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Abstract. We consider the problem of bounding the combinatorial complexity of 

the lower envelope of n surfaces or surface patches in d-space (d >__ 3), all algebraic 

of constant degree, and bounded by algebraic surfaces of constant degree. We show 

that the complexity of the lower envelope of n such surface patches is O(n d- x +~), for 

any e > 0; the constant of proportionality depends on c, on d, on s, the maximum 

number of intersections among any d-tuple of the given surfaces, and on the shape 

and degree of the surface patches and of their boundaries. This is the first nontrivial 

general upper bound for this problem, and it almost establishes a long-standing 

conjecture that the complexity of the envelope is O(n a-22q(n)) for some constant q 

depending on the shape and degree of the surfaces (where 2q(n) is the maximum length 

of (n, q) Davenport-Schinzel sequences). We also present a randomized algorithm for 

computing the envelope in three dimensions, with expected running time O(n2+'), 

and give several applications of the new bounds. 

1. Introduction 

Let E = {al . . . .  , a,} be a given collection of n surfaces or surface patches in 

d-space, for d ~> 3. This paper continues the study initiated in the companion  paper 

[18], and addresses the problem of bounding  the combinatorial complexity of the 

*Work on this paper has been supported by NSF Grant CCR-91-22103, and by grants from the 
U.S.-Israeli Binational Science Foundation, the G.I.F., the German-Israeli Foundation for Scientific 

Research and Development, and the Fund for Basic Research administered by the Israeli Academy of 
Sciences. 
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lower envelope (pointwise minimum) of the surface patches in Z (see below for a 

more precise definition of this term). Our analysis applies to collections of general 

algebraic surfaces. For  example, in three dimensions our results hold for collections 

Z for which all the surface patches in E are algebraic of some constant degree, 

and the boundary of each patch consists of a constant number of algebraic arcs, 

all of constant degree as well. We also assume, with no loss of generality, that 

each ai is the graph of a partially defined (algebraic) function z = f~(x, y); otherwise, 

we can cut each patch into subpatches along the (constant number of) curves of 

points of z-vertical tangency. We also assume that the given patches are in general 
position, meaning that the coefficients of the polynomials defining the surfaces and 

their boundaries are algebraically independent over the rationals. This assumption 

excludes degenerate configurations; for example, in three dimensions, it excludes 

configurations where four surfaces meet at a point, the boundary of one surface 

meets a curve of intersection of two other surfaces, two boundary curves of distinct 

surfaces meet at a point, etc. This involves no real loss of generality, because, as 

is argued below, the maximum complexity of the envelope of n surface patches 

with a fixed maximum algebraic degree and a fixed maximum degree of their 

boundaries, is at most proportional to the same maximum taken over collections 

of surfaces that are in general position. Note that the extra condition assumed in 

[18] (for the three-dimensional case)--that the relative interiors of any triple of 

surfaces intersect in at most two points--is no longer assumed. 

In three dimensions the lower envelope Es of Y., its xy-projection J[~, and their 

combinatorial complexity qJ(E) are defined exactly as in [18]. These notions are 

also appropriately generalized to higher dimensions--see Section 2. 

Under the assumptions made above, it is easy to show that, in d-space, 

~k(E) = O(n a) (with a constant of proportionality that depends on d and on the 

algebraic degree of the patches and of their boundaries). However, it has been 

conjectured over the past 8 years that the maximum possible complexity of such 

an envelope is at most only slightly larger than O(nd-X). This conjecture has 

previously been proven only for families of a few special types of surfaces or surface 

patches, such as hyperplanes, balls, simplices, and, in three dimensions, also for a 

few other types (see [26] and [28]). 

As noted in [18], the conjecture was motivated by the fact that in two 

dimensions, in the case of the lower envelope of n partially defined univariate 

functions, the complexity of their envelope is at most )~+2(n), which is the 

maximum length of Davenport-Schinzel sequences of order s + 2 composed of n 

symbols (see [4] and [21] for more details); here s is the maximum number of 

intersection points between any pair of arcs. Unfortunately, an appropriate 

extension of these results to three and higher dimensions (namely, the above- 

mentioned conjecture, whose precise form states that the complexity of the 

envelope is at most O(nd-22s(n)) for some constant s depending on the given 

surfaces; see [26]) appears to be extremely difficult, and the problem in general 

has been wide open ever since; in fact, even in three dimensions no general bounds 

better than O(n 3) were known so far. 

In this paper we extend the anlaysis technique of [18] to obtain the first general 
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nontrivial bounds  for the complexity ~,(Y), and, moreover, get very close to 

establishing the above conjecture. More precisely, we show that ~(~) = O(n a-  ~ § 

for any e > 0, with the constant  of proportionali ty depending on e, on d, on the 

maximum number  s of intersection points between any d-tuple of surfaces in Y., and 

also on the degree and shape of these surfaces and of their boundaries 1 (the 

parameter s is singled out here because the dependence of the constant on s is 

more significant than its dependence on the other parameters--see below). The 

proof  is not  too  difficult; it uses induction on d, and extends the random-sampling 

technique of  [18] in several ways, so as to make it apply to the more general 

situations studied here. Our  bounds still leave a small gap from the conjectured 

envelope complexity, but otherwise constitute a rather satisfactory solution to the 

lower envelope problem in arbitrary dimensions. 

Improved  bounds on the complexity of lower envelopes have numerous 

applications in computat ional  and combinatorial geometry. We present below 

some specific applications, where the new bounds yield improved algorithmic or 

combinatorial  solutions to several geometric problems. Additional applications 

and properties of our  results have recently been obtained, after the original 

preparat ion of  this paper, and we mention some of them below. A comprehensive 

summary of geometric applications of lower envelopes is given in [30-1. 

The paper is organized as follows. In Section 2 we prove the upper bound  for 

the complexity of the envelope of surface patches in higher dimensions. Section 3 

presents an efficient randomized algorithm for constructing the envelope in three 

dimensions, whose expected running time is O(n2+~), for any ~ > 0. Section 4 

presents some applications of  our new bounds, and Section 5 concludes the paper 

with some comments  and open problems. 

