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Abstract

Tissue microstructure modeling of diffusion MRI signal is an active research area striving to 

bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such 

modeling in neuronal tissue relies on a number of assumptions about the microstructural features 

of axonal fiber bundles, such as the axonal shape (in, e.g., perfect cylinders) and the fiber 

orientation dispersion. However, these assumptions have not yet been validated by sufficiently 

high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron 

microscopy images in mouse brain corpus callosum, and introduced a random walker (RaW)-

based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of 

myelinated axons. Confirmed by a segmentation based on human annotations initiated with 

conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less 

time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related 

parameters (inner axonal diameter, distribution, along-axon variation, and myelin g-ratio), and 

orientation-related parameters (fiber orientation distribution and its rotational invariants; 

dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional 

histology studies and diffusion MRI measurements, while the reported diameter exceeds those in 

other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual 

diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining 
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window on the microstructure, and showed that the orientation-related metrics have negligible 

diffusion time-dependence over clinical and preclinical diffusion time ranges. However, the MRI-

measured inner axonal diameters, dominated by the widest cross-sections, effectively decrease 

with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. 

Furthermore, our 3d measurement showed that there is significant variation of its diameter along 

the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, 

while the “apparent” inner axonal diameters are sensitive to experimental settings, and cannot be 

modeled by perfectly cylindrical axons.
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3d axon segmentation; corpus callosum; fiber orientation distribution; axonal diameter 

distribution; g-ratio; diffusion coarse-graining; diffusion time-dependence

Introduction

Diffusion MRI (dMRI) is a noninvasive imaging modality that, by measuring the random 

motion of water molecules at NMR-accessible diffusion times (t ~ 1-1000 ms), is sensitive 

to length scales L(t) ~ 1-50 μm, comparable to cell sizes (Jones 2010; Novikov et al. 2018a). 

Several tissue models for dMRI have been proposed to specifically probe the neuronal 

microstructure, in order to estimate the axon orientation dispersion (Jespersen et al. 2010; 

Jespersen et al. 2007; Jespersen et al. 2017; Novikov et al. 2018c; Reisert et al. 2017; Ronen 

et al. 2014; Schilling et al. 2018; Sotiropoulos et al. 2012; Tariq et al. 2016; Zhang et al. 

2012) and the axonal diameter distribution (Alexander et al. 2010; Assaf et al. 2008; 

Barazany et al. 2009; Benjamini et al. 2016; Duval et al. 2015; Komlosh et al. 2013). To 

enable parsimonious dMRI modeling, assumptions have been made, which so far have not 

been fully validated by comparing against histology. In particular, axons are assumed to be 

circular cylinders for simplicity, and diameter variations along each axon are typically 

neglected (Alexander et al. 2010; Assaf and Basser 2005; Assaf et al. 2008).

The above perfect-cylinder assumption still needs to be confirmed with histology. So far, 

changes in axonal caliber or diameter have been reported as varicosities or boutons in 

unmyelinated axons of rat hippocampus and cerebellum (Shepherd et al. 2002) and of rat 

cortical neurons in vitro (Tang-Schomer et al. 2012), or as neurite beadings of rat sciatic 

nerves induced in vitro by stretching (Budde and Frank 2010). Recently, axonal diameter 

variations along myelinated axons have been observed in both normal and injured rat optic 

nerves (Giacci et al. 2018). Here, we acquired 3d high-resolution electron microscopy (EM) 

images of mouse corpus callosum, segmented myelinated axons, and estimated histology-

based tissue parameters, such as axonal size and its distribution and variation along the axon, 

as well as orientation dispersion.

Furthermore, dMRI measurements occur at finite diffusion time t, which acts as a coarse-

graining window (similar to a Gaussian filter) on the microstructure (Novikov et al. 2018a), 

such that the “apparent” dMRI metrics of microstructure may depend on t and other dMRI 

sequence parameters. Here, we simulated the effect of the diffusion MRI coarse-graining to 
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account for biases in comparisons of 2d and 3d histological results with dMRI 

measurements; such biases have never been accounted for before.

So far, previous studies focused on validating dMRI models in brain WM against histology, 

and reported multiple microstructure parameters, including the fiber orientation distribution 

(FOD) (Grussu et al. 2016; Mollink et al. 2017; Ronen et al. 2014; Schilling et al. 2016; 

Schilling et al. 2018), axon dispersion angle (Ronen et al. 2014), inner axonal diameter 

(Abdollahzadeh et al. 2017; Aboitiz et al. 1992; Caminiti et al. 2009; Kleinnijenhuis et al. 

