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Abstract. We consider the problem of bounding the combinatorial complexity of 

a single cell in an arrangement of n low-degree algebraic surface patches in 

3-space. We show that this complexity is O(n2+8), for any e > 0, where the 

constant of proportionality depends on ~ and on the maximum degree of the given 

surfaces and of their boundaries. This extends several previous results, almost 

settles a 9-year-old open problem, and has applications to motion planning of 

general robot systems with three degrees of freedom. As a corollary of the above 

result, we show that the overall complexity of all the three-dimensional cells of an 

arrangement of n low-degree algebraic surface patches, intersected by an addi- 

tional low-degree algebraic surface patch tr (the so-called z o n e  of ~ in the 

arrangement) is O(n2+'),  for any e > 0, where the constant of proportionality 

depends on ~ and on the maximum degree of the given surfaces and of their 

boundaries. 
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1. Introduction 

Let E = {tr x . . . . .  tr n} be a given collection of n low-degree algebraic surface patches 

in 3-space (see below for a more precise statement of the properties that these 

surfaces are assumed to satisfy). We denote by ~r the arrangement of ~, i.e., the 

decomposition of 3-space into (relatively open) cells of various dimensions, each 

being a maximal connected set contained in the intersection of a fixed subcollection 

of E and not meeting any other surface; we denote j-dimensional cells of ~r for 

j = 0, 1, 2, as vertices, edges, and faces, respectively, and the unquantified term cell is 

used to denote three-dimensional cells of ~r The combinatorial complexity of a 

cell C is the number of lower-dimensional cells appearing on its boundary. The 

problem studied in this paper is to obtain a sharp upper bound on the combinatorial 

complexity of a single cell in such an arrangement. 

One of the main motivations for studying this problem is its applications to robot 
motion planning. Let B be an arbitrary robot system with three degrees of freedom, 

moving in some environment V filled with obstacles. Any placement of B can be 

represented by a point in 3-space, whose coordinates are the three parameters 

controlling the degrees of freedom of B; this space is called the configuration space 
of B. We want to compute the free portion of this space, denoted as FP, and 

consisting of those placements of B at which it does not meet any obstacle. We note 

that the boundary of FP consists of placements at which B makes contact with some 

obstacles, but does not penetrate into any of them. Under reasonable assumptions 

concerning B and 1I, we can represent the subset of "contact placements" of B 

(including those placements at which B makes contact with an obstacle but may also 

penetrate into other obstacles) as the union of a collection of a finite number of 

surface patches, all algebraic of constant maximum degree (and whose relative 

boundaries are also algebraic of constant maximum degree). 

For example, if B is an arbitrary polygonal object with k sides, and V is an open 

planar polygonal region bounded by m edges, the configuration space of B is a 

three-dimensional space, each point of which represents a possible placement of B 

by the parametrization (x, y, tan(0/2)), where (x, y) are the coordinates of some 

fixed reference point on B, and 0 is the orientation of B. In this case each "contact 

surface" is either the locus of all placements of B at which some specific corner of B 

touches some specific edge of V, or the locus of placements at which some side of B 

touches some vertex of V. Each of the resulting O(km) contact surfaces is a 

two-dimensional algebraic surface patch of degree at most four, and its relative 

boundary consists of a constant number of algebraic arcs, of constant maximum 

degree as well. 

If B is placed at a free placement Z and moves continuously from Z, then it 

remains free as long as the corresponding path traced in configuration space does 

not hit any contact surface. Moreover, once this path crosses a contact surface, B 

becomes nonfree (assuming, as is customary, that the boundaries of B and V lie in 

the closure of their interiors, and that B and V lie in general position). It follows 

that the connected component of FP that contains Z is the cell that contains Z in 

the arrangement ~r of the contact surfaces. (The entire FP is the union of a 

collection of certain cells in this arrangement.) Hence, bounding the combinatorial 
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complexity of a single cell in such an arrangement is a major problem that has to be 

tackled, prior to the design of efficient algorithms for computing such a cell. 

Here  is a brief history of the single-cell problem. In two dimensions it has been 

shown in [14] that the complexity of a single face in an arrangement of n Jordan 

arcs, each pair of which intersect in at most some constant number, s, of points, is 

O(As+ 2(n)), where Aq(m) is the maximum length of Davenport-Schinzel sequences of 

order q composed of m symbols, and is nearly linear in m for any fixed q (see [1] 

and [19] for more details). Thus the maximum complexity of a single face is nearly 

linear in the number of  arcs (for any fixed s), as opposed to the complexity of the 

entire arrangement of the arcs, which can be quadratic in the worst case. Efficient 

algorithms for computing a single face in a two-dimensional arrangement are given 

in [141 and [8]. 

In higher dimensions a prevailing conjecture (see, e.g., [23]) is that the complexity 

of a single cell in an arrangement J ( E )  as above is at most only slightly larger than 

O(nd-1), which is again roughly "one order of magnitude" smaller than the 

maximum complexity of the entire arrangement, which can be | d) (see [24]). A 

stronger version of the conjecture asserts that the maximum complexity of a single 

cell in such an arrangement is O(n d 2As(n)), where s is some constant that depends 

on the maximum degree of the given surfaces and of their boundaries. 

These conjectures have been proved only for a few special cases of arrangements. 

They are largely open in the general case stated above. In fact, no bounds better 

than O(n a) are known for the general case, even in three dimensions. The special 

cases for which better bounds are known include the case of hyperplanes, where the 

complexity of a single cell, being a convex polytope bounded by at most n hyper- 

planes, is O(n ta/21) (by the Upper  Bound Theorem [22]), the case of spheres, where 

an O(n ld/2~) bound is easy to obtain by lifting the spheres into hyperplanes in 

(d + 1)-space [11], [25], the case of (d - 1)-simplices, where an O(n d- 1 log n )bound  

has been recently established in [5], and several special cases in three dimensions 

that arise in motion planning for various specific robot systems B with three degrees 

of freedom, including the case of a moving polygon mentioned above, where an 

O(n 2+ ' )  bound is proved in [17], some restricted cases of that problem, where 

slightly more improved bounds are obtained [15], [16], and a few other systems 

(see [15]). 

The single-cell problem is a generalization of the related problem of bounding 

the complexity of the lower envelope of E, i.e., the portion of the union of the 

surfaces of 2s consisting of those points w for which no surface of E passes below 

w. This problem, also rather difficult, is nevertheless easier to analyze, and recent 

results [18], [27] show that the combinatorial complexity of such an envelope is 

O(nd-l+6), for any e > 0, where the constant of proportionality depends on ~, d, 

and the maximum algebraic degree of the given surfaces and of their relative 

boundaries. 

In this paper  we derive an improved upper bound for the complexity of  a single 

cell in an arrangement ~r of algebraic surfaces in 3-,space, as above. This bound, 

in three dimensions, is the same as the bound for lower envelopes just mentioned; 

that is, it is O(n2§ for any 8 > 0, where the constant of proportionality depends, 

as above, on ~ and on the maximum algebraic degree of the given surfaces and of 
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their relative boundaries. This almost establishes the conjecture mentioned above, in 

three dimensions. 

Our analysis adapts the proof technique of [17], which in turn is based on the 

analysis technique of [18] and [27] for the case of lower envelopes. The lesson that 

can be learned from the analysis in [17] is that in the case of a single cell the 

following two preliminary results are necessary to "bootstrap" the recurrences 

appearing in the analysis: 

(a) A sharp bound on the number of "x-extreme" vertices of the cell C (vertices 

whose x-coordinate is smallest or largest in a small neighborhood of the 

vertex within the closure of C). 

(b) A sharp bound on the number of vertices bounding "popular" faces of C 

(faces that are adjacent to C on both "sides"; see [3], [5], [17], and below). 