2. Lower Envelopes of Surface Patches 

Let X = {a I . . . . .  trn} be a given collection of n (d - 1)-dimensional surfaces or 

surface patches in d-space. We assume that  these surfaces satisfy the following 

conditions, which are an appropriate  generalization of the conditions assumed in 

[18] (we denote the coordinates by xl . . . . .  xa, where x a is the direction relative 

to which the lower envelope is defined): 

(i) Each al is mono tone  in the x l x  2 ""Xa_l-di rec t ion (that is, every line 

parallel to the xa-axis intersects tri in at most one point). Moreover,  each 

a~ is a port ion of a ( ( d -  1)-dimensional) algebraic surface of constant  

degree b. 

1 The term "shape" refers to additional properties that the given surfaces might possess, which 
restrict the patterns of intersections and other interactions between the surfaces, more than what follows 
only from the fact that the surfaces are algebraic of constant degree. For example, the shape of the 
surfaces might imply that the maximum number s of intersections between any d of the surfaces is 
small. 
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(ii) The projection in the xd-direction of a~ onto the hyperplane Xd = 0 is a 

semialgebraic set defined in terms of a constant number of (d - 1)-variate 

polynomials of constant degree (say, b too). 

(iii) The relative interiors of any d of the given surfaces intersect in at most s 

points, for some constant parameter s (by Bezout's theorem [22] and by 

property (iv) below, we always have s < ha). 

(iv) The surface patches in E are in genera lpos i t ion ,  in the sense defined in the 

Introduction. 

The first part of condition (i) is not essential, since we can always cut a given 

algebraic surface of constant degree into a constant number of monotone 

pieces, so that condition (ii) continues to hold for these pieces. Condition (iv) 

is also not essential, as is argued below, and condition (iii) is made only 

for convenience, allowing us to carry out our analysis in terms of s, which is 

usually much smaller than ba; this results in significantly smaller constants of 

proportionality. 

The lower envelope Ez of Y is the graph of the (partial) function x a = 

E~(xl  . . . . .  x a -  1) that maps each point ( x l , . . . ,  xa -  1) to the smallest xa-coordinate 

among those of the points of intersection between the xa-parallel line through 

(x l  . . . . .  xa-1)  and the surfaces in X (if no such surface exists, the envelope is 

undefined at (x  1, . . . ,  x a -  1)). If that lowest point lies on the boundary of one or 

more surfaces, we take the maximal closed segment contained in the xa-parallel 

line through (x 1 . . . . .  x a - 1 )  whose bottom endpoint lies on the envelope and which 

does not cross the relative interior of any surface in E, and say that the envelope 

is attained over (xl  . . . . .  xa-1)  by all surfaces that touch that segment; if the 

envelope point does not lie on any surface boundary, we say that the envelope is 

attained by (the relative interior of) all surfaces incident to that point. If we project 

E z onto the hyperplane H: xa = 0, we obtain a decomposition ~1r = ~/~ of H into 

connected relatively open semialgebraic sets, which we call cells, such that each 

cell c of ~ is a maximal connected portion of H over which E~ is attained by a 

fixed combination of the relative interiors of some surfaces and/or the boundaries 

of other surfaces (by the general position assumption, the number of such surfaces 

is at most at). The combinator ia l  complex i t y  of E~, denoted by ~k(Y,), is defined to 

be the number of cells (of all dimensions) of J t .  

2.1. The Issue o f  General  Posi t ion 

As claimed in the Introduction, assuming that the surfaces in E are in general 

position involves no real loss of generality. This is because, roughly speaking, the 

complexity of the envelope of n surface patches with a fixed maximum algebraic 

degree and a fixed maximum degree of their boundaries, attains its maximum 

when the surfaces are in general position. Here is a more precise way of stating 

and proving this claim: 

Suppose Y. is not in general position, and consider a slight perturbation of the 
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surfaces in E, obtained by replacing each polynomial P~(x 1 . . . . .  Xd) = 0 defining 

these surfaces and their boundaries by the polynomial 

PI((I - Eitx I h- Eil) . . . . .  (1 - -  (~idXd "~- ~id)) ~-" O, 

where the E~j's are arbitrarily small algebraically independent transcendentals. Let 

E' denote the resulting collection of perturbed surfaces. If v is an inner vertex of 

Ez, namely, a vertex formed by the intersection of the relative interiors of d or 

more surfaces of E, and, furthermore, if these surfaces intersect transversally at v, 

then, as is easily checked, v will be replaced in E~, by one or more vertices (provided 

the Eu's are sufficiently small, which we assume anyway). Thus the number of such 

vertices can only grow when we pass from E to E'. 

There are several other kinds of vertices for which this argument does not apply: 

(a) Boundary vertices, namely, vertices formed by the intersection of a boundary 

of one surface with other surfaces. Clearly, any such vertex is determined 

by at most d - 2 additional surfaces, so the number of these vertices is 

clearly only O(n d- 1). 
(b) Boundary-visible vertices, namely, vertices v for which the bottom endpoint 

of the vertical segment defining v as above, lies on the boundary of some 

surface of Y.. Nevertheless, we have: 

Lemma 2.1. 7he number of boundary-visible vertices of E~ is O(n d-l +~), for any 

e > 0, where the constant of proportionality depends on e, d, and b. In three 

dimensions the bound improves to O(n2q(n)), for some constant q depending on the 

degree and shape of the given surfaces and of their boundaries. 

Proof. For  the proof of the lemma, we need to assume inductively that our main 

result, Theorem 2.2, holds for all d ' <  d; when d = 3 this assumption is not 

needed--see below. Let a ~ E, let c denote its boundary, and let V be the vertical 

surface formed by the union of all vertical rays whose bottom endpoints lie in c. 

For each surface al :~ tr in E, let ~i = ai c~ E The properties that the surfaces satisfy 

imply that each (i is an algebraic surface patch, of maximum dimension d -  2, 

whose boundary satisfies condition (ii) above. (Since we are not assuming general 

position, the dimension of (i can be smaller than d - 2; however, the foregoing 

analysis applies to these degenerate configurations as well.) It easily follows that 

the surfaces (~ satisfy conditions (i)-(iii) above (note that the maximum degree of 

~g can be much larger than b, but is still a constant). Note that all boundary-visible 

vertices w that lie over c also appear as vertices of the lower envelope, within V, 

of the surface patches (i. By the results of [7] and [13-1, c can be decomposed into 

a constant number of subcells, each diffeomorphic to an open ball of some 

dimension. Thus, for each subcell c', we can parametrize c' using t < d - 2 real 

parameters, so as to embed c' as an open ball in t-dimensional euclidean space. 

