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ABSTRACT OF THE THESIS

Alohamora: Reviving HTTP/2 Push and Preload

by Adapting Policies On-the-Fly

by

Nikhil Kansal

Master of Science in Computer Science

University of California, Los Angeles, 2019

Professor Ravi Arun Netravali, Chair

Despite their promise of improved performance, HTTP/2’s server push and link preload fea-

tures have seen minimal adoption, largely because designing performant push/preload policies

requires complex reasoning about the subtle relationships between page content, browser state, de-

vice resources, and network conditions. Static policies and guidelines that sufficiently generalize

across these diverse conditions remain elusive.

We present Alohamora, a system that automatically generates push/preload policies using Re-

inforcement Learning (RL). Alohamoratrains a neural network that, given inputs that characterize

the page structure and execution environment, outputs a push/preload policy for the page load at

hand. To ensure efficient and practical training despite the large space of potential policies, number

of pages served by a given site, and high mobile page load times, Alohamoraintroduces several key

innovations: a faithful page load simulator that can evaluate a policy in several milliseconds (com-

pared to 10s of seconds for a regular page load), and a page clustering strategy that appropriately

balances insights for push/preload with the number of pages required during training. Experiments

across a wide range of pages and mobile execution environments reveal that Alohamorais able to

accelerate page loads by 19-57% and 12-34% for page load time and Speed Index, respectively.
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1 Introduction

Mobile web browsing has rapidly grown in popularity, and recently surpassed its desktop coun-

terpart in terms of global web traffic share [3, 4, 5]. Given the importance of mobile web speeds

for both user satisfaction [6, 7, 8] and content provider revenue [9], a vast array of optimizations

have been developed to improve mobile page loads [10, 1, 11, 12, 13, 2, 14]. Yet performance

continues to fall short of user expectations in practice. Even on a state-of-the-art mobile phone and

LTE cellular network, the median page still takes over 10 seconds to load [15, 1].

Recent studies have identified that a key culprit to slow mobile page loads is the blocking net-

work delays that arise from the dependencies between the objects on a page [1, 10]. For example,

a browser may learn that it must load an image only after fetching and executing a JavaScript

file, which is discovered only after downloading and parsing the page’s top-level HTML. Such

dependency chains essentially serialize object fetches, which in turn results in high load times,

particularly on mobile networks where access link latencies tend to be high [16, 17].

The latest HTTP/2 web standard [18] anticipated the negative impact that network delays have

on web performance, and in response, includes several relevant optimization features. Most notable

are HTTP/2 push and preload. With push, servers can proactively send resources to clients in

anticipation of future requests; requests for already-pushed resources can be satisfied locally at

the client, avoiding blocking network fetches. In contrast, with preload, servers can notify clients

of resources that they will soon require (potentially from other domains) by listing those URLs

in HTTP headers. Clients issue requests for those resources immediately after parsing HTTP

headers, and without evaluating response bodies, thereby parallelizing network fetch and object

computation tasks [1].

Unfortunately, despite the promise of HTTP/2’s push/preload features, developing performant

push/preload policies has proven to be challenging, leading to low adoption rates. For example,

we find that only 5% of the Alexa top 500 pages [19] include a domain that uses push or preload;

this drops to 0.9% for the Alexa top 10,000 pages. A major reason is that the performance of
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Figure 1: Alohamora trains its HTTP/2 push/preload policy generation model using Reinforcement

Learning, exploring a large search space of environmental resources and push/preload policies, and

learning from the resulting (simulated) performance. During client page loads, Alohamora collects

the required inference inputs from unmodified client browsers and servers which track changes to

their page dependency graphs; the generated push/preload policies are applied transparently for

the remainder of the load.

a given push/preload policy depends on the subtle, low-level interactions between page content,

browser (cache) state and execution dependencies, client device and network resources, and QoE

goals [20, 21, 22, 23]. Consequently, even for a given page, we find that using a policy outside

of the execution environment for which it was designed can either forego significant (18-31%)

performance benefits or degrade performance by up to 20% compared to a default browser (§2).

These results preclude the static policies and guidelines promoted by prior push/preload sys-

tems [1, 21, 22], and instead highlight the need for dynamic, adaptive policies that explicitly target

the environments in which they are deployed. For example, the aggressive push/preload policies

that effectively utilize resources in high-bandwidth settings must be shrunk or dispersed across a

page load as link rates drop to avoid potential contention that slows down the downloads of block-

ing resources. Similarly, as device CPU speeds decrease, policies should grow to take advantage

of the (increased) blocking compute delays that leave the network idle.

In this paper, we ask whether a machine-learning system can learn and dynamically tune

push/preload policies for different pages and execution environments. We present Alohamora, a

web optimization system that learns push/preload policies entirely through experience using Rein-

forcement Learning (RL) (Figure 1). Alohamora represents its policy generation control logic as an

2



expressive neural network (trained offline to avoid exposing real users to suboptimal push/preload

policies). At inference time (i.e., during client page loads), Alohamora’s model takes as input

a set of features that summarize the client’s execution environment (network, CPU speed, cache

contents), and structural information about the page at hand, and outputs a push/preload policy

intended to optimize QoE in the current page load. Importantly, Alohamora’s input data collec-

tion operates with unmodified client browsers, and requires minimal server-side changes: servers

provide structural information about their pages (which content management systems commonly

track [24, 25]), and Alohamora’s policy generation runs (transparently) on a co-located frontend

server.

Realizing Alohamora’s data-driven approach to HTTP/2 push/preload policy generation re-

quires overcoming two key practical challenges with respect to training efficiency:

• Generalizing across pages: websites commonly serve thousands of pages, and it is im-

practical to require a server to train a policy generation model for each page that it wishes

to accelerate. However, failing to incorporate different pages during training may hide

push/preload insights, and result in poorly generalizable models. To overcome this, Alo-

hamora leverages our observation that even though sites serve thousands of URLs, their

pages typically cover a far smaller number of page structures, e.g., pages are often auto-

generated from fixed templates [26]. The key idea is that these shared structural properties

typically dictate the efficacy of different push/preload strategies. Thus, Alohamora needs not

train on multiple pages with the same structural properties, as those would contribute similar

push/preload insights. More specifically, push/preload benefits are dictated by how browsers

utilize network resources, which in turn can be characterized by 1) browser execution and

inter-object dependencies, and 2) network bandwidth contention across concurrently down-

loading objects. By extracting this information from a site’s pages and clustering pages ac-

cordingly, we find that Alohamora is able to strike a desirable balance between the number

of pages required for training, and model generalizability.
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• Simulating page loads: in order to train its policy generation model, Alohamora learns

through experience, loading pages with different push/preload policies in diverse execution

environments. However, the large number of potential environments and push/preload poli-

cies that exist for a given page, coupled with the high mobile page load times described

above, make this approach far too resource-intensive and slow. For example, even for a sin-

gle execution environment, exploring the thousands of potential policies for nytimes.com

would require 30 days on a powerful desktop machine. To handle this, Alohamora introduces

a novel page load simulator which is able to accelerate page loads by 3-4 orders of magni-

tude compared to running a real browser, while delivering highly faithful predicted load

times with median errors of only 0.4-2.2%; for context, this results in only 20 minutes of

training time for nytimes.com across many environments. To the best of our knowledge,

Alohamora’s simulator is the first to faithfully predict performance of a page across metrics

and environmental conditions [27], without requiring profiles directly from those settings.