Bounds on these quantities were obtained in [17] using special properties of the 

surfaces that arise in the case studied there. A main technical contribution of the 

present paper is a derivation of such bounds in the general algebraic setting assumed 

above. The bound (a) is obtained using considerations which are related to Morse 

theory (see, e.g., [21]), but are simpler to derive in three dimensions. The bound (b) 

is obtained by applying the new probabilistic technique of [17], [18], and [27] to 

counting only the vertices of popular faces (this idea is in the spirit of the 

methodology used in [.3] and [5]). Once these two bounds are available, the rest of 

the proof is rather similar to those used in [17], [18], and [27], although certain 

additional nontrivial adjustments are required. 

The paper is organized as follows. In Section 2 we give several preliminary results, 

including the analysis of the number of x-extreme vertices of a single cell. The main 

analysis is presented in Section 3. The application of the main result to the zone 

problem, as mentioned in the abstract, is discussed in Section 4, and the paper 

concludes in Section 5 with further applications of our results and some open 

problems. 

2. Preliminaries 

Let ~ = {er a . . . . .  er,} be a given collection of n surface patches in 3-space that satisfy 

the following conditions: 

(i) Each eri is monotone in the x'y-direction (that is, every vertical line intersects 

eri in at most one point). Moreover, each eri is a portion of an algebraic 

surface of constant maximum degree b. 

(ii) The vertical projection of ~ onto the xy-plane is a planar region bounded by 

a constant number of algebraic arcs of constant maximum degree (say, b 

too). 

(iii) The relative interiors of any triple of the given surfaces intersect in at most s 

points (by Bezout's theorem [20] and by property (iv) below, we always have 
s < b3). 

(iv) The surface patches in ~ are in generalposition; one way of defining this is to 

require that the coefficients of the polynomials defining the surfaces and 
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their boundaries, are algebraically independent over the rationals (i.e., no 

multivariate polynomial with rational coefficients vanishes when substituting 

into it some of the given coefficients), thereby excluding all kinds of "degen- 

erate" configurations; see [171, [18], and [27] for more details. 

We remark that the somewhat restrictive condition (iv) and the first part of 

condition (i) are not essential for the analysis. If the first part of condition (i) does 

not hold, we can decompose each surface into a constant number of xy-monotone 

pieces by cutting it along the locus of points with z-vertical tangency. If condition 

(iv) does not hold, we can argue, by applying, as in [27], a small random perturbation 

of the polynomials, that the complexity of a single cell in a degenerate arrangement 

of surfaces is at most proportional to the worst-case complexity of a single cell in 

arrangements of surfaces in general position. 

2.1. The Number o f  x-Extreme Vertices 

We are given a point Z not lying on any surface, and define C = Cz(E)  to be the 

cell of the arrangement ~r that contains Z; by definition, C is an open set in R 3. 

Recall the following definition (already mentioned above): 

Definition 2.1. An x-extreme vertex v of the cell C is a.vertex whose x-coordinate is 

the smallest or largest in the closure of some connected component of N n C, 

where N is a sufficiently small ball centered at v. 

For each x 0 ~ •, let 7rx0 denote the plane x = x o. 

Definition 2.2. A point w ~ 0C is said to be critical if there is a neighborhood N of 

w and a connected component K of C n N so that K n ~rx0 is disconnected, where 

x 0 is the x-coordinate of w, but K n 7r~ is connected either for all x < x 0 or for all 

x > x 0 sufficiently close to x o. 

Remark. This definition is a special case of the definition of critical points (of the 

coordinate function x) in Morse theory [21]. Another distinction is that the classical 

Morse theory applies to smooth manifolds, whereas here OC is generally non- 

smooth. 

The main result of this section is: 

Theorem 2.3. The number of  x-extreme vertices of C is O(n2). 

Proof. We first claim that the number of x-extreme vertices of C is proportional to 

one plus the number of critical points of C. We prove this by an argument borrowed 

from [6]. We then show that the number of critical points of C is O(n 2) and, by that, 

complete the proof of the theorem. These two steps are achieved, respectively, in the 

two following lemmas. 
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Lemma 2.4. The number o f  x-extreme vertices o f  C is proportional to one plus the 

number o f  critical points o f  C. 

Proof. We sweep C by moving the plane rr x in the direction of increasing x, and 

keep track of the number  I of connected components  of C n 7r x. This number  is 

initially (at x = - ~ )  O(n2), since this is an upper  bound on the overall complexity 

of any planar  cross section of the ent i re .arrangement  ~r The number  I increases 

by one when 7r x sweeps through a local x-minimum of C, or when a connected 

component  of C • 7rx splits into two subcomponents;  I decreases by one when ~- 

sweeps through a local x-maximum of C, or when two components  of C n 7r x merge 

into a single component.  (The general  posit ion assumption implies that only two 

components  can merge into, or split from, a component  of C at any given x.) The 

number  of events at which components  can split or merge is equal, by definition, to 

the number  Q of  critical points of C. 

Consider the following dynamic scheme for assigning weights to components of 

C n 7r~. Init ial ly,  at x = - ~,  we assign weight - 1 to each component  of C n 7r~. 

When  7r x sweeps through a local x-minimum point  of C, a new component  of 

C n 7r x is created,  and is also assigned weight - 1. When two components  of C n ~r x 

merge, we assign to the new component,  weight equal to 2 plus the sum of the 

weights of the merged components.  When a component  shrinks and disappears,  its 

final weight is added to a global count M. When a component  is split into two 

subcomponents,  each of them is assigned weight 1 + w / 2 ,  where w is the weight of 

the split component .  

We claim that, at any given time during the sweep, the weight of any component  

of  C n 7r x is always at least - 1, and the weight of a component  that was formed by 

one or more preceding splitting and merging operat ions is nonnegative. Both claims 

are easy to prove by induction on the sweep events. If C has no critical points, then 

it has at most one local x-minimum and at most one local x-maximum, and the 

claim holds trivially in this case; so suppose C does have critical points. In this case 

it is easily verified, using induction on the sweep events, that the weight of each 

component  of C n 7r x that shrinks to a point  as we reach a local x-maximum of C is 

nonnegative, so the value of  M is always nonnegative. Similarly, all components  that 

survive as x reaches + oo have nonnegative weight. 

Suppose that, at some point  during the sweep, there are s x local x-minima of C 

to the left of 7r~, that  C n 7r_ ~ has t components,  that the number  of  splittings and 

mergings of cross-sectional components  to the left of 7r x is Qx < Q, and that the 

current  value of the count M is M x. Then, as is easily verified by the definition of 

weights and by induction on the sweep events, the total weight of the components  of 

C n ~rx plus M x is equal to 2Qx - s~ - t. Hence,  since at x = + ~ the total weight 

of  the components  of C n zr~ plus M x is nonnegative, we have 2Q - s - t > 0, 

where s is the total  number  of local x-minima of C. This implies that s < 2Q. 

A symmetric argument applies to the number  of local x-maxima of C, and thus 

the claim is established. [ ]  

Lemma 2.5. The number o f  critical points o f  C is O(n2). 
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Proof. For any fixed surface tr ~ ~,  the general position assumption is easily seen 

to imply that there are only O(1) critical points that lie only on o- and on no other  

surface, so the total number of such points, over all o- ~ Y., is only O(n). The 
number of critical points that lie on the boundary of one surface of E and on a 

second surface, summed over all pairs of such surfaces, is only O(n2). This follows 

from Bezout 's theorem applied to the number of intersections between an algebraic 

surface and an algebraic arc, in combination with our basic assumptions (i), (ii), and 

(iv) about the surface patches in E. 