The portion of V lying above c' is then embedded in (t + 1)-dimensional space, 

so that conditions (i)-(iii) continue to hold for the embedded surfaces (~. This 

implies, using the induction hypothesis, that the complexity of the lower envelope 
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of  the (i's over  c' is O(n t+~) = o ( n d - 2  +~), for any e > 0. Summing  up these bounds,  

over  all subcells c' of  c and over  the boundaries  c of all the surfaces of  Z, we 

conclude that  the overall  number  of boundary-vis ible  vertices of E~ is O(n d- 1 +~), 

for any e > 0. In three dimensions the (~'s are O(n) algebraic arcs, each pair  of 

which intersects in at mos t  some constant  number ,  q', of points (or connected arcs). 

It  follows that  the number  of  vertices of  their envelope is at most  O(2q,§ 2(n)). 

Summing  over  all surfaces or, we conclude that  the number  of boundary-vis ible  

vertices is O(n2q(n)), where the constant  q is the max imum,  over all surface 

boundaries ,  of the numbers  q' + 2, where q' is as defined above. The a rguments  

used in the three-dimensional  case resemble the analysis techniques of [71 and 

1"11"1. [ ]  

(c) 

(d) 

Singular inner vertices, namely,  inner vertices that  are singular 2 on at least 

one of their incident surfaces. Since the locus of  singular points on each 

surface of E is an algebraic surface of dimension < d - 2 (and of constant  

degree), it can be argued, as in case (a) above, that  the total  number  of  such 

vertices is O(n d- 1). 

Nontransversal inner vertices, namely, inner vertices v incident to d (or more) 

surfaces, such that  v is a nonsingular  point  on each of these surfaces, but 

the d (or more)  tangent  hyperplanes  to the surfaces at v are not  linearly 

independent.  (We can ignore degenerate cases where v is a point  of 

intersection between fewer than d surfaces, because the number  of  such 

vertices is again only O(n d- 1).) The  difficulty in this case is that  a small 

per turbat ion  of these surfaces in the " w r o n g "  direction may  cause v to 

disappear.  (Think, e.g., of  the case where, in three dimensions, v is a point  

of tangency between one surface, trl, and the curve of intersection of two 

other  surfaces, tr 2, a3; moving  a l  away from this curve may  cause v to 

disappear.) However ,  it is easily checked that  if we choose the %'s  r andomly  

and independently from a sufficiently small ne ighborhood  of 0, there is 

a constant  probabi l i ty  (depending on d) that  v will show up on the per turbed 

envelope as one or more  vertices. This implies that  an appropr ia te  r a n d o m  

choice of  the Eo's will cause at least a fixed fraction of these vertices to show 

up on the per turbed envelope. 

To  sum up, an appropr ia te  r a n d o m  per turba t ion  of the surfaces will result in a 

collection of surfaces in general position, and the (expected) number  N '  of vertices 

on its envelope satisfies N' > c N  - K,  where c is some absolute  positive fraction 

(depending on d), N is the number  of vertices on the original envelope, and 

K = O(n a- 1 +~), for any  ~ > 0 (or, in three dimensions, K = O(n2q(n)), for some 

cons tant  q). Since the bounds  tha t  we will establish will be asymptot ical ly  larger 

than  K, this a rgument  implies that  it suffices to establish our  bounds  for collections 

of  surfaces, in general position, since these bounds  will also apply,  up to some 

constant  factor, in degenerate configurations.  (The complexi ty  of  the envelope also 

counts  features other  than  vertices. However ,  in general position, a s t ra ightforward 

2 A point v is singular on an algebraic surface, defined by P = 0 for some polynomial P, if all the 
partial derivatives t3P/dxl, for i = 1 . . . . .  d, vanish at v; see [5] and [22]. 
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charging scheme shows that the total number of other features of E~ is proportional 

to the number of vertices, plus an "overhead" term, which is at most O(n a- 1). This 

argument can also be extended to degenerate configurations.) 

2.2. The Complexity of  the Envelope 

Theorem 2.2. The combinatorial complexity of the lower envelope of a collection 

of n (d - 1)-dimensional surface patches in d-space that satisfy conditions (i)-(iii) is 

O(nd-l+~),for any e > O, where the constant of proportionality depends on 5, d, s, 

and on the maximum degree b and the shape of the given surfaces and of their 

boundaries. 

Proof The proof is based on induction on d. The base case d = 2 is immediate 

from standard Davenport-Schinzel theory [21]. Let d > 3 and suppose that the 

theorem is true for all d' < d. Let E be a collection of n (d - 1)-dimensional surface 

patches in d-space, which satisfy the above conditions and are in general position. 

Let ~0(Z) and denote the number of inner vertices of E~. Thus we temporarily 

ignore boundary vertices and boundary-visible vertices, as defined in Section 2.1. 

This will not affect our bounds, because, as noted above, the number of boundary 

and boundary-visible vertices on E~ is only O(n d-l+~), for any ~ > 0. We also 

denote by q~(n) the maximum of ~0(E), taken over all collections E of n surface 

patches that satisfy conditions (i)-(iv), with the same b and s. Finally, we denote 

by ~0*(E) the total number of vertices of E~ of all types (including boundary vertices 

and boundary-visible vertices, as enumerated in Section 2.1), and by tp*(n) the 

maximum of ~o*(E), taken over all collections Y~ as above. The discussion in Section 

2.1 easily implies that ~o*(n) = ~0(n) + O(nd-l+~), for any e > 0. 

As in [18], we extend each surface a c e  to a surface a + by erecting 

an upward-directed vertical ray from each point on the boundary of a. Let 

E § denote the collection of these extended surfaces, and let ~r +) denote their 

arrangement. 