The key insight is in judiciously extracting invariants about the page load process and su-

perimposing variable resource constraints; invariants (e.g., page and browser dependencies)

are collected via a single profiling run with a real browser, while variable properties about

the target execution environment (network, CPU, cache, QoE metric) and push/preload pol-

icy are taken as input. Further, we note that the simulator is sufficiently general to support

a wide range of optimizations (beyond push/preload) that modulate network/compute de-

lays [2, 28, 12, 14] or scheduling across resources [10, 11].

We evaluated Alohamora using 500 web pages, a wide range of mobile network conditions,

and numerous client device and cache settings. Our experiments reveal that Alohamora reduces

page load times and Speed Index by 19-57% and 12-34%, respectively, compared to a default

browser and standard push/preload-all policy. In addition, Alohamora yields performance similar

to WatchTower [2], a recent proxy-based accelerator, and outperforms Vroom [1], a state-of-the-

art server push system that employs static push/preload policies, by 2-3x. Importantly, whereas
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Vroom slows down 24-34% of page loads, Alohamora’s push/preload policies never degrade load

times. We will open-source Alohamora post publication.

2 Background and Motivation

We begin with an overview of HTTP/2 (§2.1), and then present measurements that illustrate the

potential benefits and challenges with HTTP/2’s push and preload features (§2.2).

2.1 HTTP/2 Overview

HTTP/2 [18] alters the traditional HTTP/1.1 page load process by adding the following new fea-

tures:

• Request multiplexing: With HTTP/1.1, browsers can open and reuse multiple concurrent

TCP connections per origin. In contrast, HTTP/2 permits only a single TCP connection per

origin, and allows browsers to multiplex requests onto that connection as parallel streams.

Unlike with HTTP/1.1 pipelining, HTTP/2’s multiplexing permits out-of-request-order de-

livery to alleviate head of line blocking.

• Server push: Unlike HTTP/1.1 servers which only serve objects in response to explicit

client requests, HTTP/2 servers can push objects that they own in anticipation of future

client requests. Servers have complete flexibility in defining a push policy, which specifies

the mapping between objects that are explicitly requested and the set of files pushed along

with them. Pushed resources are usable for the duration of the current page load, regardless

of the associated HTTP caching headers. Note that any pushed objects that are already in the

client’s browser cache imply wasted network bandwidth.

• Preload: HTTP/2 also carried over HTTP/1.1’s preload feature, which enables servers to

list URLs to fetch directly in HTTP Link headers. Upon parsing such Link headers (i.e.,

before parsing the response body), browsers will immediately issue requests for the listed

URLs; responses are not evaluated until they are referenced by the page. Thus, like push,
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Figure 2: Push/preload benefits when policies are explicitly tuned to the available resources. En-

vironments are listed as {bandwidth, latency, cache setting, CPU slowdown}.

preload enables servers to help browsers pre-warm their caches rather than relying on object

execution to discover downstream resources. However, preload differs from push in that:

1) requests are client-driven and still involve network delays to origin servers, 2) the risk of

re-downloading cached objects is eliminated since preload requests pass through the browser

cache, and 3) servers can preload third-party objects, not just objects that they own.

• Stream prioritization: HTTP/2 offers a mechanism with which both clients and servers can

explicitly specify how parallel request streams on a single TCP connection share network and

server-side processing resources. In particular, endpoints can annotate each request with a

single integer that denotes its target share of the aforementioned resources.

• Additional modifications: Whereas HTTP/1.1 permits browsers to download both HTTP

and HTTPS resources, HTTP/2 mandates the use of TLS (and thus, HTTPS). In addition,

HTTP/2 compresses HTTP headers to prevent redundant data transfers on each connection.

In this paper, we focus on HTTP/2 push/preload because they are configured by servers (Alo-

hamora’s target deployment location). In contrast, stream priorities are most often specified by

browsers [29, 30], and have witnessed limited benefits [31].

2.2 Limitations of static push/preload policies

HTTP/2 push and preload policies have been widely studied, yielding mixed performance re-

sults [32, 23, 22, 1, 21]. The key reason is that the performance of a given policy depends on
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numerous page and environmental properties. To better understand the relationships between these

properties and push/preload policies, we performed a study involving 50 random pages from the

Alexa top 500 US sites [19]. Our results use the same methodology and environmental parameters

(network, device CPU, cache, QoE metrics) described in §6.1.

For every combination of environmental resource parameters, and for each page, we selected

the best observed push/preload policy using a brute force search. Since the space of policies to

consider for a page scales exponentially with the number of objects (which regular exceeds 100),

a complete brute force search across environmental settings is impractical. Instead, to ensure

practicality and sufficient coverage, we weighted object types based on their potential for blocking

the client-side page load (i.e., JS = CSS ¿ image ¿ font) [10, 33]. To generate a policy, we randomly

selected the number N of objects to push/preload, and then sampled the object types N times

according to their relative priorities (picking randomly within each type). Finally, we randomly

selected the fraction of objects to mark as push vs. preload, and for each object, we randomly

selected an earlier object in the load to push/preload from. Using this approach, we generated 200

policies per page.

Takeaway 1: Push/preload has potential. In each environmental setting, and for each page,

we compared the best push/preload policy (selected explicitly for that setting) to a default browser

(i.e., no push or preload). Figure 2 shows representative results for several settings. As shown,

when selected explicitly based on the environmental setting, push/preload is able to provide sig-

nificant speedups over a default browser. For instance, in the {24 Mbps, 20 ms RTT, cold cache,

1x CPU slowdown, PLT} setting, median and 95th percentile benefits with push/preload are 18%

and 44%, respectively.

Takeaway 2: Push/preload policies do not generalize well. Despite the potential benefits, our

results also highlight that push/preload policies quickly degrade in performance when run outside

of the precise environments for which they were tuned. To evaluate this, we performed multiple

experiments in which we started with a fixed environmental setting, and selectively modulated
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Figure 3: Push/preload performance degrades as the environment changes. The base configuration

was {12 Mbps, 100 ms, cold cache, 1x CPU, PLT}; each cluster modulates only one factor. “Best

Policy” was tuned to each setting, and “X-Applied” applies the base configuration’s best policy to

each setting. Bars show medians, with error bars spanning 25-75th percentiles.

each environmental factor while keeping the others fixed. In each resulting setting, we compared

the performance of 1) the best push/preload policy from the fixed setting, 2) the best push/preload

policy for the modulated setting, and 3) no push/preload (i.e., a default browser). Figure 3 depicts

our results for the fixed condition, {12 Mbps, 100 ms RTT, cold cache, 1x CPU slowdown, PLT};

we omit results for other fixed conditions due to space constraints, but note that the trends persist.