Consider next critical points that lie in the relative interior of an intersection 

curve Yij = o-i n o~, for some pair of surfaces o-i, o~ ~ Y~ and on no other  surface of 

~. If such a point w is a singular point a on, say tri, then w is an intersection point 

between o) and the curve of singular points on tri, and, by the general position 

assumption, the number of such points, over all pairs tri, o~ ~ ]s is clearly O(n2). 
We thus may assume that w is nonsingular on both surfaces, and, by the general 

position assumption, that o-i and o~ meet transversally at w. However, then the 

criticality of w is easily seen to imply that the tangent vector to Yij at w must be 

orthogonal to the x-axis, and the number of points on Yij with this property is O(1) 

(under the general position assumption). Hence the total number of such points, 

over all pairs o-i, O~ C ~, is also O(n2). 

Finally, suppose that w is a critical point that is also a point of intersection of 

three surfaces o-i, %, o-k E ~. Arguing as above, we can rule out the case where w is 

singular on either of these surfaces. Consider now the three intersection curves 

Yi = "/'/'x 0 ("1 or / ,  'yj = "/Tx0 (") O) ,  "~k = '/7"x 0 (') O k '  where x 0 is the x-coordinate of w. 

These curves meet  at w, they are all smooth at w, and K r 7rx0 lies on a single side 

of each of the curves. If any two of these curves, say Yi and yj, are tangent to each 

other at w, then, as is easily verified, the tangent at w to the curve o-i n %. is 

orthogonal to the x-axis, and, as argued above, the number of such points w is only 

0(n2). Otherwise, K n 7rxo must be fully contained, locally near w, in just one of the 

six regions into which these curves split ~rx0 locally near w (see Fig. 1). However, this 

is easily seen to contradict  the criticality of w, and thus implies that the total 

number of critical points of C is O(n2), as asserted. [ ]  

This also completes the proof  of Theorem 2.3. [ ]  

Fig. 1. Transversal nonsingular intersection of three surfaces does not give rise to a critical point. 

1 A point v is singular on an algebraic surface in R d, defined by P = 0, for some polynomial P, if 
all the partial derivatives OP/ax i , for i = 1 . . . . .  d, vanish at v; see [7] and [20]. 
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2.2. Inner Vertices, Sides, and Borders 

For  the analysis in the following sections, we need to introduce addit ional terminol- 

ogy relating to cells of  various dimensions in the arrangement.  We call a vertex v of 

~r an inner vertex, if v is formed by the intersection of the relative interiors of 

three distinct surfaces of  E. Let v be an inner vertex of C = Cz(~), which is 

incident to three surfaces o-a, 0"2, and 0"3 that meet  transversally at v, and which is 

not a singular point  on any of these surfaces. For  technical reasons, we distinguish 

between different sides of v, adapting the notat ion of [17] (see also [3], [5], and [13]). 

Formally,  the three tangent planes to the surfaces 0-i at v part i t ion 3-space into 

eight octants, and a side R of  v is any one of these octants. We call the pair (v, R) a 

O-border. We say that (v, R)  is a 0-border of C if, when we move from v in any 

direction that points into R by any sufficiently small distance, we enter  C. We will 

be counting the number  of inner 0-borders of C, which means that we count each 

vertex v of C with multiplicity, once for each side of v that lies in C (in the above 

sense). We define K(X) to be the number  of  inner 0-borders on 0Cz(X).  We also 

denote  by K(n) the maximum possible value of K(X), taken over all collections X, as 

above, with a total of  n surfaces, and over all cells of  sg(X). 

In the following analysis the notion of  a side also needs to be extended to edges 

and faces bounding C. For  an edge e, formed by the intersection of two surfaces 0-, 

0-', we can assume (by reasons similar to those used in the preceding arguments) 

that no point  on e is singular on either of these surfaces, and that cr and 0-' cross 

each other  transversally at each point  of e. Then at each point z ~ e, the plane 

normal  to e at z is split by the two tangent planes to 0-, 0-' at z into four quadrants. 

A side of  e can be thought of  as a continuous mapping (in the Hausdorff  sense) that 

maps each point z ~ e to one of  the quadrants  at z (or, rather, to make the 

Hausdorff  continuity well defined, to the intersection of  such a quadrant  with the 

unit ball around z). Similarly, a side of a face f can be defined as a continuous 

mapping from each point  z ~ f to one of the two unit vectors normal  to f at z. If a 

vertex v is incident to an edge e and lies on another  surface 0- crossing e 

transversally, then a side R of v is consistent with a side Q of e if the limit of Q(z), 
as z approaches v, is contained in (the closure of) R, and R is the positive cone 

spanned by the limit of  Q(z)  and by the vector tangent to e at z and pointing from z 

toward e. Consistency between sides of  a vertex and an incident face, or between 

sides of an edge and an incident face, can be defined in a similar manner.  If v is a 

nonsingular vertex of  sO(X), incident to two edges e I , e 2, which are contained in the 

same intersection curve of  a pair  of surfaces, we say that  a side R 1 of  e I is consistent 

with a side R 2 of e 2 if the two limits of Rl(z)  as z approaches v along e 1 , and of 

R2(z) as z approaches v along e 2, coincide. If  R~, R~ are the two sides of v 

consistent with R1, R 2, respectively, we say that R~ is the side of  v opposite to R' 1 

across the third surface defining v; see Fig. 2. Given an edge e and a side R of e, we 

say that (e, R) is a 1-border of C if, when we move from any point  z ~ e in a 

direction contained in R(z), we enter  C. Similarly, we can define 2-borders ( f ,  R) 

of  C, for a face f and a side R of f .  
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Fig. 2. R i is the side of e i facing the reader, for i = 1, 2; the sides R' 1 and R'2 of v consistent with 
R 1 and Rz, respectively, are also facing the reader and are opposite one another across the 
surface o~ 3 . 

3. Complexity of a Single Cell 

We concentrate on bounding the number of inner vertices of Cz(E),  and later justify 

the use of this reduced measure of complexity. Our  main result is: 

Theorem 3.1. The number of inner vertices of Cz( ~, ) is O( n2 + Q, for any ~ > O, where 
the constant of proportionality depends on e and on the maximum degree and shape of 

the surfaces and of their relative boundaries. 

This result is proved in three stages. Sections 3.1 and 3.2 are each dedicated to 

analyzing the complexity of a different type of inner vertices. This analysis yields 

recurrences that are then solved in Section 3.3 to give the asserted bound. In Section 

3.4 we argue that Theorem 3.1 implies a similar bound on the total complexity of a 

single cell. 

3.1. The Number of Inner Vertices 

Let v be an inner vertex of C = Cz(E),  which is incident to three surfaces 0-1, 0"2, 

and o" 3. We assume that v is not a singular point on any of these surfaces, and that 

these surfaces meet  transversally at v. If, say, v is a singular point of 0-~, then it lies 

on the algebraic curve of bounded degree consisting of all singular points on 0-1. 

The number  of intersection points of this curve with, say 0-2, is constant (under the 

assumption of general  position), which implies that the number of such vertices is 

only O(n2). The assumption concerning transversality is also justified by the general 

position assumption. 

Let (v, R) be an inner 0-border of C (nonsingular, formed by the transversal 

intersection of its three incident surfaces, say 0-1, 02, 0-3). The corresponding vertex 

v is incident to (at least) three edges of  C, which we denote by e12, el3, and e2a, 

where each eij is a port ion of the corresponding intersection curve 3' / /= gi tq 0), for 

1 __< i < j < 3; moreover,  each edge eij has a side Rij which is consistent with R, so 

that (e;j ,  Rij) is a 1-border of C. If one of  these curves, say 3q2, contains two edges, 

el2, e~2 , with respective sides R12, R~2, such that e12 and e~2 have v as a common 

endpoint,  R12 and /~2 are consistent with each other, and both (e12, R12) and 

(e~2, g'12) are 1-borders of  C, then, as is easily seen, there is a face f on tr 3 which is 
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Fig. 3. The popular face f borders the cell C on both its sides. 

incident to v and which forms with both its sides 2-borders of C. We call such a face 

a popular face of C, borrowing a notat ion from [3] and [5]; see Fig. 3. We denote  by 

~r(s the maximum number of inner vertices of popular  faces bounding a single cell 

of ~ ( 2 ) ,  and let ~r(n) denote  the maximum of 7r(s over all collections E of n 

surfaces as above (with the same s and b). (Strictly speaking, a vertex t, can be 

incident to more than one popular  face, in which case we count it in ~r(E) with 

multiplicity, once for every incident popular  face.) 