Let p be an inner vertex of E~, formed by the intersection of d surfaces 

al . . . . .  a d~ E. We may assume that p is a nonsingular point on each of these 

surfaces, and that the surfaces meet transversally at p (by the analysis in the 

preceding subsection, the number of all other inner vertices is only O(n a- 1)). For 

i = 1 . . . . .  d, we denote by 7i the curve of intersection between all the surfaces 

at . . . .  , aa, except for ai. Let ill(P) denote the maximal open connected xl-  

monotone surbarc of 7i which has p as an endpoint and is disjoint from E~. Note 

that, since each yl is algebraic of constant degree, 7~ can be partitioned into a 

constant number of connected xl-monotone subarcs, so that each fli(P) is fully 

contained in one of these subarcs; the total number of such subarcs, over all 

intersection curves of the surfaces, is thus O(n d- t). 
Since p is a point of transveral intersection between these d surfaces, and since 

none of these surfaces is singular at p, these surfaces are smooth at p. Hence Ez 

can be approximated, at a neighborhood of p, by the lower envelope of the d 

tangent hyperplanes to these surfaces at p, which is easily seen to imply that the 



334 M. Shafir 

d tangent directions of ill(P) . . . . .  fld(P) at p, all pointing from p along their 

respective arcs, are such that the positive span of their orthogonal projections 

onto H is the entire hyperplane H. Thus at least one of these arcs, say ill(P), 

emanates from p in the positive xl-direction, and at least one arc emanates in the 

negative x l-direction. 

We define the index j = j(p) of p to be the number of points of intersection of 

tr I . . . . .  a d that lie in the half-space xl > x~(p); by property (iii), j can range from 

0 to s - 1. We define tpo)(E), for j  = 0 . . . . .  s - 1, to be the number of inner vertices 

of E z whose index is at most j. We derive a recurrence relationship for ~o(n), by 

bounding each of the functions ~o tj~ in terms of ~o ~- 17 (with special handling of 

tpt~ the solution to this recurrence yields the asserted bounds. 

Let p be an inner vertex as above, whose index is at most j. Let u denote the 

other endpoint of ill(P). Several cases can arise: 

(a) u is an endpoint o f  a maximal connected x~-montone piece of  the whole 

intersection curve ~1. In this case we charge p to u. Since each such u can be 

charged in this manner at most a constant number of times, and since there are 

only O(n d- l )  such points, over the entire collection of intersection curves, the 

number of vertices p of this kind is O(n a- 1). 

(b) u is a point on Ez, and the excluded surface tr~ does not intersect ill(P) and is 

not incident to u. Thus, if we start tracing ill(P) from p, we move initially along 

points hidden from Ez by a~, which thus lies below the curve. It follows that ill(P) 

must contain a point w that lies directly above the boundary of tr 1, and we charge 

p to the point w. 

Let w' be the point of t~tr I that lies directly below w, and let t denote the number 

of surfaces that either cross the portion 61 = pw of fl~(p) or have a point on their 

boundary which lies directly below 61. We fix some threshold parameter k = k j, 

to be determined below, and consider the following two subcases: 

(i) t > k. Let Z + denote the collection of the vertically extended surfaces, as 

defined above, and let ~r § denote their arrangement. By assumption, 61 

contains at least t vertices of d (E§  and we charge p to the block of the 

first k of these vertices in their order from p to w along 61. Clearly, each vertex 

of d ( Z  § can be charged in this manner only a constant number of times: 

By the general position assumption, any such vertex w lies on only d curves 

of ( d -  1)-wise intersection of the surfaces of E +. Along any of these curves, 

7, the vertex w can be charged at most once, since the charging is made by a 

vertex p that lies on ), c~ Ez, and the portion of 7 between p and w is disjoint from 

Ez. 

Define the level, with respect to d (E+) ,  of a point ~ in d-space to be the number 

of surfaces of Y. § that lie strictly below ( (which is the same as the number of 

original surfaces in E that lie below O; note that the vertices of E z have level 0. 

Each of the charged vertices along 61 is easily seen to be at level at most k: the 

initial point p is at level 0, and the level of each vertex along 61 differs from the 

level of the preceding vertex by only -t-1. 

We next obtain an upper bound for the number of vertices of ~r § that lie 
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at level < k. For this we apply the random-sampling analysis technique of [12] 

and [29], as also used in [18]. That is, we choose a random sample ~ of r = n/k 
surfaces of E +, and construct their arrangement ~r Let v be a vertex of ~r +) 

at level t < k. The probability that v shows up as a vertex of E~ is 

out of the ( 7 )  possible samples ~,  the samples for which v is a vertex of their 

lower envelope are precisely those that include the d surfaces meeting at v and do 

not include any of the t surfaces lying below v. Hence we have 

n - -  t - -  d )  

r - d  

o (:) 
F, <_ tp*(~) _ ~p*(r), 

where F t is the number of vertices v of ~r +) at level t. Using standard calculations 

[12], [18], 1-29], we can conclude that, when substituting r = n/k, 

o{ k. F,= \ ~ tic,I/] , (1) 
t = O  

in other words, the number of vertices of d ( Z  +) at level < k is O(Uq~*(n/k)), which 

in turn implies that the number of inner vertices p of Et  in this subcase is 

O(k"- l ~o*(n/k)). 

(ii) t < k. Let c denote the boundary of a l ,  and let V~ denote the vertical surface 

formed by the union of all xa-parallel rays whose bottom endpoints lie in c. For 

each surface ~r~ r a 1 in Z, let (~ = a~ ~ V~. As argued in the proof of Lemma 2.1, 

an appropriate decomposition of c into "simple" subcells and an appropriate 

parametrization of each subcell of c allow us to regard the surfaces (i as surfaces 

in a (q + 1)-dimensional euclidean space, for some q < d - 2, so that they satisfy 

conditions (i)-(iv), for appropriate constant degree and constant maximum number 

of (q + 1)-wise intersection points. Moreover, w is a vertex of some subarrange- 

ment ace, of the surfaces ~i, over some subcell c' of c, whose level is < k (where 

the level of a point in this cross-sectional arrangement is defined as above). 