The results illustrate two significant drawbacks about using push/preload policies across different

settings. First, they leave significant (18.4-30.7%) performance gains on the table compared to

policies designed explicitly for the deployment setting. Second, and worse, they can degrade

performance compared to a default browser. For instance, performance degrades by 6% and 20%

at the median and 95th percentile, respectively, when device CPU speeds change. We note that

these negative properties are even more pronounced when multiple environmental parameters are

modified in parallel.

Summary: Collectively, our results suggest that, to realize the significant performance poten-

tial of push/preload, policies must be designed to explicitly consider page properties and resource
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characteristics of the target deployment environment.

3 Design Overview

Figure 1 shows the high-level design of Alohamora’s offline training phase and online (i.e., during

client page loads) inference phases. In this section, we will describe the workflow for each task in

the context of a single web page. We present extensions to ensure generalization across multiple

pages (§4) and practical training speeds (§5) in subsequent sections.

3.1 Offline training

Alohamora represents its push/preload policy generator as a neural network that is trained using

Reinforcement Learning (RL). RL offers several advantages in this setting compared to more stan-

dard, supervised approaches. Most notably, it is impractical to generate, a priori, a labeled dataset

involving all possible push/preload policies and environments for a page, but it is paramount to

incorporate all policy-affecting scenarios. RL overcomes this by using experience of prior tested

policies to dynamically guide its traversal through the large search space.

In order to train its policy generation model, Alohamora runs a training phase in which the RL

agent explores a web browsing environment via a large number of offline (simulated) experiments.

The training process consists of a series of episodes, each of which aims to evaluate a series of

actions in a given operating environment. At the start of each episode, Alohamora first selects a

random operating environment by picking values for the average link bandwidth, link latency, loss

rate, mobile device CPU speed, and cache settings (i.e., time since the last load, which in turn

dictates the cached objects). In addition, the agent is given access to an annotated dependency

graph [10, 11, 33, 2] for the page which lists, for each object, information about its 1) size, 2)

content type (e.g., HTML, JS), 3) ordering (timing) relative to both all other page objects and only

those objects belonging to the same domain, 4) cache status, and 5) candidacy for push/preload.

Candidacy reflects the fact that only resources that consistently appear in a page should be consid-

ered for push/preload; we determine candidacy in the same way as prior work [1], by loading the
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page several times and extracting a list of URLs that consistently appear. Collectively, the operat-

ing environment characteristics and annotated dependency graph represent the observation passed

to the agent.

Within an episode, Alohamora maintains a running push/preload policy to which it iteratively

adds selected actions. Each action is represented as a six-tuple (type, domain, pushobj,

pushparent, preloadobj, preloadparent). type lists the action to perform (push, preload,

nothing); domain represents the domain whose objects to consider if the action is “push”; pushobj/

preloadparent and pushparent/ preloadparent list the object to push/preload and the object

to do so with, respectively. Key to this representation is domain, which captures the fact that push

and preload actions have a different set of objects to choose from, i.e., objects can only be pushed

within a domain, but preload decisions can inherently cross domains. Recall that, for objects, we

have two sets of identifiers: order across all page objects, and order across objects from the same

domain. For type values of “preload”, Alohamora uses IDs for the page-level ordering, while for

type values of “push”, Alohamora uses IDs for the intra-domain ordering.

Action space: Throughout an episode, the agent selects actions according to a probability dis-

tribution over the potential space of 6-tuples; the probability distribution function starts as uniform,

but is dynamically updated based on the agent’s experiences. Each selected action is added to the

running push/preload policy, and the updated policy is evaluated to obtain a reward (described be-

low) that is fed back to the agent along with the observation. Each episode ends when the agent

either chooses an action of type “nothing”, repeats an action to push/preload an object that is al-

ready represented in the running policy, or selects an invalid (i.e., disallowed) action, e.g., pushing

across domains or preloading an earlier object. Regardless of which reason ends an episode, upon

completion, Alohamora automatically assigns a reward of 0 to signal to the agent that the terminal

policy is not one to consider.

Reward function: For each action, we must evaluate the corresponding running policy to

compute a reward, or the resulting performance. Note that the primary goal of the RL agent is
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to maximize the expected cumulative (discounted) reward that it receives from the environment.

Thus, the reward is set to reflect the performance of each tested policy according to the target QoE

metric. However, structuring the reward function requires careful thought. The reason is that each

action in an episode is not entirely independent. Thus, rather than simply using the page load

metric of choice, we structured our reward function to take into account the relative improvement

or degradation (on the metric of choice) of the policy from action to action, giving a boost in reward

as the agent discovers a set of actions that leads to a new global (i.e., within the policy) minimum.

More formally, we define the reward for the ith action in an episode as:

Ri(Pi,Pi−1,Pbest) =































k1
Pi

Pi < Pbest

k2Pi−1

Pi
Pi < Pi−1

−k2Pi

Pi−1
Pi > Pi−1

where Pi, Pi−1, and Pbest are the raw values for the target QoE metric for the current, previous, and

best-so-far policies in the episode, respectively. k1 and k2 are constants, where k1 >> k2. We note

that the reward function is compatible with any QoE metric which denotes improved performance

with lower values. We consider different reward structures in §6.4.

Implementation: Alohamora trains its models with Ray [34], using the RLLib [35] and

Tune [36] libraries. Each model is a recurrent neural network that consists of 2 densely-connected

layers with 256 units and the tanh activation function, followed by an LSTM with cell size 256.

LSTMs are helpful given the sequential nature of each episode, whereby actions are continually

added to a running policy; LSTMs prevent the agent from infinitely deferring its reward and choos-

ing longer policies over shorter ones. Training stops after 150 iterations, or if the standard devia-

tion in the past 50 rewards is less than 5% of the last reward (whichever comes first). Our current

implementation uses the state-of-the-art A3C [37] algorithm, but is compatible with other algo-

rithms [38, 39].
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3.2 Online inference

As shown in Figure 1, at runtime, Alohamora introduces a frontend server (or equivalently, a re-

verse proxy) that is colocated with the existing backend architecture for a given domain; colocating

these components ensures that end-to-end web and HTTPS security are preserved. During client

page loads, all browser-generated HTTP(S) requests first hit the Alohamora frontend server, whose

goals are to 1) collect the information required to query its trained push/preload policy generation

model, and 2) apply the suggested policy to the current load. Each origin in a page independently

runs an Alohamora server.

Data collection for inference: The information required to query the policy generation model

matches the observation state used during training, i.e., average bandwidth, latency, loss rate, CPU

speed, cache status, and annotated dependency graph. Alohamora collects the required network,

device, and browser cache information through its interactions with clients, and the annotated

dependency graphs directly from origin servers. Importantly, all of the data collection involving

clients leverages existing interfaces that modern browsers expose, i.e., Alohamora does not require

browser modifications.