A major novel ingredient of the proof  is the derivation of a sharp upper  bound on 

the number of vertices of popular  faces of C; in the previous paper  [17] such a 

bound was derived using special proper t ies  of the surfaces that arose in the specific 

motion-planning applicat ion that was studied there; here we apply a new technique 

for obtaining the desired bound in general  arrangements.  First, in the rest of this 

subsection, we obtain an upper  bound for the complexity K(n) in terms of the 

function 7r, and then, in the next subsection, proceed to derive an upper  bound 

for ~-(n). 

Thus, up to an additive term of 7r(n), it suffices, for the bound on •(n) that we 

seek, to consider only inner vertices v (or, rather, inner 0-borders (v, R)) which are 

not incident to any popular  face of C. 

Let (u, R) be a 0-border,  and let us continue to follow the notations introduced 

above. For  each 1 < i < j _< 3, the curve Yij must contain a maximal relatively open 

x-monotone  connected port ion /3 0 having v as an endpoint ,  such that  the 1-border 

( ~3ii, R',j), where R'gj is the side of/3ij  consistent with R~j, is disjoint from C. Let zgj 

denote  the other  endpoint  of ~ij. 
We define the index of u, denoted  j(L'), to be the number  of points of intersec- 

tions of 0-1, ~  0-3 which lie to the right of t, (i.e., with x > x(u)). Clearly, 

0 < j ( c ) _ < s -  1. 

We define K(n(E), for j = 0 . . . . .  s -- 1, to be the maximum number  of ()-borders 

(t', R) of any fixed cell of d ( E ) ,  whose vertices t' are inner vertices of index at 

most j.  We also define KOl(n) to be the maximum possible value for KO)(E), over all 

collections E of n surface patches satisfying conditions (i) (iv) (with the same b 

and s). Similarly, we define ~-(J)(E), for j = 0 . . . . .  s - 1, to be the maximum number 

of vertices with index at most j of all popular  faces bounding any fixed cell of ,~(E),  

where each such vertex is counted with multiplicity, once for every incident popular  

face. We also define ~-(J)(n) to be the maximum possible value for ~-(J)(E), over all 

collections E of n surface patches satisfying conditions (i)-(iv) (with the same b 

and s). 
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Our method is to derive a recurrence relationship for K(n), by bounding each of 

the functions K ~j) in terms of K (s- ~) (with a special handling of  K(~ the solution of 

the resulting system of recurrences will yield the asserted bounds. Note that we are 

in fact looking for a bound on the quantity K(s-1)(n), as each vertex in the 

arrangement is of index at most s - 1. The remainder of this subsection is devoted 

to proving the following: 

Lemma 3.2. For each j = 0 . . . . .  s - 1, and a parameter ~ < n we have 

K(J)(n) =O(~2K(~)-~-~377"(J)(~)-+-~3K(j-1)(~) + n 2 +  lr (J)(n)) ,  

where we put  K ( j-  1) = 0 when j = O. 

Proof. We fix 0 < j < s - 1, and assume that the vertex v under consideration has 

index at most j. First,  there are only at most 7r(i)(n) such vertices that are incident 

to popular  faces. The other vertices can be classified into several categories. The first 

two cases, (a) and (b) below, are easy to charge directly, and the total number of 

vertices that fall into these categories is shown to be O(n2). The difficulties arise 

when the endpoints zq of the three arcs /3q all lie on the boundary of the cell C. 

A more involved charging scheme is needed in these cases (resulting in the more 

involved terms in the recurrence): In case (c) we handle the situation where at least 

one of the arcs [~ij is not intersected by the third surface (say, 812 is not intersected 

by o-3). The remaining case (d) handles the situation where all arcs /3ij are each 

intersected by the third surface. Each of the cases (c) and (d) is further divided into 

subcases according to certain parameters  that are introduced in the analysis. 

In more detail, we assume that the vertex v under consideration is not incident to 

any popular  face, and consider the following cases: 

Case (a). All three arcs /3q emerge from v in the direction of increasing x (or all 

emerge in the direction of decreasing x). In this case v is an x-extreme vertex of C, 

as is easily checked (using the general position assumption), and Theorem 2.3 

implies that the total  number of such vertices (and corresponding 0-borders) is 

O(n2). We thus assume in what follows that at least one of these arcs emerges from 

v in the direction of  increasing x, and at least one arc emerges in the direction of 

decreasing x. 

Case (b). At  least one of the arcs /3q ends at a point zq which is either an endpoint  

of the original intersection curve yq,  or a point of local x-extremum on that curve. 

We then charge (v, R)  to the point zq ,  and note that the number of such points is 

O(nZ), and that each such point is charged only a constant number of times in this 

manner (e.g., along /3ij it can be charged at most once for every side of 13ij), thus 

implying that  the number  of 0-borders (v, R) of this kind is only O(n2). Again, in 

what follows we assume that this situation does not arise, which means, in particular, 

that each of  the three endpoints zq is a vertex of C; more precisely, each zq has a 

side R~ which lies across the third surface defining zij from a side consistent with 

R'ij, such that (zq ,  R ~ )  is a 0-border of C. See Fig. 4. 
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Fig. 4. The dotted faces on the surface 0,1 appear on the boundary of C, and near both of them C 
lies, say, above 0,1. 

Case (c). At least one of the arcs /3ij, say for definiteness /312, is such that 

/312 ('J {Z12} is not intersected by the third surface tr 3 . Define the level of a point w 

in 3-space to be the smallest number of  surfaces of E, whose removal makes w 

belong to the closure of the cell containing Z, in the resulting subarrangement.  If w 

is a vertex of ~r and R is a side of w, we say that w (resp. (w, R)) lies at restricted 
level A(w) = k (resp. A((w, R)) = k)  if by removing k surfaces from E, none of 

which is incident to w, we make w a vertex (resp. make (w, R) a 0-border) of the cell 

containing Z in the resulting subarrangement,  and if k is the smallest number with 

that property.  