We can clearly apply the bound (1), which summarizes the preceding analysis, 

to this case, to conclude that the number of vertices of d<, at level < k  is 

O(kq+ x~q+ l(n/k)), where ~q+ l(m) denotes the maximum complexity of the lower 

envelope of m surfaces (~, in (q + 1)-dimensional space, which satisfy the above 

conditions. The induction hypothesis implies that ~ + ~ ( m ) =  O(m~+~), for any 

e > 0, where the constant of proportionality depends on e, q, the maximum degree 
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of the surfaces ~i and the maximum number of (q + l)-wise intersection points. 

Hence, the number of vertices of ~t~, at level < k is 

0 k ~+1 = O(k l - ' n  q+') = O(kt-~nd-2+'). 

Summing this bound over all subcells c' of c, and over the boundaries c of all 

surfaces of E, we conclude that the overall number of vertices p that are charged 

in this subcase is O(kl-*na-l§ for any e > 0. 

(c) u is a point on E~, and the excluded surface at does intersect the open arc ill(P) 

or is incident to its endpoint u. Let w be the nearest point to p along ill(P) where 

tr 1 meets this curve, or w = u if fit(P) does not meet tr 1. Let 61 denote the portion 

pw of ill(P), and let t denote the number of extended surfaces of E + that cross 61. 

We consider the following two subcases: 

(i) t > k. As in case (b(i)) above, we conclude that 61 contains at least k vertices 

of M(Z§ and we charge p to the first k of these vertices, in their order along t51 

from p to w. As argued above, all these vertices are at level at most k in ~r 

and each of them can be charged in this way only a constant number of times. 

Repeating the random-sampling argument given above, we conclude that the 

number of inner vertices p that are charged in this manner is O(k ~- l~o*(n/k)). 

(ii) t < k. Here we observe, arguing as above, that w lies at level at most t in 

~r Hence, if we remove the t' < t surfaces that hide w from E~, w becomes 

an inner vertex of the envelope of the remaining surfaces. Moreover, the index of 

w, be definition, is at most j - 1. To exploit this observation, we draw, as above, 

a random sample ~ of r = n/k surfaces from Z. By definition, the expected number 

of inner vertices of E~ with index at most j - 1 is tpu-1)(~) < tpu-t)(r). Now, 

arguing as above, the probability that our w will show up as such a vertex of E~ 

is ( . -  t'- 
r - d J / \ r J '  so we obtain 

k 

y 
t=O 

n - t - d )  

r - d Gt < ~0 u-  t)(r), 

where G~ is the number of inner vertices w of ~r that arise in the present analysis, 

with exactly t surfaces passing below them. As above, this can be rewritten as 

t=O 
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in other words, if we charge each of the inner vertices p in this subcase to the 

corresponding point w, and observe that each such point can be charged only a 

constant number  of  times, we conclude that the number  of vertices p in this subcase 

is O(kdq) (j-  1)(n/k)). 

Thus, summing up these bounds, we obtain the following recurrence: for any 

e' > 0 there is a constant  c (depending on e', d, and b) such that 

~(j)(~) < c~kd-l~o*:n~ kl-e'nd - I)(~)) 
- \ \ k ]  + 1+,,+ kdq~j- 

(for j = 0 we put on the right-hand side q~(-1) = 0). Moreover,  we have q~*(m) = 

tp(m) + O(m d-l+~') and q~(m) = r Thus, choosing a different threshold 

parameter  k = kj for each j, we can rewrite the recurrence as 

(p(J)(n) < c(k~- l tp ts -1)(~)+k~-~ 'nd- l+~'+ k~q)tJ-1)(~)), (2) 

for j = 0 . . . . .  s - 1, and for a different constant c > 0. 

We claim that the solution of this recurrence is given by 

tp(~)(n) < Bin d- 1 +~, (3) 

for any e > 0, where B i is a constant depending on j, e, d, b, and s. This is proved 

by holding e fixed, by choosing e' = e/2, and by using induction on n and j. We 

choose 

kl = k S ,  k 2 = k ~ ,  k 3 = k ~  . . . . .  k s - x = k ~ - 2 ,  (4) 

and choose ko to be sufficiently large (see below). We also define 

Bj = (3c);(klk2."kj) 1 -"B o = (3c)~k"o-'§ (5) 

for j = 1 . . . . .  s - 1. To prove (3), it suffices to show, using (2) and the induction 

hypothesis, that, for j = 0 . . . . .  s - 1, we have 

cBs_ ~ ck~ -~/2 ckjBj_ 1 
k~ + l'I el2 "~- kj~ < Bj, 

or, using (4) and (5), 

c(3c)S- lk~o-~,Bo ck~o(I-~/2) ck~(3c);- lk*o-e:Bo 

k~+ , + n~/2 + be:+, 
0 a'O 

< (3c~k~o-a+'Bo, 
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o r  

c(3c)S- Ik~-~'-~:+' + - -  
ck~Cl-~/2) 

B 0 n ~/2 
< 23-(3c)Sko~- ~ +,. 

Now choose k o so that k~ = (3c) s. With this choice we have, as is easily verified, 

c(3c)~- , k ~ - , ' - ,  '+' < ~(3c)Sk'o -~'*', 

so it remains to ensure that 

ck~tl  -e/2} 

B 0 n e/2 
< ~(3c)Jk~o -~+'. (6) 

Whenj  = 0, the left-hand side of(6) assumes its maximum value and the right-hand 

side its minimum value, so it suffices to ensure that 

ck~-'/2 
<_}, 

B o n ~/2 

which will hold if we choose, e.g., B o > 3ck~ -~/2. Hence, an appropriate choice of 

parameters guarantees the validity of the induction step, and thus completes the 

proof  of (3). This also completes the proof of theorem. [] 

Remark. The constants B~ grow fast with s. A closer inspection of our analysis 

shows that they grow roughly as c s/:, for some constant c (which is yielded by the 

induction hypothesis for d' < d). The dependence of these constants on d and on 

the maximum degree of the surfaces and of their boundaries (ignoring the effect 

of s) is much milder. 