To extract network latencies, Alohamora’s server analyzes the SYN/SYN-ACK time during the

client’s initial connection setup. Further, summaries of the client’s cache are collected using either

the latest cache manifest standards [40], or a server-based cookie which logs the time since the

user’s last load of the page [41]; cache information is collected on a per-origin basis. CPU speeds

are set based on the HTTP User-Agent header that denotes the client device [42]. Lastly, average

network bandwidth and loss information are collected using browser user experience reports [43].

Alohamora also requires an up-to-date graph to ensure that Alohamora’s server knows the pre-

cise URLs to push/preload in the current page load according to the generated policy; consequently,

this graph, unlike with training, lists URLs as well as object ID numbers. Alohamora relies on ori-

gin web servers to collect and share updated dependency graphs offline, as those servers are the

first to be aware of page changes. In particular, content management systems [24, 25] support
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hooks that fire any time a page-altering change is pushed, e.g., for A/B testing. Alohamora adds

a hook to collect up-to-date dependency graphs, which requires only a lightweight (headless) load

of the largely local page [2, 12].

Apply push/preload policies: Upon receiving a client request for a page, Alohamora’s server

queries its trained model to generate a push/preload policy that directly targets the current load.

The resulting policy is a listing of object IDs to push or preload, and the corresponding parents.

Alohamora then uses the server-provided dependency graph to translate IDs in this policy to pre-

cise URLs. Finally, to enforce the policy, the Alohamora server issues local HTTP(S) requests

(mimicking client HTTP headers) to the origin server, which responds with the up-to-date objects;

Alohamora applies the generated policy to the returned object headers throughout the rest of the

page load.

4 Generalizing Across Pages

Section 3 describes Alohamora’s workflow for accelerating loads of a single page. However, in

practice, sites commonly serve hundreds, if not thousands, of different pages. Unfortunately, train-

ing a separate policy generation model for each page that a website serves would be far too slow

and resource intensive. Consequently, Alohamora faces a tricky tradeoff: train on only a few

of a site’s pages and achieve efficient training at the risk of omitting pages that warrant unique

push/preload strategies, or train on many of a site’s pages to develop generalizable policies at the

expense of high training overheads.

Alohamora addresses this tradeoff by leveraging the observation that, even though sites serve

thousands of different pages, those pages typically cover a small number of page structures, e.g.,

because they are automatically generated using a fixed set of templates, and thus share styles,

layouts, and JavaScript libraries [26]. For example, news sites intuitively comprise a main home

page, category home pages, and several classes of article pages. The key idea here (validated be-

low) is that these shared structural properties typically dictate the efficacy of different push/preload

strategies, and thus, we need not train on multiple pages that share structural properties.
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The primary challenge associated with leveraging this observation is in determining precisely

which pages in a site are necessary to consider during training. Answering this question implicitly

requires an understanding of what pages have sufficient structural similarity from the perspective

of the push/preload policies that they warrant. In other words, how should we represent and com-

pare pages to determine how structurally similar they are? Our goal is for page representations to

be sufficiently coarse and high-level to avoid deeming all pages as structurally different (thereby

eliminating training efficiency savings), but also detailed enough to avoid classifying all pages as

structurally equivalent (thereby hiding structural differences that would affect push/preload poli-

cies).

Clustering by page structure: In order to identify page structures that are amenable to sim-

ilar push/preload strategies, Alohamora analyzes an altered version of the annotated dependency

graphs described in §3. These graphs are directed acyclic graphs that capture inter-object initiator

relationships, or which parent’s computation triggered the fetch of a subsequent child object, as

well as object sizes and content types. The reason for including only these properties is that the

benefits of push/preload policies are inherently dictated by how browsers utilize their network re-

sources to fetch content—these are the delays that push/preload strategies aim to alleviate. Such

network delays are, in turn, specified by 1) browser execution models and their relation to page

composition [33, 44], 2) inter-object content type dependencies, e.g., JavaScript execution blocking

HTML parsing to discover downstream objects [10], and 3) network bandwidth contention across

parallelized object fetches. The aforementioned dependency graphs’ inclusion of page structure,

content type, and object sizes address each factor, respectively.

Given these dependency graphs (or trees), Alohamora defines the distance between two page’s

trees Ti and Tj as the tree edit distance between them, where the cost of inserting/deleted a node is

set to 1, and the cost of each change to either part of a node’s label (content type or size) is set to

0.25. After computing the distances between each pair of trees, we construct a distance matrix D

where Di, j = distance(Ti,Tj). With this, Alohamora can run any clustering algorithm that operates
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Site
Pages

per cluster

Avg.cluster

PLT in sec

(std.dev.)

Avg. Push/preload

% Improvement

The Atlantic 21,5,3,1
1.8, 4.8, 2.7, 6.5

(0.1), (0.6), (0.3), (0)

per-page: 17, 20, 15, 34

X-applied: 78, 72, 73, 100

NPR 19,8,3
1.9, 1.6, 3.6

(0.3), (0.2), (0.5)

per-page: 15, 18, 23

X-applied: 70, 68, 75

CNN 17,12,1
11.4, 9.1, 8.6

(1.5), (0.5), (0)

per-page: 4, 3, 6

X-applied: 81, 76, 100

Table 1: Alohamora’s cross-page generalization approach. Results are for the {24 Mbps, 20 ms,

2× CPU slowdown} setting, and consider 30 pages per site. “Per-page” results use the best policy

per page in a cluster, while “X-applied” applies a single policy to all pages in each cluster.

on non-Euclidean distance functions – our implementation uses agglomerative clustering [45] – to

group pages that are structurally similar from a push/preload perspective.

Case studies: We performed case studies on ten randomly selected websites in the Alexa top

500 US sites [19]. For each site, we ran a monkey crawler [46] that generated a list of 300 URLs

by performing random interactions (e.g., clicks) starting from the site’s landing page. From this set

of URLs, we arbitrarily selected 30 pages that fit into the logical clusters that we perceived for the

page, e.g., articles vs. home page vs. user profile pages. For each of the 30 pages, we generated the

corresponding annotated dependency graph, computed the pair-wise distance metrics to all other

pages, and performed the clustering.

For each cluster, we analyzed how comparable the constituent pages are along three axes: 1)

general page load performance, 2) potential push/preload benefits, computed by running a brute

force search to find the best policy per page (§2.2), and 3) fraction of potential benefits achieved

by applying the best policy from another page in the cluster. We note that push/preload policies

were easily extended across pages in a cluster given the shared structural similarities (recall that

policies identify objects by IDs, not precise URLs).

Table 1 lists our results for three representative sites and a single execution environment; we

note that trends generalized to the other tested conditions and sites. There are three key takeaways.
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First, the generated clusters largely matched our high-level clustering intuition used when pick-

ing the pages, e.g., for The Atlantic’s website, there exists a cluster for the home page, articles

(21), category pages (5), and user profile pages (3). Second, the pages within a cluster exhibited

highly comparable (within 15%) PLTs, both without push/preload, and with the best push/preload

policy per page, and PLTs were largely separated across clusters. Lastly, and most importantly,

the push/preload policies generated for any page in a cluster is able to achieve the majority (65%–

100%) of potential push/preload benefits for all other pages in that cluster.