2017; Liewald et al. 2014; Mason et al. 2001; West et al. 2015), and g-ratio (Abdollahzadeh 

et al. 2017; Kleinnijenhuis et al. 2017; Mason et al. 2001; Stikov et al. 2015; West et al. 

2015; West et al. 2016; Yang et al. 2016). In histology, size-related quantities, e.g., diameter 

and g-ratio, were estimated either by 2d (Aboitiz et al. 1992; Caminiti et al. 2009; Liewald et 

al. 2014; Mason et al. 2001; West et al. 2015) or 3d high-resolution EM images 

(Abdollahzadeh et al. 2017; Kleinnijenhuis et al. 2017). In contrast, the orientation-related 

metrics, e.g., FOD and dispersion angle, were evaluated either by 2d low-resolution 

polarized light images (4 μm/pixel, in-plane) (Mollink et al. 2017), light microscopy images 

(1-1.6 μm/pixel, in-plane) (Grussu et al. 2016; Ronen et al. 2014), or by 3d moderate-

resolution confocal microscopy images (0.42 μm/slice, through plane) (Schilling et al. 2016; 

Schilling et al. 2018). Although the tissue anisotropy index has been evaluated on 3d EM 

images (Salo et al. 2018), retrieving other orientation metrics, e.g., FOD, its rotational 

invariants and the dispersion angle, from 3d high-resolution EM images (≤ 0.1 μm/slice, 

through plane) has not yet been attempted.

Furthermore, definitions of tissue parameters differ between studies, both in histology and 

MRI, and need to be clarified before use. In particular, the orientation dispersion of axon 

bundles could be summarized by (1) the standard deviation (SD) of dispersion angles 

projected on a 2d plane (Ronen et al. 2014), by (2) rotational invariants and the root-mean-

square (rms) of the dispersion angle’s cosine for spherical harmonics (SH)-based methods 

(Jespersen et al. 2017; Novikov et al. 2018c; Reisert et al. 2017), or by (3) the normalized 

orientation dispersion index (ODI) of specific orientation distributions (e.g., Watson or 

Bingham distributions) (Schilling et al. 2018; Tariq et al. 2016; Zhang et al. 2012). In this 

study, we focus on the first two definitions to avoid introducing further assumptions on the 

functional form of the axon dispersion.

Similarly, axonal diameters have been estimated using various methods. To avoid 

overestimation of the inner axonal diameter caused by obliquely sliced axons, most of the 2d 

histological studies measured the inscribed circle diameter as the diameter estimate (Aboitiz 

et al. 1992; Caminiti et al. 2009; Liewald et al. 2014). Other histological studies adopted an 

equivalent circle diameter calculated by the cross-sectional area (West et al. 2015) or the 

short axis length of a fitted ellipse (Abdollahzadeh et al. 2017). In this study, we focus on the 

equivalent circle diameter since (1) the 3d axon structure is fully reconstructed and free from 

problems of oblique cross-sections, and (2) contours of the intra-axonal space and the 

myelin sheath might be different, leading to unreliable estimates of the g-ratio (ratio of inner 

to outer diameter) when using other definitions.
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Aside from ambiguous definitions of microstructural features, comparison between dMRI 

and histology depends on the experimental settings of the dMRI experiment. Indeed, the 

diffusion process can be approximately understood as a coarse-graining process, which is 

equivalent to smoothing the tissue microstructure (Novikov et al. 2018a; Novikov et al. 

2014) using a kernel of a width commensurate with the diffusion length L ∝ t. In other 

words, the diffusion times applied in dMRI measurements potentially affect the quantitative 

estimates between studies using different acquisition parameters; such important biases have 

never been accounted for.

Here, by analyzing segmented myelinated axons, we calculated both orientation-related and 

size-related axonal features based on definitions from either histology or MRI experiment, 

where the effect of varying diffusion time was simulated by applying a corresponding 

smoothing kernel, and demonstrated a non-trivial discrepancy between estimated 

microstructural characteristics from both definitions. In particular, we demonstrated by 3d 

high-resolution EM segmentation, for the first time, the influence of the diffusion time-

dependence on the orientation dispersion and the inner axon diameter.

