e−1, Xi has
value 1

5000·p·lg 2
φ

·d+
Bt

(vi) , and with the remaining probability it has value 0. Then, the gain of vi is a random

variable that dominates Xi. Choosing q = 1− 5
2e
−1, in lemma 4, we can conclude that

Pr

[ ∑

i: vi∈F
Xi ≥

4

5
·
∑

vi∈F

(
1

5000 · p · lg 2
φ

· d+
Bt

(vi)

)]

≥ 1− 5

2
e−1 ≥ 0.08.

Thus, in
⌈

2
p

⌉
rounds, with constant probability we gain at least

1

6250 · lg 2
φ

·
∑

vi∈F

d+
Bt

(vi)

p
,

which by equation 1, it is lower bounded by

1
6250·p·lg 2

φ

· 249

1000dlg 64
φ e
· cut(S, V − S) ≥

≥ Ω
(

cut(S,V−S)
p·log2 φ−1

)

Thus applying the reasoning presented at the beginning of the section the claim follows. 2
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6 Push and Pull by themselves

We now comment on how one can change our analysis to get a bound of O
(
cα · φ−1 · log φ−1 · log n

)
on the

completion time of PUSH or PULL by themselves. The main observation is that, if degrees of neighboring
nodes have a constant ratio, then the probability that a single node vi ∈ S (in our analysis) to make a viable
PUSH or to be hit by a PULL is Θ(αφ) (indeed, v will have at least φ · d(v) neighboring nodes in V − S, each
having at most its degree times α — an easy calculation shows that the probability bound for both PUSH

and PULL is then Θ(αφ)).
The following lemma is the analogous of Corollary 13. The main claim of this section follows using the

same approach we used in the previous section. We only observe that since Lemma 15 does not lose a factor
of Θ

(
log φ−1

)
in the gain G(v), the total number of rounds will be a Θ

(
log φ−1

)
factor smaller than the

PUSH-PULL bound of the previous section.

Lemma 15 No matter which of the PUSH, or the PULL, strategy is used then for each v ∈ Ui there exists a
p ≥ φ

4α such that

Pr

[
G(v) ≥ d+(v)

2pα2

]
≥ 1− e−1,

where G(v) is the volume of new nodes informed by v in
⌈
p−1
⌉

rounds.

Proof By the uniformity condition (a) each of the d+
Bi

(v) neighbours of v, that are outside of Bi, have

degree within α−1 · d(v) and α · d(v); furthermore, since v ∈ Ui, (b) it holds that
d+Bi

(v)

d(v) ≥
φ
2 .

Suppose the PUSH strategy is used. By (b) the probability that v pushes the information to some neighour

outside Bi (obtaining a gain g(v) of at least α−1 · d(v), by (a)) is
d+Bi

(v)

d(v) ≥
φ
2 . By setting p to this quantity

we get that the probability of obtaining a gain of at least d(v)
α ≥ d(v)

2pα =
d+Bi

(v)

2pα2 is at least p.

Suppose, instead, the PULL strategy is used. Then the probability that some neighbour of v outside Bi
performs a PULL from v is

1−
∏

u∈NBi (v)

(
1− 1

d(u)

)
≥ 1−

∏

u∈NBi (v)

(
1− 1

α · d(v)

)
= 1−

(
1− 1

α · d(v)

)d+Bi (v)

≥ 1−e−
d
+
Bi

(v)

α·d(v) ≥
d+
Bi

(v)

2α · d(v)
,

where the first inequality is justified by (a), and the latter two are classic algebraic manipulations. Using

(a) again, we obtain that the probability of having a gain g(v) of at least α−1 · d(v) is at least
d+Bi

(v)

2α·d(v) ; we

then set p to p =
d+Bi

(v)

2α·d(v) ≥
φ
4α .

For both strategies, with probability at least p ≥ φ
4 , in a round the volume of the new nodes informed by

v is at least
d+Bi

(v)

2pα2 . Therefore in
⌈
p−1
⌉

rounds, v will inform node of volume G(v) ≥
d+Bi

(v)

2pα2 with probability

at least 1− e−1. 2
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A Optimality of Corollary 13

2 4 1/φ2i...... ......

vol(S) = Θ

�
log 1/φ

φ

�
S

log2
1/φ

log2
1/φ

φ

Figure 1: A construction showing that Corollary 13 is sharp. Each node is labeled with its degree.

Consider the cut in Figure 1, with φ = 2−t, for some integer t ≥ 1. The set of informed nodes S is a star;

its central node (shown in the figure), having degree log2
1/φ
φ , is connected to log2

1/φ
φ − log2

1/φ leaves inside S,

and log2
1/φ nodes outside S. The volume of S is then vol(S) =

(
2
φ − 1

)
log2

1/φ, and the conductance of the

cut is then φ
2+φ = Ω(φ). (It follows that, for any sufficiently large order, there exists a graph of that order

with conductance Θ(φ) that contains the graph in Figure 1 as a subgraph.) Finally, the i-th neighbour of
S, i = 1, . . . , log2

1/φ, has degree 2i.

Corollary 13, applied to our construction, gives that there exists some p, Ω(φ) ≤ p ≤ 1, such that the
gain in p−1 rounds is Ω(p−1) with constant probability. (One can get a direct proof of this statement by
analyzing the PULL performance.) We will show that Corollary 13 is sharp in the sense that, for each fixed
constant c > 0, and for any p in the range, the probability of having a gain of at least cp−1 with no more
than εp−1 rounds is O(ε).

Observe that the claim is trivial if p > ε, since no gain can be obtained in zero rounds. We will then
assume p ≤ ε. Because of the O (·) notation, we can also assume ε ≤ c/8. Therefore we prove the statement
for p ≤ c

8 .

Let us analyze the PUSH strategy. Observe that the probability of performing a PUSH from S to the outside
in εφ−1 ≥ Ω(εp−1) rounds is (1 − φ)εφ

−1 ≤ ε. Therefore the probability of gaining anything with the PUSH

strategy is at most ε.

Now let us analyze the PULL strategy. Fix any Ω(φ−1) ≤ p ≤ 1. Let A be the set of the neighbours of S
having degree less than c

2p
−1, and let B be the set of remaining neighbours. Then, the total volume of (and,

thus, the total PULL gain from) nodes in A is not more than cp−1− 1. Therefore to obtain the required gain,
we need a node in B to make a PULL from S.
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The probability that some node in B makes a PULL from S in one round is upperbounded by

log2
1/φ∑

i=dlog2
c
2p
−1e

2−i = 2 ·
(

1− 2− log2
1/φ−1 − 1 + 2−dlog2

c
2p
−1e
)
≤ 2

2dlog2
c
2p
−1e ≤

4p

c
.

It follows that the probability P that some node in B performs a PULL from S in k =
⌈
ε
p

⌉
rounds is at most

P ≥ 1−
(
1− 4p

c

)k
. Since p ≤ c/8 we have that

(
1− 4p

c

) c
4p ≥

(
1
2

)2
= 1

4 . Therefore,

P ≥ 1− 4−k·
4p
c ≥ 1− 4−ε·

1
p ·

4p
c = 1− 4−ε·

4
c = Θ

( ε
c

)
= Θ(ε).

The claim is thus proved.
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