Handling page changes: Recall that origin servers track changes to their page dependency

graphs and share those graphs with Alohamora’s runtime server (§3). A natural question is how

to determine when a change to a page’s dependency graph is substantial enough to deem Alo-

hamora’s model suboptimal (for that page) and prompt a retrain? To answer this question, upon

receiving a dependency graph from an origin server, Alohamora re-clusters by computing the pair-

wise distances between the new graph and all existing ones across all pages used for training. If

the new clustering results remain stable such that the new graph falls into an existing cluster, then

Alohamora needs not retrain. On the other hand, if the new page forms an island (i.e., a cluster of

size 1), then Alohamora will automatically trigger a re-train. During re-training, Alohamora will

still use its model to service applicable pages whose graphs have not substantially changed.

We note that prior work has shown that page dependency graphs remain structurally similar

over long time scales (e.g., weeks), with only the precise URLs changing over short periods [11,

10, 2]. Thus, we expect retraining with Alohamora to be infrequent in practice. For example, we

verified that the clustering results from Table 1 are unchanged across 2 weeks.

5 Page Load Simulator

To accelerate training (§3), Alohamora uses a novel page load simulator that, given an annotated

dependency graph for a page, a target execution environment, and a push/preload policy as input,

outputs an estimated QoE (e.g., PLT, SI) value. We will start by describing the simulator’s op-

eration in the context of cold cache page loads, no push/preload, and PLT, and then relax those
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Figure 4: Example operation of Alohamora’s page load simulator. After downloading the top-

level HTML (omitted), the Request Queue immediately marks its children as delayed. Each object

is delayed for a duration that reflects its execution time, anticipated network download delays,

and inter-object dependencies (e.g., object #3 is a blocking JS file). The Request Queue steps

through the delayed and downloaded queues as delays expire or objects finish downloading, and it

continues to process those objects’ children recursively.

assumptions. We note that Alohamora’s simulator focuses on page loads that entirely use HTTP/2.

5.1 Collecting Simulator Inputs

The first step in the simulation process is to profile a load of the target page to extract infor-

mation that characterizes properties dictated by either page composition/content [10] or browser

dependencies [33, 44]. These properties do not describe the operating environment (which will we

simulate), but instead dictate how page load tasks should share the simulated resources.

To extract such information, Alohamora records the target page with a record-and-replay tool [47],

and replays the page over an unshaped (i.e., high bandwidth, near-0 latency) local network with

desktop-level CPU resources. During replay, Alohamora extracts an annotated dependency graph

(Figure 4) that matches the one used for training and inference (§3) in that it captures the inter-

object ordering and dependency constraints. However, in addition, Alohamora logs per-object:

• execution time: the time spent parsing, executing, or rendering the object with the well-

provisioned CPU; this does not include the time taken to execute any referenced objects.

• request delay: the amount of time between when the object’s parent has finished download-

ing, and when the object’s request is issued; this embeds the parsing/execution delays of the

parent, as well as any synchronous processing delays for objects referenced earlier in the
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parent’s execution, e.g., a blocking external <script>.

• server-processing delay: unavoidable server-side delay in generating and serving the re-

sponse; we extract this information directly from record-and-replay frameworks [47].

In addition to this dependency graph, Alohamora’s simulator also takes as input the average

network bandwidth, latency, and loss rate (Mbps, ms, %), device CPU speed (slowdown compared

to profiling CPU speed), and browser cache contents.

5.2 Simulating the Execution Environment

In order to enforce the specified network bandwidth, latency, and device CPU values for all objects

throughout the simulated page load, Alohamora’s simulator uses a new Request Queue abstrac-

tion. In this section, we describe how the Request Queue operates on objects that have been passed

into it; we describe how objects get added to the Request Queue in the next section.

At any time, the Request Queue keeps track of three types of resources: delayed, downloading,

and downloaded. When an object is added to the Request Queue, it is set to delayed and is assigned

a blocking delay d which lists how long until it can be marked as downloading. d incorporates the

round trip latencies required to fetch the object, the profiled server processing delay, the object’s

execution time, and the request delay that captures blocking page load dependencies. Here we

describe how the target environment affects each delay component.

Enforcing latency/loss overheads: In order to compute the number of round trips required

to download an object, the Request Queue considers two factors. First, if the object is the first

to be downloaded from a given domain, the Request Queue adds 2 RTTs to account for the TLS

handshake that HTTP/2 mandates. Second, the Request Queue estimates the number of round

trips required for the TCP-level data transfer by (approximately) keeping track of TCP window

state for each connection (assuming cubic-like behavior) and assuming concurrent objects fairly

share the window.1 More specifically, it assumes an initial window of 10 [48], additively increases

1HTTP/2 stream prioritization modifies this to be weighted sharing.
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the window as bytes are downloaded, and halves the window on each idle RTO (200 ms) or prob-

abilistic lost packet. Note that this is an approximation since the currently downloading objects

may complete prior to the expiration of d ms, and the starting TCP window experienced may be

different.

Enforcing bandwidth overheads: Across all objects that are concurrently marked as down-

loading, the Request Queue must enforce an appropriate split of the specified network bandwidth

resources. We note that the available bandwidth (specified as a packet delivery trace [47]) is viewed

as the access link, which is commonly the bottleneck in wireless networks [16], and is thus shared

by the active connections across all origins. By default, the Request Queue assumes that all out-

standing requests fairly share the available bandwidth, thereby disregarding discrepancies in cross-

connection window state.

Enforcing CPU overheads: The Request Queue modulates the execution delay for each de-

layed object by multiplying by the slowdown magnitude; CPU speeds also affect request delays,

which we discuss in the next section. The simulator ignores CPU core counts, and instead fo-

cuses exclusively on clock speeds, which have been shown to be the predominant factor affecting

browser performance [49]. To support concurrent iframe execution, the Request Queue subtracts

out execution times from concurrently delayed objects across frames.

Request Queue operation: The Request Queue proceeds in discrete “steps”. In each step,

the Request Queue inspects both the lists of downloading and delayed objects, and finds the ob-

ject(s) that are scheduled to either finish downloading first (fewest bytes remaining) or transition

to downloading (smallest d remaining), respectively. Each step is clocked by the duration t until

those object events complete. After computing t, the Request Queue will subtract the number of

bytes that can be downloaded in t from all currently downloading objects, and subtract t from all

currently delayed objects. It will then move all delayed objects whose d values have expired to the

downloading queue, and mark all objects that complete downloading as downloaded.
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5.3 Simulating Page Loads

Starting from the root node in the graph (i.e., the top-level HTML), each time an object is returned

from the Request Queue as downloaded, the Alohamora simulator immediately adds all of that

object’s direct children as delayed to the Request Queue. In other words, each child of the com-

pleted parent object is scheduled in a one-step look-ahead process, resulting in a dependency graph

traversal that is breadth-first across each objects children, but not necessarily across objects in the

same row but with different parents (Figure 4).