Let t denote the number  of distinct surfaces of X that intersect /312 U {z12}. We 

fix some threshold parameter  ~ = ~:j, to be defined later (we use a different 

pa ramete r  for each j) ,  and consider the following two subcases: 

Case (c(i)): t >_ ~. In this case we charge (v, R) to a block of ~ points of intersection 

between /312 [') {Z12} and the surfaces of E, defined as follows. For  each surface o, 

intersecting fl12 u {z12} , choose its point of  intersection that lies nearest  to v along 

/312. We obtain at least ~ such designated points, and we charge (v, R)  to the block 

of the first ~ designated points, in their order  along /312 from v. All those points are 

inner vertices of ~r and it is clear that none of these vertices can be charged in 

this manner  more than a constant number of times (along /312 each such vertex can 

be charged at most twice for each side of/312). By construction, each of  the charged 

vertices lies at restricted level at most ~, as is easily verified. Our  goal is thus to 

obtain an upper  bound for the number  M of inner vertices of sg(E) that lie at 

restricted level _< ~; the number  of 0-borders in the present  subcase is O(M/~).  
For  this we apply the probabilist ic analysis technique of  [9] and [26], in the same 

manner  as in [17]. That  is, we choose a random sample ,9~ of r = n /~  surfaces 2 of 

1s and construct the arrangement  ~r Let w be an inner vertex of ~r at 

restricted level A _< ~, and let ~' be a specific collection of A surfaces, none incident 

2 Here, and in similar arguments given below, we use the sloppy notation n/~, instead of the 
more accurate value [n/(]. This is done for clarity of exposition, and does not affect in any 
significant way the bounds that we derive. 
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to w, whose removal makes w a vertex of the cell containing Z. The probability that 

wshowsupasavertexofCz(~9~)isatleast (nrA_33)/(nr):Outofthetotal 

number ( n )  of possible samples ~q~, consider those samples that contain the three 

surfaces forming w and do not contain any of the A surfaces of ~'; for each of these 

samples (and possibly for other samples as well), w is a vertex of Cz(~9~). Hence, we 

have 

, (nr_h33) 

ini 
F x _< E[K(~q')] _< K(r), 

where E[.] denotes expectation (with respect to ~9~), and where Fa is the number of 

vertices w of d ( E )  at restricted level A. (Note that K(~q') counts the number 

of 0-borders bounding Cz(~q'), which is clearly an upper bound on the number of 

vertices of that cell.) This can be rewritten as 

r(r-  1 ) ( r - 2 )  ~ ( n - r ) ( n - r -  1 ) ' " ( n - r - A +  1) 

n(n - 1)(n - 2) ( n 7 3 ~ n  ~ ' ~ ( n  - ~ t - -2 )  Fa -< K(r) 
h = 0  

o r  

n - ~ - 2  Fx <- r(r-  1 ) ( r - 2 )  

As in [9] and [26], it is easily verified that, for r = n/~, we have 

in other words, the number of inner vertices of ~r163 at restricted level < ~ is 

O( ~ 3K(n/~)), which in turn implies that the number of inner 0-borders (v, R) of  C 

in this subcase is O( ~: 2K(n/~)). 

Case (c(ii)): t < ~. In this case, if we remove these t surfaces from the arrangement, 

v becomes a vertex of a popular face of C. Indeed, zlz has an appropriately 

consistent side R~" 2 so that (z12, R~' 2) is a 0-border of C. When we remove the t 

surfaces crossing /312, the cell C expands from R~2 toward t; and "reaches" the 

other side of v consistent with the side R]2 of /31z, making v a vertex of a popular 

face (on tr 3) of the cell containing Z in the reduced arrangement. To exploit this 

observation, we apply the following variant of the preceding random sampling 

argument. Fix a parameter r = n/~, and draw a random sample ~9~ of r surfaces of 

E. Let E'[.gP] be the expected number of vertices in sr of index ~ j which are 

incident to popular faces of Cz(.gl') (counted with the appropriate multiplicity). By 

definition, E ' [ JP]  _< ~r(J)(r). (Note that the index of  a vertex does not change when 
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we pass to a subset ~ ' ,  as long as the three surfaces defining the vertex belong 

to ~aL) Now, using a similar argument to the one given above, the probability that 

our vertex v will show up as a vertex of such a popular face of Cz(~)  is 

> - ( n T t - 3 3 ) / ( n ) : ~  

samples for which 0"1, 0"2, 0-3 ~ oq', and none of the other t surfaces crossing /312 is 

chosen in ~a~; as already noted, each such choice (and possibly others as well) will 

make v appear as a vertex of a popular face of the cell under consideration. Hence, 

we have 

E 
t=0 

n - t - 3)  
r - 3  

G t <_ E'[~q~] _< 7r(J)(r), 

where G t is the number of 0-borders (v, R) in the full arrangement that fall into the 

present subcase, with j(v) <_ j and with exactly t surfaces crossing the corresponding 

arc /312. Arguing exactly as above, we obtain, for r = n/s  

Y'. G, = 0 ~3~r~ 
t=0 

in other words, the number of 0-borders in this subcase is O(~: 3rr(i~(n/~)). 

Case (d). In the remaining case (which can occur only if j(v) > 0), each of the three 

arcs /3ij tO {zij } intersects the third surface, and we consider one of these arcs, call it 

/312, which emanates in the positive x-direction. Thus, the third surface 0-3 intersects 

/312 tO {Zlz} in at least one point w; if there are several such points (no more than j 

by assumption), we take w to be the point lying furthest from v along /312. Let t 

denote the number of distinct surfaces of s  excluding 03, that intersect /312 to {Z12}" 

We consider the following two subcases: 

Case (d(i)): t > ~. In this case we charge (v, R) to a block of  ~ vertices of the full 

arrangement ag(s which lie along /312, in complete analogy to the construction in 

case (c(i)) above, except that the surface 0"3 is excluded from the construction. Since 

each such vertex can be charged in this manner only a constant number of times, 

and all these vertices lie at restricted level _< ~ + 1, as is easily checked, it follows, 

exactly as above, that the total number of 0-borders v in this subcase is O( ~ 2K(n/~)). 

Case (d(ii)): t < ~. In this case, if we remove these t surfaces (v)ithout removing 0"3), 

the point w, together with a side R~ consistent with R]2 , must form a 0-border 

(w, R,~) of  the cell containing Z in the reduced arrangement. Indeed, recall that we 

are assuming that the other endpoint z12 of /312 forms a 0-border (z12, R~' 2) of C, 

for a side R~' 2 lying across a surface from a side consistent with R]2. By assumption, 

the portion of /312 between w and z12 is not crossed by 0"2, so, when the other t 

surfaces crossing 1312 are removed, the cell C expands from the side R~2 and 

"reaches" w from z12 along the side (/312, R]2). We charge (v, R) to (w, Rw). 

Clearly, each such (w, R,~) is charged in this manner only a constant number of 

times. 



Almost Tight Upper Bounds for the Single Cell 399 

We next estimate the number of 0-borders (w, R w) of this kind. We apply a 

random-sampling argument similar to those used above. That is, we fix a parameter 

r = n / ~ ,  and draw a random sample ~ '  of r surfaces of E. Let E"[.9~] be the 

expected number of 0-borders (w, R w) of CzC.~), such that w had index < j - 1. 

By definition, E" [~/~] = E[ K (j- 1)(,.~)] ____. K( j-  1)(r). 
The probability that the charged O-border (w, R w) will show up as such a 

0 - b ~ 1 7 6  > ( n - t - 3 ) / ( 7 )  ( 7 )  
- r - 3 : of the possible ways of choosing 

~ ,  we consider those samples for which o-1, ~ o'3 ~ ~', and none of the other t 

surfaces crossing /312 is chosen in ~.~; each such choice (and possibly other choices 

too) will make (w, Rw) appear as a 0-border of CzCqZ), as argued above. Hence, we 

have 

E 
t=O 

n - t - 3 )  
r - 3  

(n) H t = O ( E " [ ~ ] )  = O(K(/-1)(r)) ,  

where H t is the number of 0-borders (v, R) in the full arrangement that fall in the 

present subcase, with j ( v )  <_ j and with exactly t surfaces crossing the corresponding 

arc 1312 (excluding the corresponding surface %). Arguing as above, we obtain, for 

r = n / ~ ,  

H, = O ~3Kfj -1)  

t=0  

in other words, the number of 0-borders (v, R) in this subcase is O(~ 3K(J-l)(n/~)). 

Hence, summing over all cases, we obtain the following recurrence for K (j) 

(where, for j = 0, we put K (/-1) = 0 in the right-hand side): 

= 2 n 

as asserted. []  

In order to solve the recurrence (1) we first have to bound the functions zr(J)(n), 

which is done in the next section. 