To achieve our goals of quantifying sizes and orientations of WM axons, we had to develop 

a 3d segmentation algorithm. So far, many EM segmentation software tools have been 

released for segmenting gray matter images that use semi-automatic analysis with an 

interactive proofreading interface (Dorkenwald et al. 2017; Kaynig et al. 2015; Sommer et 

al. 2011). Such methods require abundant training data, for which generation is very labor-

intensive and time-consuming. In WM, however, appropriate EM segmentation methods are 

still limited (Abdollahzadeh et al. 2017; Kleinnijenhuis et al. 2017; Zaimi et al. 2018). To 

segment myelinated axons within acceptable processing time, we propose and validate here 

a semi-automatic segmentation algorithm depending on diffusion trajectories obtained by 

random-hopping on a cubic lattice bounded by a binary myelin mask, as a simplified version 

of the seeded-region-growing method (Abdollahzadeh et al. 2017; Adams and Bischof 

1994).

Materials and Methods

All procedures performed in studies involving animals were in accordance with the ethical 

standards of New York University School of Medicine. All mice were treated in strict 

accordance with guidelines outlined in the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals, and the experimental procedures were performed in 

accordance with the Institutional Animal Care and Use Committee at the New York 

University School of Medicine. This article does not contain any studies with human 

participants performed by any of the authors.

Animals and image acquisition

A female 8-week-old C57BL/6 mouse was perfused trans-cardiacally using a fixative 

solution of 4% PFA, 2.5% glutaraldehyde, and 0.1M sucrose in 0.1M phosphate buffer (PB, 

pH 7.4). The genu of corpus callosum (CC) was later excised from the midsagittal slice of 

the dissected brain, and the tissue was sampled from the central region of the genu and was 

fixed in the same fixative solution, followed by a PB containing 2% OsO4 and 1.5% 

Lee et al. Page 4

Brain Struct Funct. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



potassium ferrocyanide for 1 hour. The tissue was then stained with 1% thiocarbohydrazide 

(Electron Microscopy Sciences, EMS, PA) for 20min, 2% osmium tetroxide for 30min, and 

1% aqueous uranyl acetate at 4°C overnight. An En Bloc lead staining was performed at 

60°C for 30 min to enhance membrane contrast. The brain sample was dehydrated in alcohol 

and acetone, and embedded in Durcupan ACM resin (EMS, PA (Wilke et al. 2013)). The 

tissue sample was analyzed with a scanning electron microscope (SEM) (Zeiss Gemini 300 

SEM with 3View) at high-vacuum pressure, and 401 consecutive images of 6000 × 8000 

pixels were acquired, representing a volume of 36 × 48 × 40.1 μm3 with a voxel size of 6 × 6 

× 100 nm3.

Image processing and axon segmentation by Random-Walker algorithm (RaW)

We down-sampled the image to a resolution of 24 × 24 × 100 nm3 using Lanczos 

interpolation to lower the computational cost without compromising the segmentation 

accuracy. Further, we corrected the geometric distortion in slices disagreeing with the 

interpolation estimated from adjacent slices (two slices above and two slices below): The 

first 200 images (slice 1-200) showed no distortion, with an exception of one image with 

mild distortion corrected by using a non-linear deformation calculated with optical flow 

estimation (Sun et al. 2010; Sun et al. 2014). As the following 201 slices (slice 201-401) 

contained significantly more unusable slices with either intractable distortions, signal 

dropouts or complete signal loss, we excluded these from further analysis. Hence, we 

selected a subset of 200 slices (36 × 48 × 20 μm3 in volume) to rule out slices with 

intractable distortions (Fig. 1a).

To semi-automatically segment the intra-axonal space (IAS) of myelinated axons, we 

employed a random-hopping diffusion process, dubbed Random-Walker algorithm (RaW), 

as a simplified seeded-region-growing algorithm (Adams and Bischof 1994) applied on a 

binary mask: We manually seeded an initial position per axon within the central slice (451 

seeds in Fig. 1c), and filled the IAS by diffusion trajectories, obtained by random-hopping 

on a cubic lattice, of 4000 particles per axon with 640,000 steps. The diffusion trajectory is 

confined by a myelin mask (Fig. 1b) obtained by using a pixel-wise classifier (Sommer et al. 