This simple approach closely mimics the browser graph traversal strategy [10, 33], but with one

issue: execution dependencies between an object’s children. For instance, consider a simple sce-

nario in which the top-level HTML includes two adjacent HTML <script> tags that reference

files S 1 and S 2, both of which are the root nodes for downstream subtrees. Because browsers

are unaware of the potential state dependencies between these two JavaScript files, upon discover-

ing the first <script> tag, HTML parsing would halt and trigger a synchronous (i.e., blocking)

fetch and execution of S 1 [10]. This has several implications on dependency graph traversal,

which Alohamora’s simulator must account for:

• during a real page load, the children of a given parent may not be scheduled in a single burst.

Alohamora’s simulator accounts for this with the duration for which the Request Queue

marks an object as delayed (d). In particular, recall from §5.2 that d includes each object’s

request delay, which accounts for inter-children blocking delays.

• even with the enforced request delay, it is possible for the Request Queue to mark S 2 as

downloaded before S 1, e.g., if S 2 is far smaller than S 1, and the simulated network is

highly bandwidth-constrained. This could result in cascading discrepancies in graph traver-

sal: S 1’s children should be handled before S 2’s. To handle this, Alohamora’s simulator

also exposes the Request Queue to the object fetch ordering that was logged during the pro-

filed page load. These IDs closely follow the order in which browsers require, or are blocked

on, specific objects because objects are fetched only after blocking constraints are satisfied.
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With this information, the Request Queue treats downloaded objects as a priority queue, sig-

naling object completion to the graph traversal component only once the next required object

(i.e., the lowest incomplete ID) is complete. Asynchronously-fetched objects are returned

after their closest synchronous neighbors.

Even with these strategies, the simulator’s dependency graph traversal still faces potential in-

accuracy in the fact that objects that involve a blocking dependency, such as S 1 and S 2 in the

above example, may download concurrently and share network resources. However, the simulator

bounds the cascading effects of these inaccuracies on the page load process by ensuring that the

ordering of downstream children processing is unaffected and faithfully mimics that with a real

browser.

Measuring PLT: As objects are returned from the Request Queue, they are marked with a

completion time (relative to the start of the page load) accounting for any delayed or downloading

time. PLT is the maximum object completion time.

5.4 Simulating Push/Preload Policies

To support push/preload, when an object is being added to the Request Queue, the simulator also

schedules the corresponding objects to push and preload along with that object (as per the input

policy). The objects added for push/preload largely share the delay value (d) of the parent since

push/preload objects cannot begin downloading until the parent does, which in turn requires the

Request Queue to impose the parent’s request delay. However, the push/preload objects’ delays

are altered in two ways: 1) their server-side processing delays are preserved (and not adopted from

the parent), and 2) preload objects incur an additional network RTT to account for the download of

parent response HTTP headers (0.5 RTT) and transmission of the preloaded object’s request (0.5

RTT).

Once scheduled, the key challenge is in determining how pushed/preloaded objects affect

the delays from the profiling stage’s default load; this delta could be positive or negative due

to, e.g., bandwidth contention. To understand this, once the simulator hits an object that was
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pushed/preloaded, it determines how the pushed/preloaded object’s download progress has (or

will) compare to the case when the object was not pushed/preloaded. This comparison is made

by simulating the load without that resource being pushed/preloaded, and comparing the resulting

delays. We note that, if the pushed/preloaded object is blocking, delays for downstream siblings

are edited to reflect the observed deltas.

5.5 Extensions

Additional performance metrics: We extended the simulator to return the above-the-fold time [50],

which is the time-instant version of Google’s Speed Index metric (§6.1). For this, during profil-

ing, the simulator determines which set of page objects affect the visual aspects of the browser

viewport [50]. With this information, the simulator summarizes performance as the time when the

last node in the collected set completes. The simulator is also amenable to Speed Index or Ready

Index [50]: the profiling step must also measure the fraction of the viewport that is visually or

functionally affected by each object’s execution, respectively, and the simulator would track the

weighted progression.

Warm cache page loads: In order to handle warm-cache browsing scenarios, the simulator

takes an additional input: the list of resources that it should consider as cached, which can be

computed by analyzing HTTP headers according to a desired warm cache timing, i.e., the time

between the cold and warm cache page load [51]. The simulator then operates as normal, but sets

the network RTTs required to fetch a cached resource, and the bytes that must be downloaded, to

0; request delays for downstream children of blocking resource are also updated.

5.6 Evaluations

Faithfulness: Figure 5 shows that Alohamora’s simulator reports highly faithful load times com-

pared to a real browser. For example, in an environment with no network or CPU shaping and

a cold browser cache, the simulator’s reported load times were within 0.4% and 4.3% of the real

browser, at the median and 95th percentile, respectively. Median discrepancies marginally increase

to 1.4% and 2.2% as network shaping and caching are incrementally added.
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Figure 5: Faithfulness of Alohamora’s simulator. (left) compares predicted PLTs with a real

browser, and without push/preload. (right) shows Alohamora’s ability to correctly compare push

policy pairs (in terms of relative performance).

Median 95th Percentile

Alohamora’s simulator 4.7 22

Unshaped 1347 3815

24Mbps/20ms/2x CPU 5936 16683

12Mbps/60ms/4x CPU 9631 27765

Table 2: Per-page runtimes (ms) of Alohamora’s simulator (top row) and a default browser in

different execution environments.

With respect to push/preload policies for Alohamora, the key property required for training

is to be able to determine which of two policies results in superior performance. To evaluate the

simulator’s faithfulness for this, we generated 20 random push/preload policies for each page in

our corpus and compared the simulated and real-browser load times. As shown in Figure 5, the

simulator correctly reported the relative comparisons across pairs 90% of the time.

Runtime: As shown in Table 2, the simulator is able to accelerate page loads by 3-4 orders

of magnitude compared to a default browser. As expected, these discrepancies quickly increase

as the target environment becomes more resource constrained. Table 3 shows that the simulator’s

runtime does steadily increase as the length of the push/preload policy under test grows. The

reason is that, even though the simulator’s approach to handling push/preload policies results in

faithful load times, it requires re-simulations of the page a number of times that is quadratic with

the policy length. We note, however, the resulting runtimes are still several orders of magnitude

lower than default browsers, and Alohamora rarely requires investigation of policies longer than
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Policy length 0 1-9 10-19 20-29 30-39

Runtime 4.7 (22) 12 (73) 45 (189) 105 (348) 172 (546)

Table 3: Median (95th percentile) simulator runtimes in milliseconds with varying push/preload

policy length.

20 objects (§6).

6 Evaluation

6.1 Methodology

In order to create a reproducible test environment and because Alohamora requires servers to en-

force push/preload strategies, our evaluation uses the Mahimahi web record-and-replay tool [47].

Our corpus comprised the Alexa top 500 US pages [19], and we recorded versions of each page at

multiple times to mimic different warm cache scenarios: back to back loads, and loads separated

by 4, 12, and 24 hours. Mobile-optimized (including AMP [52]) pages were used when available.

All experiments used Google Chrome for Android (v72), and all replayed page loads used HTTP/2.