3.2. The Number o f  Vertices on Popular Faces 

To bound the number of such vertices, we adapt the analysis given above to bound 

the functions ~(J)(n), rather than the functions K(J)(n). 
Let v be an inner vertex of a popular face f of the cell C; assume that f lies on a 

surface o- ~ E, and that the two other surfaces incident to v are o-1, trz ~ ~- As 

above, we may assume that v is nonsingular on any of these surfaces, and that these 

surfaces meet transversally at v. Denote the two sides of f by R § and R- .  Let 
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Fig. 5. The setting of Section 3.2; f is a popular face. 

3'i = tri C~ o', for i = 1, 2. Each % contains an edge e i having v as an endpoint  and 

bounding f .  See Fig. 5 for an illustration. Let  R +, RT, for i = 1, 2, denote  the two 

sides of e i that  are consistent with R +, R - ,  respectively. 

If, say Yl has another  edge e] incident to v such that (a) e] bounds another 

popular  face f '  on tr, and (b) f and f '  share the edge e2, then e 2 is a p o p u l a r  edge 

of C, meaning that all four sides of e 2 lie in C locally near  e 2 (see Fig. 6). We claim 

that the number  of popular  edges of C is O(n2). This follows from the observation 

that, in this case, v must be a locally x-extreme vertex of  one of these four sides 3 

(assuming general  position), and, by Theorem 2.3, the number  of such vertices, and 

hence also the number  of popular  edges, is O(n2). Moreover,  if both e 1 and e z 

emanate  from v in the positive x-direction, or  if both  emanate in the negative 

x-direction, then, as is easily checked, v must be a locally x-extreme vertex of one of 

the two sides of f ,  so the number  of such vertices is also O(n2). Hence, in what 

follows we may assume that nei ther  of the edges e l ,  e 2 is adjacent along tr to 

another  popular  face of C, and that one of  these edges emanates from v in the 

positive x-direction and one emanates in the negative x-direction. 

Fig. 6. Two adjacent popular faces f ,  f ' ,  giving rise to a popular edge e 2 . 

3 Strictly speaking, v is locally x-extreme in one of the four portions of C into which these sides 
"point"; we allow ourselves here and below this slight abuse of notation. 
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As above, our method is to derive a recurrence relationship for ,r(n), by 

bounding each of the functions 7r(J~ in terms of ,r(J- 1~ (with a special handling of 

7r(~ the solution of the resulting system of recurrences will yield the asserted 

bounds. In the remainder of this subsection we prove the following: 

Lemma 3.3. For each j = 0 . . . . .  s - 1, and a parameter I~ < n we have 

7r(J)(n) =O(~ :2 ' / r (~ ) - t -~n2 - -b  ~37r(J-1)(~)) ,  

we pu t  7r ( j -  1) = 0 when j = O. 

Proof. We fix 0 _< j < s - 1, and assume that the vertex v under consideration has 

index _<. j. By our assumption, for i = 1, 2, the curve Yi must contain a maximal 

relatively open x-monotone connected portion /3 i having v as an endpoint and 

satisfying the following property: let R'i +, R' i- be the two sides of /3 i which are 

consistent with the two respective sides R +, R 7 of el; then /3 i does not contain any 

point at which both sides R'i +, R';- lie locally in C. Let z i denote the other endpoint 

of /3 i. By assumption, one of these arcs, say 131 , emanates from v in the positive 

x-direction and the other emanates in the negative x-direction. 

Several cases can then arise (similar to the analysis in the previous subsection). 

Case (a) below deals with vertices that are easy to charge directly, and their total 

number is shown to be O(n2). Case (b) handles situations where /31 is not 

intersected by the third surface g2; and in the remaining case, (c), the surface tr 2 

intersects 131 in at least one point. Here too the more involved cases (b) and (c) are 

further divided into subcases according to certain parameters that are introduced in 

the analysis. 

Case (a). At least one of the arcs /3 i ends at a point z i which is either an endpoint of 

the original intersection curve Yi, or a point of local x-extremum on that curve. We 

then charge v to the point z i, and note that the number of such points is O(n2), and 

that each such point is charged only a constant number of times in this manner, thus 

implying that the number of vertices v of this kind is only O(n2). In what follows we 

assume that this situation does not arise, which means, in particular, that z 1 is a 

vertex of another popular face of C, whose two sides are consistent with R'I +, R'I-, 

respectively. 

Case (b). fll t3 {za} is not intersected by the third surface (72. Define the popularity 

level of a point w lying on some surface tr E E to be the smallest number of 

other surfaces of E whose removal makes w lie in a popular face on tr bounding 

the cell containing Z in the resulting subarrangement. If w is a vertex of sr163 

incident to some face f c tr, we say that (w, f )  lies at restricted popularity level 

p ( (w,  f ) )  = k if by removing k surfaces from 2s none of which is incident to w, the 

face f becomes (after a possible expansion) a popular face (incident to w) of the cell 

containing Z in the resulting subarrangement, and if k is the smallest number with 

that property. 
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Let t denote the number  of distinct surfaces of E that intersect /31 u {Zl}. We 

fix some threshold parameter  ~ = ~j, and consider the following two subcases: 

Case (b(i)): t > ~. In this case we charge the pair (v, f )  to a block of ~ points of 

intersection between /31 u {zl} and the surfaces of E, defined as follows. For each 

surface t r '  intersecting /31 U {zl}, choose its point of intersection that lies nearest to 

v along /31- We obtain at least ~ such designated points, and we charge (v, f )  to the 

block of the first ~: designated points, in their order along /31 from u. All those 

points are inner vertices of ,~'(E), and it is clear that none of these vertices can be 

charged in this manner  more  than a constant number of  times. By construction, each 

of the charged vertices w, together with some incident face along or, lies at 

restricted popularity level at most ~: the removal of the at most ~ surfaces 

intersecting /31 between v and w (including ~r 2 but excluding the surface incident 

to w) makes the popular  face f expand into a bigger, still popular face of the cell 

containing Z, which has w as a vertex (see Fig. 7). Our  goal is thus to obtain an 

upper  bound for the number  M of pairs (w, f ' )  of inner vertices w of 5g(E) and 

incident faces f '  that lie at restricted popularity level < ~; the number of pairs 

(v, f )  in the present subcase is O ( M / ~ ) .  

For  this we apply an appropriately modified version of the probabilistic analysis 

technique used in the previous subsection. That  is, we choose a random sample ~ of 

r = n / ~  surfaces of 'Y., and construct the arrangement  5g(~) .  Let (w, f ' )  be a pair 

of an inner vertex w of .at(E) and an incident face f ' ,  lying on a surface ~,  at 

restricted popularity level p _< ~:, and let ~ be a specific collection of p surfaces, 

none incident to w, whose removal makes w a vertex of a popular face (containing 

f ' )  of  the cell containing Z. The probability that w shows up as such a vertex in 

~r176 is' in c~ anal~ t~ the preceding analysis' at teast ( n  r P - 3 ) / ( n  )" - 3  

Hence,  we have 

~ 3) 
r - 3 Fp < E [ T r ( ~ ) ]  < ~r(r), (n) 

where E[.] denotes expectation, and where Fp is the number of vertex-face pairs 

(w, f ' )  of z*c(E) at restricted popularity level p. As in the preceding analysis, this 

Fig. 7. Cases (b) and (c) of the analysis of vertices of popular faces; f '  is also a popular face. 
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implies, for r = n/~, 

E Fp = O ~ 3rr ; 
p=O 

in other words, the number of inner vertex-face pairs of ar163 at restricted 

popularity level < ~: is O(~3rr(n/~)), which in turn implies that the number of 

vertices v of popular faces of C in this subcase is O(~ Zrr(n/~)). 