2011). Segmented axons with an imperfect myelin mask were deleted by proofreading, 

resulting in an IAS mask of 321 segmented axons (59,231 axon cross-sections). The IAS 

segmentation was then completed by automatically seeding within the previously generated 

diffusion trajectories confined by the non-leaky myelin mask (Fig. 1d). The seeding density 

is a seed per ten slices for each axon, filled with 10,000 particles per seed with 40,000 steps. 

The IAS mask was down-sampled into (100 nm)3-resolution to further analyze axon 

geometries, e.g., fiber dispersion, axonal diameter, myelin thickness, and g-ratio.

All the processing was implemented in Matlab and accelerated by parallel computation with 

12 CPU cores. Total processing time, including the manual seeding, numerical computations 

and the proofreading, was 2 days.

Ground-truth axon segmentation

To compare RaW to ground-truth, the IAS of 97 selected axons was manually carved by 

K.Y. and J.P., using the Carving function (Straehle et al. 2011) in ilastik software package 
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(Sommer et al. 2011) as an initialization tool to speed up the brute-force manual 

segmentation process. Interactive seeded watershed segmentation was performed by ilastik 

with following settings:

1. Each 2d image (resolution = 24 × 24 nm2) was smoothed by a kernel with a size 

of 1.6 pixel (38.4 nm), and was filtered to enhance edges, e.g., cell membrane, 

mitochondria and myelin sheath.

2. Markers inside the IAS (object markers) and outside the IAS (background 

markers) were manually assigned in multiple slices to initiate the Carving 

process in ilastik and connect the IAS across the image layers. Markers were 

further added to refine or correct the initial segmentation while proofreading. 

This manual correction step was necessary, especially for mitochondria attached 

to the myelin sheath, and nodes of Ranvier.

The segmentation was further verified by H.-H.L. and F.L. . The total processing time was 

about 12 weeks.

The comparison of segmentations from both methods is based on the Jaccard index and the 

Sørensen-Dice index computed for individual IAS segmentations, and the foreground-

restricted Rand F-score (Vrand) and the information theoretic F-score (Vinfo) (Arganda-

Carreras et al. 2015) computed for IAS segmentations of all axons. The Jaccard index for 

each axon is the pixel number of the intersection divided by the pixel number of the union of 

IAS segmentations from both methods. The Sørensen-Dice index for each axon is the pixel 

number of the intersection divided by the average pixel number of IAS segmentations from 

both methods. The foreground-restricted rand F-score and the information theoretic F-score 

are closely related to the Rand index and the variation of information, respectively 

(Arganda-Carreras et al. 2015).

Inner axonal diameter

To quantify the effective axonal diameters or calibers from 3d histology, we aligned each 

axon’s main direction (denoted as zaxon) parallel to the z-axis, cut off 1 μm at both ends, in 

order to create the axon skeleton (a line connecting the center of mass of each slice), and 

calculated the cross-sectional area Ω for each slice perpendicular to the skeleton. Assuming 

an axon as a circular cylinder, its inner diameter is defined as the diameter of an equivalent 

circle with the same area: 2r ≡ 2 Ω ∕ π. The along-axon variation of inner diameter is then 

estimated by the coefficient of variation of equivalent circle inner diameter 2r(zaxon), i.e. 

CV(2r) ≡ SD(2r)
mean(2r) , along each axon’s main direction zaxon.

In addition, we also compared the various definitions for the inner axonal diameter, such as 

the short and long axis length of the fitted ellipse with its second-moments given by those of 

the axon cross-section, and the inscribed circle diameter calculated by employing the 

distance transform to the axon cross-section.

To simulate the microstructure coarse-grained by diffusion (Novikov et al. 2018a; Novikov 

et al. 2018b), the variation of the cross-sectional area along each segmented axon was 
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smoothed by a Gaussian kernel with a variance σ2 = L2/4 (Novikov et al. 2014), where L is 

the diffusion length 2Dt, D = 2 μm2/ms is a typical value for the intrinsic intra-axonal 

diffusion coefficient (Novikov et al. 2018c; Veraart et al. 2018a; Veraart et al. 2018b), and t 

= [1, 10, 100] ms are the characteristic diffusion times covering preclinical (~1-10ms) and 

clinical (~10-100ms) dMRI. The coarse-grained equivalent circle diameter was calculated 

accordingly.

Myelin sheath and g-ratio

Myelin sheaths of adjacent axons often touch each other, and are difficult to specify for each 

axon solely using the myelin mask. To segment each axon’s individual myelin sheath (Fig. 