Our evaluation considered a broad range of network bandwidths (6-48 Mbps, as well as Veri-

zon and AT&T LTE traces [47]), latencies (0-100 ms), loss (0.5-5%), and client device conditions

(CPU slowdowns of 1-4x, relative to a desktop with an Intel Xeon Gold 5220 CPU @ 2.20GHz).

Network emulation was performed using Mahimahi [47], and CPU constraints were enforced us-

ing Chrome’s Devtools Protocol [53]. Unless otherwise noted, Alohamora generated a policy

generation model (across the aforementioned conditions) per page. Further, in accordance with §3,

dependency graphs for inference were recorded prior to the experiments (offline).

We compared Alohamora to both a default browser, and a standard push/preload all strategy

where, on the first incoming client request, each origin pushes all static resources that it owns,

and preloads all static third-party resources that its objects reference; push/preload orders match

page reference orders. Our evaluations considered multiple web performance metrics. Page load

time (PLT) was measured as the time between the navigationStart and onload JavaScript
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Figure 6: Load time (PLT and SI) improvements over a default browser for a static push/preload

all strategy, and Alohamora. Environments are listed as {bandwidth, latency, CPU slowdown, loss

rate}. Results used cold browser caches.

events. We also consider Speed Index (SI), which better relates to user-perceived performance by

capturing the time needed to fully render the initial viewport. SI was measured using the pwmetrics

tool [54]. Due to space constraints, we only present results for representative settings; however,

we note that all presented trends persist across all tested scenarios.

6.2 Page Load Speedups

Cold cache results: Figure 6 illustrates Alohamora’s ability to accelerate cold cache page loads

across four representative settings. For example, in a {18 Mbps, 60 ms, 4x CPU slowdown, 0%

loss} environment, median (95th percentile) PLT improvements with Alohamora were 12% (45%);

the push/preload all strategy achieved only -0.2% (20%) improvements. Alohamora’s benefits

persist as network and CPU conditions change, although the generated policies vary (described

below): benefits are 14% (60%) when 1% loss is introduced, 14% (55%) over a time-varying
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Figure 7: Load times in different warm cache scenarios; “No push/preload” is a default browser.

Bars represent medians, with errors bars spanning 25-75th percentiles. Results are for the {12

Mbps, 100 ms, 2x, 0%} setting.

Verizon LTE trace (not shown), and 19% (57%) when conditions improve to {24 Mbps, 20 ms, 1x

CPU slowdown, 0%}. Figure 6 also shows that Alohamora provides substantial SI benefits, ranging

from 10-12% and 34-45% at the median and 95th percentile. Importantly, across all settings,

Alohamora’s push/preload policies never degraded performance compared to a default browser.

This is in stark contrast to the static push/preload all policy, which, for example, slowed down 40%

of pages across the settings, by up to 22%.

Warm cache results: Figure 7 shows that, across a wide range of warm cache browsing scenar-

ios, Alohamora accelerates page loads compared to both a default browser and a static push/preload

all strategy. For instance, for back-to-back (i.e., perfectly warm-cache) page loads, median PLT

improvements are 0.8 s and 0.4 s for Alohamora and the push/preload all strategy, respectively.

These relative improvements persist (10-16%) as the time between page loads increases.

6.3 Comparison to state-of-the-art

We compared Alohamora with two recent mobile web optimization systems, Vroom [1] and Watch-

Tower [2]. Vroom improves upon the aforementioned push/preload all policy by using a dynamic

client-side scheduler to integrate object priorities into the ordering of pushed and preloaded re-
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Figure 8: Comparison with Vroom [1] and WatchTower [2].

sources. In contrast, WatchTower accelerates page loads by selectively using proxy servers that

fetch objects on behalf of clients using their fast wired network links. Client-origin-proxy latencies

were set as if proxies were running on EC2 in California, and WatchTower ran in HTTPS-sharding

mode.

As shown in Figure 8, Alohamora is able to outperform Vroom on both the PLT and SI metrics.

For example, in a {12 Mbps, 100 ms, 2x CPU slowdown, PLT} environment, benefits with Alo-

hamora are 3x and 1.33x higher than Vroom’s at the median and 95th percentile, respectively. The

primary reason for this discrepancy is that, even though Vroom adds dynamism to push/preload

in the form of priority-based scheduling, Vroom remains too constrained to truly adapt to diverse

execution environments, i.e., the set of resources to push and preload are static and match the

push/preload all approach. This is partly evidenced by the fact that Vroom still harms a large frac-

tion of page loads, e.g., 34% in the {24 Mbps, 20 ms, 1x CPU slowdown, SI} setting. In contrast,

Alohamora can vary all aspects of the push/preload policy (e.g., objects, object pairings, etc.) to

best cater to the target setting. Figure 8 also shows that Alohamora is able to achieve comparable

(within 15% at the median) performance to WatchTower across the two listed settings. However,

we note that, unlike WatchTower, Alohamora achieves these benefits without the overheads of

maintaining per-origin proxy servers.

6.4 Understanding Alohamora’s benefits

Ablation study: In order to understand the relative impact of each of Alohamora’s features and
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Reward LSTM BW CPU Latency

C1 61 (41) 57 (44) 45 (38) 41 (36) 66 (96)

C2 66 (43) 60 (47) 58 (61) 55 (61) 71 (89)

Table 4: Impact of removing features/properties in Alohamora’s model. Results are reported as

median (95th percentile) percentage of potential (i.e., with Alohamora’s full models) improve-

ments. “Reward” considers the intuitive −PLT reward function. C1 and C2 are the {12 Mbps, 100

ms, 2x} and {24 Mbps, 20 ms, 1x} settings, respectively.

model properties, we performed an ablation study (Table 4). Our results reveal that bandwidth,

latency, and CPU speed information all play a significant role in Alohamora’s ability to generate

performant push/preload policies, with the removal of CPU resulting in the largest degradations

(45-59%). Our results also highlight the importance of Alohamora’s reward function and incor-

poration of LSTM. For instance, (intuitively) setting the reward to −PLT leads to performance

degradations around 35%. The primary reason is that it becomes easy for the agent to artificially

inflate the observed reward by selecting policies with fewer actions, i.e., the earlier policies in an

episode will be favored as the cumulative reward will be lower. Removing LSTM, on the other

hand, led to degradations of ∼40%, largely due to the lack of a discount factor that guides the

agent to avoid unnecessarily favoring longer policies to improve the cumulative reward (§3).

Alohamora’s policies: To understand the learned insights behind Alohamora’s benefits, we an-

alyzed its generated push/preload policies across all tested settings and pages. Admittedly, we ob-

serve that policy composition and the mix between push/preload varied dramatically across pages

and resource settings; indeed, subtle interactions between these properties were a primary motiva-

tor for Alohamora’s machine learning-based approach. However, we note the following common

principles:

• In lower bandwidth settings, Alohamora either 1) reduced the policy length or cut data-

intensive objects, or more commonly, 2) spread the same set of pushed/preloaded objects out

across a larger set of parents in order to stagger downloads and reduce bandwidth contention.