3. Efficient Construction of the Envelope in Three Dimensions 

In this section we consider the task of constructing the lower envelope of a 

collection Z of n surface patches in 3-space that satisfy conditions (i)-(iv). In more 

precise terms, our goal is to construct the planar minimization diagram Jgz, and 

to label each of its faces, edges, and vertices with the appropriate combination of 

surfaces and/or surface boundaries that define that feature of J L  We do this by 

applying the following rather standard randomized technique. Fix some suffi- 

ciently large constant r < n, and draw a random sample ~ of r surfaces from Z. 

Compute (say, by any brute-force method) the lower envelope E~, and construct 

the vertical decomposition ~(v/r of the resulting minimization diagram Jr 
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that is, draw a vertical line segment (parallel to the y-axis) through each vertex of 

J / ~ ,  and through each locally x-extremal point on any edge of ~r and extend 

it up and down (in the y-direction) until it meets another arc of ~t'~ (or, failing 

that, all the way to ___ ~).  This produces a decomposition of the plane into cells 

of "constant description complexity": each cell is bounded from above and from 

below (in the y-direction) by portions of two arcs of ~ '~ ,  and on its left and on 

its right by two segments parallel to the y-axis (some of these features may be 

missing in some of the cells). The number of these cells is proportional to the 

combinatorial complexity of ~g~, namely, it is O(r2+e), for any e > 0. Finally, for 

each cell c of ~'(~t'~) construct a three-dimensional cell c* consisting of all points 

whose xy-projections fall in c and which lie below E~. By construction, c* is a 

semiunbounded vertical cylindrical-like region, bounded from above by a portion 

of the single surface of Z which attains E~ over c (or, if no such surface exists, c* 

is the full cylinder consisting of all points whose xy-projections fall in c). Denote 

by Jt '~ the resulting collection of these cylindrical cells c*. 

Since no cell of ~'~r intersects any surface of ~ in its interior, and since each 

such cell is defined in terms of only a constant number of surfaces of Z, it follows, 

using standard probabilistic arguments [10], [23], that, with high probability, no 

cell of J [ )  intersects in its interior more than O((n/r) log r) surfaces of E. We now 

compute, for each cell c* of ~ /~ ,  the set of surfaces of Z that meet the interior of 

c*; since r is assumed to be constant, this can be done using a brute-force method, 

in overall O(n) time. If any of these sets exceed the bound O((n/r)log r), we simply 

discard ~ and start afresh with a new random sample. In a constant expected 

number of trials, we will have obtained a "good" sample ~.  We then compute 

recursively, at each cell c*, the envelope Ez over its base c, and then "glue" together 

all these pieces of the envelope to obtain the overall envelope E~. 

If we denote by T(n) the expected time needed by the algorithms to compute 

the lower envelope of n surface patches satisfying conditions (i)-(iv) (for some fixed 

b and s), we obtain the following recurrence, 

O,,,, , O,r' , '~ r)) 

whose solution is easily seen to be T(n) = O(n2+E). (We are assuming here a model 

of computation in which primitive operations involving a constant number of the 

given surfaces can be performed in constant time. Such operations include: testing 

whether a point lies above, on, or below a given surface, computing the intersec- 

tions of a triple of surfaces, computing the intersection curve of a pair of surfaces, 

computing the intersection curve between one surface and the vertical, wall erected 

from the boundary of another surface, and so on. Since we have assumed that all 

the surfaces and their boundaries are algebraic of constant degree, such a model 

is plausible, using standard machinery from real algebraic geometry for perfoming 

each operation of this kind in an exact manner and in constant time.) 

We have thus shown: 
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Theorem 3.1. The lower envelope of n surface patches in three dimensions, satisfying 

conditions (i)-{iv) above, can be computed in randomized expected time O(n 2 +~), for 

any e > O, in an appropriate "algebraic" model of computation. 

Remark. The algorithm can be made deterministic, without affecting its asymp- 

totic running time, by using the deterministic technique or Matou~ek [24] for 

constructing ~-nets of constant size in linear time. We have preferred the random- 

ized approach since it is much simpler in practice. 

Remark. In attempting to extend the above technique to higher dimensions, we 

face a technical difficulty that involves the vertical decomposition of the minimiza- 

tion diagram Jt '~ of a sample ~ of surfaces: whereas in two dimensions the 

complexity of such a decomposition is larger than the complexity of the un- 

decomposed diagram by only a constant factor, no similar bounds are known in 

higher dimensions (see [7] for the best-known bounds on such decompositions). 

Once this bottleneck is resolved satisfactorily, the rest of the above technique can 

easily be extended to higher dimensions. We also note that recently, after the 

original preparation of this paper, Agarwal et al. [1] have obtained a randomized 

algorithm for computing lower envelopes in four dimensions, whose expected 

running time is O(n 3 +~) for any e > 0. They also obtain a randomized algorithm 

that computes all zero-, one-, and two-dimensional faces of the lower envelope, 

in any dimension d, with expected running time O(n ~- 1 +E), for any e > 0. Several 

other related results have also appeared recently: Boissonnat and Dobrindt [6] 

give a randomized incremental algorithm for constructing lower envelopes in 

3-space, whose expected running time is O(n 2 +'). Another such algorithm is given 

by de Berg et al. [14]. A very simple deterministic divide-and-conquer algorithm 

for constructing lower envelopes in 3-space is given by Agarwal et al. [2]; it also 

runs in time O(n2+~). 

4. Applications 

In this section we consider several applications of the new bounds derived in this 

paper. 

k-Levels in Arrangements 

Our results can be applied to extend the analysis of [29]: 

Theorem 4.1. Let Z be a collection of n ( d -  1)-dimensional algebraic surface 

patches in d-space, which satisfy conditions (i}-(iii) of Section 2. Then the number of 

vertices of ~r that lie at level at most k is O(k x-~na-l+~),for any e > O. 