Case (b(ii)): t < ~. In this case, if we remove these t surfaces from the arrangement, 

v becomes a vertex of a popular edge of C (namely, e 2 or an appropriate extension 

of it). Indeed (see Fig. 7), z I has two sides, R '  +, R ' - ,  which are consistent with the 

two sides of a popular face f '  of C having Zm as a vertex, and are also consistent 

with the two respective sides R'I +, R ' (  of /31 . This easily implies that when we 

remove the t surfaces crossing /31 u {z 1) (not removing ~r2) , the cell C expands from 

R '  J- and R ' -  toward v and the face f '  expands into a bigger, still popular face 

which is bounded by v and by (a possible extension of) its incident edge e2; by 

definition, this edge is thus a popular edge of the resulting cell. To exploit this 

observation, we apply the following variant of the preceding random sampling 

arguments. Fix a parameter r = n/s and draw a random sample ,9~ of r surfaces of 

s Let E'[,9~] be the expected number of vertices in J ( ~ )  that are incident to 

popular edges of the cell containing Z in this arrangement. By the preceding 

analysis, E'[~q ~] = O(r2). Now, using a similar argument to the one given above, the 

probability that our vertex v will show up as a vertex of such a popular edge in 

ae(a~)is > ( n - t - 3 ) / ( n ) _  r - 3  .Hence,  wehave  

n - t - 3 )  

r - 3  
~-" (n  i Gt<E'['9~]=O(r2)' 

t=0 

where G, is the number of vertices v in the full arrangement that fall into the 

present subcase, with exactly t surfaces crossing the corresponding arc /31. Arguing 

as above, it follows that, for r = n/~, 

~_~ Gt = O(~3r  2) = O(~n2);  

t=0 

in other words, the number of vertices v in this subcase is O(~n2). 

Case (c). In the remaining case (which can occur only when j(v) > 0), the surface 

~z intersects /3 x tJ {z a} in at least one point w; if there are several such points 

(no more than j by assumption), we take w to be the point lying furthest from v 

along fla. Let t denote the number of distinct surfaces of s  excluding cr 2, which 

intersect /31 . We consider the following two subcases: 
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Case (c(i)): t > ~. In this case we charge the pair (v, f )  to a block of ~ vertices of 

the full arrangement J ( E )  which lie along /31 , in complete analogy to the construc- 

tion in case (b(i)) above, except that the surface ~2 is excluded from the construc- 

tion. Since each such vertex can be charged in this manner only a constant number 

of times, and since all these vertices lie at restricted popularity level < ~ + 1, as is 

easily checked, it follows, exactly as above, that the total number of vertices v that 

are charged in this way is O(~ 27r(n/~)). 

Case (c(ii)): t < ~. In this case, if we remove these t surfaces (without removing tr2), 

the point w, together with two appropriate sides R~ + , R ~ ,  consistent with R '+I,RI,'- 

respectively, must be a vertex of  a popular face f '  of the cell containing Z in the 

resulting subarrangement, so that Rw + and R~ are consistent with the two sides 

of f ' .  Indeed, arguing as above, the other endpoint z 1 of /31 is a vertex of an 

appropriate popular face f"  of C, and removal of  the t other surfaces crossing /31 

makes f "  expand and "reach" w along the appropriate sides; see Fig. 8 for an 

illustration. We charge (v, f )  to (w, f ' ) .  Clearly, each such pair (w, f ' )  is charged in 

this manner only a constant number of times. 

We next estimate the number of pairs (w, f ' )  of this kind. We apply a random- 

sampling argument similar to those used above. That is, we fix a parameter r = n / r  

and draw a random sample .9~ of r surfaces of  E. Let E"[.9~'] be the expected 

number of vertices w of popular faces f '  of CzC9~) which have index < j - 1 

(counted with the appropriate multiplicity). By definition, E"[o.a~] = E[~ -(j- 1)(oq/')] < 

7r(J - 1)(r). 

Arguing as above, the probability that the charged vertex-face pair (w, f ' )  will 

s h o w u p a s s u c h a v e r t e x i n ~ r  _ > ( n - t - 3 ) / ( n ) r _ 3  r . Hence, we have 

# ( n - t - 3 ) r _ 3  

Y'. n t = O ( E " [ ~ I )  = O('n'(J-1)(r)), (n) 

where H t is the number of vertex-face pairs (v, f )  of Cz(E)  that fall in the present 

subcase, with exactly t surfaces crossing the corresponding arc /31 (excluding the 

~g.  8. Case (c(ii)): the vertices v and w are both intersections of the same three surfaces. 
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corresponding surface ~r2). Again, for r = n /~  this becomes 

' 

/4, = o ~:3~r~J-" 

t = 0  

hence, the number of vertex-face pairs (v, f ) i n  this subcase is O(r176 

Summing over all cases, we obtain the following recurrence for ~r (j) (where, for 

j = 0, we put 7r(J- 1) = 0 in the right-hand side): 

zr(J'(n) = O ( , 2 ~ ( ~ ) + , n Z +  ,37 r ( J -~ ' (~ ) ) ,  (2) 

as asserted. []  

3. 3. Solving the Recurrences 

We next proceed to solve recurrences (1) and (2). 

3.3.1. The Recurrence for rr (j). We start with (2), fix some e > 0, and claim that its 

solution is ~r(J)(n) _< Bin 2+~, for j = 0 . . . . .  s - 1, where the constants Bj depend on 

8, j, and on the maximum degree b. By definition, this implies that 7r(n) < Bs_ i n2§ ". 

We prove this claim by induction on n. We first rewrite (2), using a different 

parameter ~j for each j, as 

2 n 

and (3) 

7T(J)(n) <_ c~j27r( ~j ) + c~jn2 + c~j3"t'i'(J-l)( ~j ), j =  1 , . . . , s -  1, 

for appropriate positive constants c, ~:0 . . . . .  ~:s-1; without loss of generality, we 

assume c > 1. We take ~0 to be sufficiently large, and put ~j = ~J ,  for j = 0 , . . . ,  

s - 1; note that ~j = ~j~_ 1, for j = 1 . . . . .  s - 1. We note that, by choosing the B/s 

to be sufficiently large, we can assume that the claimed bounds hold for all n < ~:0. 

(For example, choose the B/s to be larger than some appropriate multiple of ~0, 

and use the fact that all the quantities we want to estimate are bounded by O(n3), 
where the constant of  proportionality depends only on the maximum degree b of the 

surfaces and of their boundaries.) 

For n > ~0, we apply the induction hypothesis in the right-hand side of (3), and 

conclude that the asserted bounds continue to hold for n too, provided that the 
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following inequalities are satisfied: 

c B s -  1 
- -  + C ~ o  1 - ' < B 0 ,  

c B s _  1 

~:~  o~ , - 1  - j = 1 , . . . , s  - 1. 

(4) 

To achieve this, we choose 

( j  + 1)c j 
B o > 2c~ 1-*  and Bj ~f ~:0~Bo, 

and require that ~o be sufficiently large so that ~ > 2sc*. 

The first inequality in (4) is equivalent to 

or to 

SC s -  1 c 
�9 ~ o B o  c 

�9 - -  + c i ~ d - * < B  o 

$C s 

~ (  " B o + c ~ - "  < B o. 

Since s c S / ~  ' < �89 the choice of  B o is easily seen to satisfy this inequality. The 

general inequality in (4) is equivalent to 

s c S . ~ B o  1 c~j -*) .  jcJ-]  ( j  + 1)cJ 
" " 1 " J r  - -  dr C~f~ j(m - -  " ~ f ~ B  0 ~ . " ~ :~B O. 

Using again the fact that scS/r < 1, the last inequality is easily seen to be implied 

by 

- ~-) ~ 0 B 0  C~j  ( C  j 1 
- -  < 

or by 

C ~j 1+ ~ 
- -  < ( C  j 1 

_ - ~ ) ~ o B o  . (5) 

However, when j increases, the left-hand side of  (5) decreases, while the right-hand 

side increases (using the assumption that c > 1). Hence it suffices to verify (5) for 

j = 0, which trivially holds by the choice of B o. This inductive step completes the 

solution of the recurrence for the functions z/J)(n). 