1e), we overlapped the myelin mask and the expanded IAS segmentation (Kleinnijenhuis et 

al. 2017), which is dilated by a myelin thickness upper bound = 0.4 μm, a biologically 

plausible value for myelinated axons in the brain WM (see also Limitations, Discussion and 

Appendix A for further explanations). Cases of adjacent axons with touching myelin sheath 

are further segmented by applying a non-weighted distance transform and watershed on the 

binary mask including all of the segmented IAS.

Next, the outer diameter was estimated as 2r′ ≡ 2 Ω′ ∕ π, where the cross-sectional area Ω′, 

perpendicular to the axon skeleton, contains both the IAS and the myelin sheath. The along-

axon variation of outer diameter is estimated by the coefficient of variation of 2r′, i.e. 

CV(2r′) ≡ SD(2r′)
mean(2r′) , along each axon’s main direction. The g-ratio was defined as 

g ≡ r ∕ r′ = Ω ∕ Ω′ ≤ 1.

The above g-ratio estimations were calculated based on a myelin sheath segmentation using 

a myelin thickness upper bound = 0.4 μm. To further evaluate the influence of the myelin 

thickness upper bound on estimated g-ratio values, we varied the upper bound from 0.1 μm 

to 6 μm and calculated the g-ratio accordingly.

Fiber orientation distribution

For the segmented IAS of each axon, the axon skeleton connecting all centers of mass in 

each slice was computed. To mimic the microstructure coarse-grained by diffusion, the 

piecewise linear skeleton of each segmented axon was then smoothed by a Gaussian kernel 

with a variance σ2 = L2/4 used as in section Inner axonal diameter, Materials and Methods. 

For each degree of coarse-graining due to finite t, the tangent vector of the fiber skeleton was 

projected on a 3d triangulated spherical surface (Womersley 2017) to form the FOD, which 

was further decomposed with a spherical harmonics basis up to the order l = 10 to 

reconstruct the 3d glyph representation (Politis 2016).

Dispersion angle

The dispersion angle of axon segments was calculated by using definitions both in 2d and 

3d, in order to compare to the corresponding 2d histological observations and 3d dMRI 

measurements, respectively.

In conventional histology, e.g., 2d light or electron microscopy, each image is a 2d cross-

section of a 3d structure. To compare our results with previous 2d histological studies, we 
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projected all the axon segments onto a projection plane parallel to the bundle’s mean 

direction at an azimuthal angle ϕ, and calculated the projected dispersion angle θ2d(ϕ), 

defined by the standard deviation of angles between the projected segments and the mean 

bundle direction, along which we rotated the projection plane (see Appendix C for details).

The true dispersion angle should of course be defined in 3d. Given that the uniform measure 

on a sphere is given by d(cos θ), is it natural to employ the rms of cos θ and define an 

effective dispersion angle

θeff ≡ cos−1 cos2
θi , #(1)

where the individual axon segment’s dispersion angle θi is the angle between the axon 

segment’s direction and the bundle’s mean direction. We also define the differential 

azimuthally-dependent θeff(ϕ) calculated by only including axon segments oriented between 

ϕ ± Δϕ/2, where we choose Δϕ = 12°.

The above definition in terms of cos θ is also convenient in matching the spherical 

harmonics (SH)-based dMRI models (Dell'Acqua et al. 2007; Jespersen et al. 2010; 

Jespersen et al. 2007; Jespersen et al. 2017; Novikov et al. 2018c; Reisert et al. 2017; 

Tournier et al. 2007), where the diffusion signal is modeled in 3d by the convolution of a 

single fiber segment’s signal kernel with the FOD

�(n) ≃ 1 + ∑
l = 2, 4, …

∑
m = − l

l

plmY lm(n) , #(2)

decomposed in the SH basis Y
lm

(n), where plm are the SH coefficients. The rotational 

invariants pl are determined by the 2-norm of SH coefficients via (Novikov et al. 2018c; 

Reisert et al. 2017)

pl
2 =

1

�l
2 ∑

m = − l

l

∣ plm ∣2 , �l = 4π(2l + 1) . #(3)

The normalization factor �
l
 is chosen such that p0 ≡ 1 and pl ∈ [0, 1] for l > 0. The FOD of 

axon segments is contributed only by even orders l since the FOD has an antipodal 

symmetry. A convenient rotationally-invariant measure of the dispersion angle θp2 was given 

by (Novikov et al. 2018c)