Proof. The analysis of [29], similar to that used in this paper, implies that the 

number in question is O(kdgo*(n/k)), where tp*(r) is, as defined in Section 2, the 
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max imum number  of vertices on the lower envelope of r surfaces satisfying 

the same conditions as E. The assertion is thus an immediate  consequence of 

Theorem 2.2. [ ]  

Voronoi Diagrams 

As observed in [15], Voronoi  diagrams correspond to lower envelopes in arrange- 

ments in a rather  natural  way. In fairly full generality, we are given a set 

S = {s 1 . . . . .  s~} of n objects in d-space, where we assume that  each object in S has 

"cons tant  description complexity,"  meaning, as above, that  it is a semialgebraic 

set which is defined by a constant  number  of polynomials  of constant  degree. We 

are also given a metric p which is an algebraic function of constant  degree. The 

Voronoi  d iagram of S under the metric p is a part i t ion of d-space into maximal  

connected cells of various dimensions, so that  for each cell c a subset S' ~ S of 

objects exists so that  for each x e c we have 

S '=  {s'~ S: p(x, s') = min{p(x, s): s s S}}, 

and c is a maximal  connected (relatively open) cell with this property.  

Following the observat ion of [15], it is clear that  the Voronoi  d iagram 

is the minimizat ion d iagram of the collection of surfaces tri: xd§ 1 = p(x, si), 

for i = 1 . . . . .  n. The above assumptions  imply that  these surfaces satisfy conditions 

(i)-(iii) of Section 2 (note that  these are full surfaces, not  surface patches). Thus 

our analysis yields the following results: 

Theorem 4.2. 7-he combinatorial complexity of the Voronoi diagram of S, in the 

setup just defined, is O(na+~),for any e > O. 

As an interesting special case, we can obtain,  e.g., the following result, which 

appears  to be new: 

Corollary 4.3. The combinatorial complexity of the euclidean Voronoi diagram of 

n lines in 3-space is O(na+~),for any e > O. 

This result is quite general; in fact, it can be generalized even further. For  

example, it applies to dynamic Voronoi  diagrams,  extending the recent analysis 

technique of [16] and [17] (we omit  the s t raightforward proof): 

Corollary 4.4. Let S be a set of objects in d-space as defined above. Suppose that 

each s ~ S moves (translates and rotates) with time along a given trajectory, so that, 

for each s ~ S, the function p(x, s(t)) is an algebraic function, of constant degree, in 

the d + 1 variables x and t. Then the maximum number of combinatorial changes 

that the Voronoi diagram of S undergoes with time is O(nn+ l +~) for any e > O. 

We remark  that  we do not know whether  the above bounds are close to being 

tight in the worst  case. Fo r  example,  the (static) Voronoi  d iagram of n points in 
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d-space under the euclidean metric corresponds to the lower envelope of n 

hyperplanes in (d + 1)-space, and thus its complexity is only O(nF~j27). We are not 

aware of any larger lower bounds in the more general setup allowed here. In 

particular, it is an open problem whether the complexity of generalized Voronoi 

diagrams in 3-space can be much more than quadratic (the upper bounds derived 

above are only nearly cubic). Similarly, it is open whether the number of com- 

binatorial changes of planar dynamic Voronoi diagrams, even for points moving 

at constant speed along straight trajectories, can be much more than quadratic. 

Lines in 3-Space 

Many problems involving lines in 3-space can be reduced to lower envelopes of 

certain arrangements in 4-space. As an illustration, we give the following gen- 

eralization of a recent result of Pellegrini [27] (see also [9]). First a bit of 

terminology: Let S be a set of n objects in 3-space, each having constant description 

complexity (in the sense defined above). We say that a line l in 3-space passes 

above an object s if the relatively open vertical half-plane bounded from below 

by I does not intersect s. We can parametrize lines as points in projective 4-space, 

so that the fourth coordinate measures the parallel translation of the line from 

some canonical placement in the positive z-direction. It follows that the space of 

all lines that pass above all the objects of S corresponds to the region of 4-space 

that lies above the upper envelope of n surface patches, each representing the locus 

of all lines that touch an object of S (but otherwise pass above it). The combinator- 

ial complexity of this space is defined as the complexity of this upper envelope. 

Thus the results of this paper are easily seen to imply: 

Theorem 4.5. The combinatorial complexity of the space of all lines that pass above 

all objects of S, in the setup just defined, is O(n 3 +E), for any e > O. 

There are several potential algorithmic applications of this bound; they all 

require an efficient algorithm (of near-cubic complexity) for constructing this upper 

envelope. As remarked above, the recent results of [1] do provide such an efficient 

algorithm, and consequently lead to improved solutions of several problems 

involving line in space, such as computing the width of a point set in 3-space (see 

[1] and [8] for details). 

5. Conclusion 

This paper and the companion paper [18] present the first general nontrivial upper 

bounds for the complexity of lower envelopes of algebraic surfaces or surface 

patches in three and higher dimensions; our bounds almost match the known 

lower bounds for the maximum complexity of such envelopes: they are only within 

a factor of O(n ~) larger than the lower bounds. Thus our results almost establish 

the conjecture mentioned in the Introduction. 
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Our results raise some open questions. First, it would be nice to close, or at 

least to narrow, the small remaining gap between our upper bounds and the 

conjectured bounds. Another open problem is to extend the results given here to 

the problem of bounding the complexity of a single cell in an arrangement of 

algebraic surfaces or surface patches. Successful attempts of this kind, in the 

three-dimensional case, were recently made in 1,19] and 1-20], yielding a near- 

quadratic bound on the complexity of such a cell, and a near-quadratic algorithm 

for computing a single cell in arrangements of certain special classes of surfaces. 

It would also be useful to restate conditions (i)-(iv) of Section 2, so that they 

become purely topological, and thus extend our results to apply to collections of 

more general surfaces. 

Another problem is to extend the algorithmic technique of Section 3 to obtain 

efficient algorithms for computing lower envelopes in d > 3 dimensions (over- 

coming the technical difficulty mentioned at the end of Section 3). We have already 

noted there that some progress on this problem has recently been made by Agarwal 

el  al. [1]. 

Finally, the technique used in this paper is relatively simple and is based 

essentially on a single new idea (namely, a specific application of the random 

sampling technique for deriving bounds on generalized "(<k)-sets" in arrange- 

ments), which appears to be fairly general. A grand challenge is to investigate the 

applicability of this technique to other problems concerning complexity in arrange- 

ments, such as obtaining bounds for the complexity of a level, or of many cells, 

or of vertical decompositions of arrangements, and to related problems, such as 

the complexity of planar dynamic Voronoi diagrams and of generalized Voronoi 

diagrams in three dimensions (attempting to improve the bounds stated in Section 

4 by roughly an order of magnitude). 