3.3.2. The Recurrence for K ( j ) .  We next proceed to solve recurrences (1). I f  we 

substitute in these equations the bounds for ,r(J)(n), as just obtained, and use a 
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different threshold parameter  ~j for each j ,  we can rewrite the recurrences as 

and 

j = 1 . . . .  , s  - 1, 

for appropria te  positive constants c, ~0 . . . . .  ~s- 1 (not necessarily the same as in the 

recurrences for zr); with no loss of generality, we assume c > 1. 

As  above, we fix some e > 0, and claim that the solution of these equations is 

K(J)(n) < Ajn 2+~, for j = 0 . . . . .  s - 1, where the constants Aj  depend on 6, j ,  and 

the maximum degree b. By definition, this implies that K(n) _< A s_ in 2+'. 

We  prove this claim by induction on n. Again, we take ~0 to be sufficiently large, 

and put  ~:j = sr j, for j = 0 . . . . .  s - 1. By choosing the A / s  to be sufficiently large, 

we can assume, as above, that the claimed bounds hold for all n < ~0. 

For  n > so0, we apply the induction hypothesis, and conclude that the asserted 

bounds continue to hold for n too, provided that the following inequalities are 

satisfied: 

gAs-- 1 
- -  + c ~ - ' B  o_<A o, 

cZ$_ t 
- -  + c ~ / -  ~ ( A j _  1 + Bj) <__ Aj ,  j = 1 . . . . .  s - 1. 

To achieve this, we choose 

2c~jBj (j + 1)c j 
A o > max and Aj - -  ~o~Ao, 

O~j~s-I ~ ~j~ 

and require that  s be sufficiently large so that s > 2scS" 
We leave it to the reader  to verify, in much the same way as above, that this 

choice of coefficients satisfies the above inequalities. This inductive step completes 

the solution of  the recurrences for the functions K(J)(n), and therefore completes 

the proof  of Theorem 3.1. 

3. 4. The Overall Result 

The overall complexity of  a cell C counts the number of  vertices, edges, and faces of 

aC, each with an appropriate  but  constant multiplicity. In order to derive the main 

result of the paper,  it remains to show that the overall combinatorial complexity of 

C is dominated  asymptotically by the bound, given in Theorem 3.1, for the number 

of its inner vertices. 
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Note first that noninner vertices of C must arise as intersections of  the relative 

boundary of one surface with another surface, so the number of such vertices is only 

O(n2). 
Using rather standard arguments (see, e.g., Section 3.1 of [15]), it can easily be 

shown that asymptotically, and up to an additive factor O(n2), a bound on the 

number of vertices in C dominates the number of edges and faces in C. Every 

bounded edge and face of 8C can be charged to the point with the smallest 

x-coordinate lying on its closure. Such a point is either a vertex of C or a locally 

x-extreme point on one of the surfaces or on one of  their intersection curves; the 

number of  such extreme points is clearly only O(n2). A similar argument counts the 

number of  unbounded edges and faces. Since each vertex or extreme point is 

charged in this manner only a constant number of times (by our assumption on 

general position), we easily obtain the above claim. Combined with the observation 

that the same bound also applies to collections of surfaces not in general position, 

we thus obtain: 

Theorem 3.4. The combinatorial complexity of a single cell in an arrangement of n 

algebraic surface patches in 3-space, satisfying conditions (i)-(iii), ~ O( nZ+~), for any 
> O, where the constant of proportionality depends on ~, s, and b. 

4. Zone Complexity 

An interesting application of Theorem 3.4 is to bound the combinatorial complexity 

of the zone of a surface, in an arrangement of other surfaces, in 3-space. Specifically, 

let E be a collection of n algebraic surface patches in 3-space, and let o- be another 

such surface, so that the surfaces in E U {~r} satisfy conditions (i)-(iv). The zone of 

o- in ~r is the collection of all cells of ~r that are crossed by o-. The 

complexity of the zone is the sum of the complexities of all its cells. 

Theorem 4.1. The combinatorial complexity of the zone of ~ in ~r is O(n2+') ,  for 
any ~ > O, where the constant of proportionality depends on ~, s, and b. 

Proof. We extend the idea used in [12] for the analysis of  zones in two-dimensional 

arrangements. That is, assume first that cr is a connected surface. We cut each 

,r i ~ X into a constant number of subpatches along its curve of intersection with ~r. 

If  we shrink these subpatches away from each other by a small amount, all the cells 

of the zone become connected to each other, and "form a single cell in the 

arrangement of the new patches. Since these patches are easily seen also to satisfy 

conditions similar to (i)-(iv), the asserted bound follows. If ,r is not connected, it 

consists of  a constant number of connected components, and we apply the above 

argument to each component  separately. []  

5. Conclusion 

In this paper we have obtained a near-quadratic bound for the combinatorial 

complexity of a single cell in an arrangement of  n algebraic surface patches of 
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constant maximum degree, each bounded by a constant number of algebraic arcs of 

constant maximum degree as well. This almost settles a long-standing conjecture, 

and provides a fairly satisfactory extension of the two-dimensional Davenpor t -  

Schinzel theory developed in [14]. Our proof extends recent techniques developed in 

[17], [18], and [27], all based on the probabilistic technique of [9] and [26] for deriving 

bounds on the number of generalized "(_< k)-sets" in arrangements. 

As noted in the introduction, our result has immediate applications to the general 

motion-planning problem with three degrees of freedom. That is, for rather general 

systems with three degrees of freedom, the combinatorial complexity of the con- 

nected component  of the free configuration space, consisting of all robot placements 

which are reachable from some given initial free placement, is O(n2§ for any 

e > 0, where n is the number of contact surfaces, as defined in the Introduction. 

This still falls short of efficient construction of such a component (in near-quadratic 

running time, which is one of the major open problems that we pose in this paper; 

we note that the entire arrangement can be efficiently constructed by a simple 

generalization of the algorithm in [10]). However, at least we know that the 

complexity of such a component  is nearly an order of magnitude smaller than the 

worst-case complexity of the entire arrangement, and, in most cases, also of  the 

entire free configuration space. 

The paper raises several open problems. The first one is to design an efficient 

algorithm (of near-quadratic complexity) for constructing a single cell in an arrange- 

ment of algebraic surfaces in 3-space (in an appropriate "algebraic" model of 

computation). One method of doing this is to select a random sample ,9~ of r 

surfaces of s  for some large constant r, construct Cz(~ ' )  by brute force, and 

decompose it into subcells of "constant description complexity." Then, with high 

probability, each of these cells is crossed by only O((n / r ) log  r) surfaces of s and 

we can continue the construction recursively within each cell, in a manner similar to 

that described in [4] and [27]. The problem that arises here, however, is to ensure 

that the number of resulting subcells be as small as possible (ideally, near-quadratic 

in r). This is an interesting combinatorial subproblem, which seems to be open, and 

considerably harder than the problem studied in this paper. 

Another  open problem that the paper  raises is to improve further the bound 

that we have obtained, to the conjectured bound of O(nAs(n)), or at least to 

O(n 2. polylog(n)). Another  open problem is to extend our results to arrangements 

in d dimensions. We believe that this is feasible, and are currently exploring this 

problem. One main subproblem here is to extend Theorem 2.3 to higher dimensions. 

Other open problems are to extend our analysis to obtain sharp bounds on the 

complexity of  many cells in three-dimensional arrangements, and to derive bounds 

on the sum of squares of cell complexities in an entire arrangement; see [2] and [5] 

for related work. 
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