• With slower CPUs, Alohamora’s policies are careful to only push objects whose bytes could
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be downloaded until the next blocking JavaScript file is required; the goal is to prevent

downstream CPU tasks from blocking on the network. In these cases, Alohamora’s policies

preloaded additional resources with the goal of having their downloads start (after the 0.5

RTT required to contact the server) only after the next blocking resource was downloaded.

In essence, the idea is to perfectly interleave downloads of non-blocking resources with the

execution of blocking resources.

• For image-heavy sites (e.g., pinterest.com), Alohamora commonly excluded JavaScrip-

t/CSS files from its policies, and instead pushed/preloaded images that are rendered towards

the top of the viewport, particularly in high-bandwidth settings or when SI is the target met-

ric. The reason is that these pages have flat (not deep) dependency graphs, so blocking

JavaScript files do not trigger cascaded serial network fetches; instead, image downloads

have a larger blocking impact on load times.

Inference times: We find that Alohamora’s policy generation, which occurs during client page

loads, adds negligible delays to overall load times: median and 95th percentile inference times are

11 ms and 40 ms, respectively.

6.5 Additional results

Incremental deployment: Since origins make independent push/preload decisions with Alo-

hamora, we ran experiments to understand how Alohamora’s benefits vary with different adoption

rates. For each page in our corpus, we ordered the domains in the page according to the fraction

of objects that they contribute. We then ran experiments where only the top X% of origins used

Alohamora; origins not running Alohamora did not push/preload any objects. We also specifically

considered the case where only the top-level origin deployed Alohamora. As expected, Figure 9

reveals that benefits increase as more domains adopt Alohamora. However, we observe that sim-

ply having the top-level origin can achieve 56% of the potential (i.e., with 100% adoption) median

benefits.
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Figure 9: Percentage of potential benefits achieved when X% of origins in each page run Alo-

hamora. Results are for the {12 Mbps, 100 ms, 2x} setting. Bars show medians, with error bars

spanning 25-75 percentiles.

Cross-page clustering: To this point, the presented results considered Alohamora models that

were trained for a single page (across environments). In order to evaluate Alohamora’s ability to

train generalizable models across a site’s pages, we consider the three sites presented in §4 (Ta-

ble 1). For each site, we trained a single Alohamora model using only a single (randomly selected)

page from each cluster, and evaluated across all of the site’s pages. Alohamora’s cross-page mod-

els are able to achieve within 85-90% of the improvements achieved when training individually on

each tested page; this slight degradation comes with the significant benefit of improved training

efficiency.

Robustness to network errors: To generate push/preload policies, Alohamora’s models ingest

a variety of observations that collectively characterize the execution environment. While device

CPU and cache contents require zero approximation to collect, network measurements (bandwidth

and latency) can be noisy. We evaluated Alohamora’s ability to deliver speedups in the face of

noisy network value inputs by considering average bandwidth and latency errors of {1, 2, 3} Mbps

and {10, 20, 30} ms. We find that Alohamora’s generated policies are robust to such errors. For

instance, median PLT improvements dropped by only 3.4% and 4.6% in the {24 Mbps, 20 ms, 2x

CPU slowdown} environment with errors of 2 Mbps and 20 ms, respectively.
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7 Related Work

Server push systems: Numerous studies have explored the performance of HTTP/2 (formerly

SPDY), both with and without server push and preload [22, 21, 32, 23, 55, 1]. Like us, these

works have found mixed performance benefits due to the subtle relationships between HTTP/2 and

network characteristics, page composition, and TCP semantics. However, these prior efforts have

all investigated and promoted static policies and configuration guidelines. In contrast, Alohamora

leverages a data-driven approach to dynamically tune push/preload policies by explicitly factoring

in both page composition and the target execution environment.

Mobile-optimized pages: Certain sites cater to mobile settings by serving pages that in-

volve less client-side computation, fewer bytes, and fewer network fetches. For example, Google

AMP [52, 56] is a recent mobile web standard that requires developers to rewrite pages using re-

stricted forms of HTML, JavaScript, and CSS. Unlike AMP, Alohamora accelerates legacy web

pages without requiring developer effort. Further, Alohamora’s adaptive push/preload policies can

improve the performance of AMP pages because all page resources still must traverse a client’s

slow mobile access link.

Certain systems, most notably Prophecy [12], automatically rewrites web pages and returns

post-processed versions of objects to clients that reduce client-side computation and network costs.

Unlike Prophecy, Alohamora does not alter page content, which has proven to be highly error-

prone in practice [28]. Further, we note that Alohamora can accelerate Prophecy pages which

require at least one HTML file per frame, and unmodified image and style files—these are the

static files which Alohamora primarily targets for push/preload.

Proxy-based accelerators: Compression proxies [28, 57, 58, 59] compress objects in-flight

between clients and servers, while remote dependency resolution proxies [14, 2, 47, 60] perform

certain object fetches and computations on behalf of clients. Though performant, such accelera-

tion proxies violate the end-to-end security guarantees of HTTPS. WatchTower [2] addresses this

dilemma, but at a significant deployment cost, as each origin in a page must operate its own proxy.
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Alohamora avoids such security concerns by relying only on end-to-end HTTP/2 optimizations.

Prefetching: Prefetching systems predict user browsing behavior and optimistically download

objects prior to user page loads [61, 62, 63]. Unfortunately, such systems have witnessed minimal

adoption due to challenges in predicting what pages a user will load and when; inaccurate page

and timing predictions can waste device resources or result in stale page content [64]. In contrast,

Alohamora generates push/preload policies only after a user navigates to a page, and considers the

environmental conditions and page properties collected in situ.

Dependency-aware scheduling: Klotski [11] analyzes pages offline to identify high-priority

objects, and uses knowledge of network bandwidth and page structure to stream them to clients

before they are needed. Klotski’s dynamic prioritization hinges on global knowledge of object

fetches, which proxies provide at the cost of security; in contrast, Alohamora origins operate inde-

pendently, and leverage generalizable models which hedge against the decisions that other origins

may make. Polaris [10] uses a client-side request scheduler that reorders requests to minimize

the number of effective round trips in a page load without violating state dependencies. However,

unlike Alohamora, Polaris relies on clients to discover page resources, and thus cannot eliminate

certain serial fetches.

8 Conclusion

Configuring HTTP/2 push/preload policies has proven challenging, as benefits depend on complex

interactions between page, network, device, and browser properties. However, to date, systems

and guidelines have focused entirely on static policies that fail to generalize. This paper presents

Alohamora, a mobile web optimization system that dynamically generates HTTP/2 push/preload

policies using Reinforcement Learning. In order to practically realize this data-driven approach,

Alohamora introduces novel techniques that drastically reduce the number of pages that must be

considered for training, and the cost of training any one page—these benefits come without a drop

in model generalizability or potential benefits. Across a broad range of pages, networks, and device

conditions, we find that Alohamora accelerates default browsers and state-of-the-art push systems
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by 19-57% and 2-3x, respectively.
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