In closing we note that, after the original preparation of this paper, more 

progress has been made in applying the technique and the results of this paper to 

a variety of related problems. These new developments include the already- 

mentioned papers [1], [19], 1,20], and also: 

(i) An application of our bounds to the analysis of the number of topologi- 

cally different orthographic or perspective views of a polyhedral terrain I-3]. 

(ii) An efficient technique for ray shooting amidst spheres in three dimensions 

[25]. 
(iii) Near-quadratic bounds on the complexity of the overlay of minimization 

diagrams of two collections of bivariate functions, and its applications to 

bounding the complexity of the space of common plane transversals of a 

collection of sets in 3-space 1,2]. 

Acknowledgments 

The author wishes to express his thanks to Dan Halperin for useful discussions 

on this problem, and for our joint work 1,18] that contains the initial ideas that 

have led to the results of the present paper. 



344 M. Sharir 

References 

1. P. K. Agarwal, B. Aronov, and M. Sharir, Computing envelopes in four dimensions with applica- 

tions, Proc. lOth ACM Syrup. on Computational Geometry, 1994, pp. 348-358. 

2. P. K. Agarwal, O. Schwarzkopf, and M. Sharir, The overlay of lower envelopes and its applications, 

Manuscript, 1993. 

3. P. K. Agarwal and M. Sharir, On the number of views of polyhedral terrains, Proc. 5th Canadian 

Conference on ComputationalGeometry, 1993, pp. 55-61. (To appear in Discrete Comput. Geom.) 

4. P. K. Agarwal, M. Sharir, and P. Shor, Sharp upper and lower bounds for the length of general 

Davenport-Schinzel sequences, J. Combin. Theory Ser. A 52 (1989), 228 274. 

5. J. Bochnak, M. Coste, and M-F. Roy, G~omktrieAIgdbrique Rkelle, Springer-Verlag, Berlin, 1987. 

6. J. D. Boissonnat and K. Dobrindt, On-line randomized construction of the upper envelope of 

triangles and surface patches in R 3, Manuscript, 1993. 

7. B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, A singly exponential stratification scheme 

for real semi-algebraic varieties and its applications, Proc. 16th lnternat. Colloq. on Automata, 

Languages and Programming, 1989, pp. 179-193. 

8. B. ChazeUe, H. Edelsbrunner, L. Guibas, and M. Sharir, Diameter, width, closest line pair, and 

parametric searching, Discrete Comput. Geom. 10 (1993), 183-196. 

9. B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, and J Stolfi, Lines in space: combinatorics 

and algorithms, Algorithmica, to appear. 

10. K. Clarkson, New Applications of random sampling in computational geometry, Discrete Comput. 

Geom. 2 (1987), 195-222. 

11. K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial complexity 

bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990), 99 160. 

12. K. Clarkson and P. Shor, Applications of random sampling in computational geometry, II. Discrete 

Comput. Geom. 4 (1989), 387~,21. 

13. G. E. Collins, Quantifier elimination for real closed fields by cylindric algebraic decomposition, 

Proc. 2nd GI Conf. on Automata Theory and Formal Languages, Springer-Verlag, Berlin, 1975, 

pp. 134-183. 

14. M. de Berg, K. Dobrindt, and O. Schwarzkopf, On lazy randomized incremental construction, 

Proc. 26th ACM Symp. on Theory of  Computing, 1994, pp. 105-114. 

15. H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete Comput. Geom. ! 

(1986), 25-44. 

16. J.-J. Fu and R. C. T. Lee, Voronoi diagrams of moving points in the plane, Internat. J. Comput. 

Geom. Appl. 1 (1991), 23-32. 

17. L. Guibas, J. Mitchell, and T. Roos, Voronoi diagrams of moving points in the plane, Proc. 17th 

Internat. Workshop on Graph- Theoret. Concepts in Computer Science, Lecture Notes in Computer 

Science, Vol. 570, Springer-Verlag, Berlin, 1991, pp. 113-125. 

18. D. Halperin and M. Sharir, New bounds for lower envelopes in three dimensions, with applications 

to visibility in terrains, this issue, pp. 313-326. 

19. D. Halperin and M. Sharir, Near-quadratic bounds for the motion planning problem for a polygon 

in a polygonal environment, Proc. 34th IEEE Syrup. on Foundations of Computer Science, 1993, 

pp. 382-391. 

20. D. Halperin and M. Sharir, Almost tight upper bounds for the single cell and zone problems in 

three dimensions, Proc. lOth ACM Syrup. on Computational Geometry, 1994, pp. 11-20. 

21. S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path 

compression schemes. Combinatorica 6 (1986), 151-177. 

22. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977. 

23. D. Haussler and E. Welzl, E-nets and simplex range queries, Discrete Comput. Geom. 2 (1987), 

127-151. 

24. J. Matou~ek, Approximations and optimal geometric divide-and-conquer, Proc. 23rd ACM Syrup. 

on Theory o f  Computing, 1991, pp. 506-511. 

25. S. Mohaban and M. Sharir, Ray shooting amidst spheres in three dimensions and related problems, 

manuscript, 1993. 



Almost Tight Upper Bounds for Lower Envelopes in Higher Dimensions 345 

26. J. Pach and M. Sharir, The upper envelope of piecewise linear functions and the boundary of a 

region enclosed by convex plates: Combinatorial analysis, Discrete Comput, Geom. 4 (1989), 

291-309. 

27. M. Pellegrini, On lines missing polyhedral sets in 3-space, Proc. 9th ACM Syrup. on Computational 

Geometry, 1993, pp. 19-28. 

28. J. T. Schwartz and M. Sharir, On the two-dimensional Davenport Schinzel problem, J. Symbolic 

Comput. 10 (1990), 371 393. 

29 M. Sharir, On k-sets in arrangements of curves and surfaces, Discrete Comput. Geom. 6 (1991), 

593 613. 

30. M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, 

Cambridge University Press, Cambridge, to appear. 

Received February 7, 1993, and in revised form December 13, 1993. 