θp2
≡ cos−1 cos2

θi p2
, #(4a)

Where
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cos2
θi

p2

≃
2p2 + 1

3
. #(4b)

This measure was inspired by the observation that for an axially-symmetric FOD in the fiber 

basis (z-axis along the mean direction), its only nonzero SH coefficients are pl0; the 2nd-

order SH p20 = �
l
· (3 cos2

θ − 1) ∕ 2 is given in terms of the 2nd-order Legendre polynomial 

averaged over the FOD. As the norm of SH coefficients for a given l is basis-independent, 

the above definition of θp2 can be computed in any basis. Its added value is that the 

invariants pl are directly estimated in the rotationally-invariant framework for the “Standard 

Model” (Novikov et al. 2018c; Reisert et al. 2017). The value of θp2 coincides with θeff for 

axially-symmetric FOD, and is practically close for single-fiber populations with relatively 

weak axial asymmetry, since both of their definitions are related with the rms of cos θi.

We note that (Reisert et al. 2017) proposed an empirical power law functional form for the 

axially symmetric FOD: pl = p0 · λl of the Poisson kernel, where p0 ≡ 1, and λ ∈ [0, 1] is a 

dispersion parameter. We tested the applicability of this Poisson kernel, which effectively 

corresponds to the multipole expansion of a Coulomb potential.

Results

The IAS segmentations using RaW are compared to the ground-truth manual segmentation 

initialized by the ilastik Carving function for evaluating the accuracy of our method (Fig. 2). 

Next, quantifications of axonal size in mouse brain CC are reported, including size-related 

metrics (g-ratio, and inner, outer axonal diameter in Figs. 3-4), orientation-related metrics 

(FOD in Fig. 5, dispersion angle and rotational invariants in Fig. 6), and their simulated 

time-dependence via coarse-graining for dMRI measurements.

RaW versus manual segmentation

Using RaW, we segmented the IAS of ~ 320 myelinated axons with ~ 59,000 cross-sections 

in total. Further, to validate RaW, we compared the segmentation results to a ground-truth 

consisting of 97 selected axons segmented manually with the initialization facilitated by the 

ilastik Carving function. The ground-truth IAS (Fig. 2a) covers the IAS entirely and includes 

the cytoplasm and organelles (also mitochondria attached to the myelin sheath by manual 

corrections). On the other hand, the IAS segmented using RaW (Fig. 2b) fails to cover 

organelles attached to the myelin sheath since these structures are often considered as part of 

the myelin mask segmented using the pixel-wise classifier.

The Jaccard index (Fig. 2d) and the Sørensen-Dice index (Fig. 2e) are the metrics to 

compare the IAS segmentations from the two methods. For most axons, both indices are 

high, manifesting the robustness of our random-hopping segmentation pipeline; this is also 

demonstrated by high values of similarity metrics in Table 1.
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Inner axonal diameter

Table 2 and Fig. 8 in Appendix B illustrate how estimating the inner axonal diameter is 

significantly influenced by the choice of definition, such as the equivalent circle diameter, 

the short and long axis length of the fitted ellipse, and the inscribed circle diameter. The 

median of the inscribed circle diameter provides the smallest diameter estimates = 0.66 μm, 

and, in contrast, the mean of the long axis length provides the largest diameter estimates = 

1.19 μm. The cross-section perpendicular to the skeleton has an average eccentricity of 0.64 

±0.15 (mean ± SD) and 0.65 (0.21) (median (Interquartile range, IQR)), indicating that 

axons are in general approximately elliptical, rather than circular or cylindrical.

Next, we used the equivalent circle diameter to evaluate the inner axonal diameter variation 

along each axon for diffusion times t = [1, 10, 100] ms (Fig. 3a-c), along with the 

corresponding diameter histogram (Fig. 3d) (see Inner axonal diameter, Materials and 

Methods for details of diffusion smoothing kernel). At short diffusion times (Fig. 3a), the 

axonal diameter varies a lot within each axon, whereas, at long diffusion times (Fig. 3c), 

axonal diameter variation is smoothed out within each axon. Therefore, the axonal diameter 

distribution at short diffusion times (blue curve in Fig. 3d) is slightly wider than that at long 

diffusion times (yellow curve in Fig. 3d).

Fig. 3e shows the time-dependences of the average diameter 2⟨r⟩ and dMRI-sensitive 

effective diameter 2reff, where reff
4 ≡ r

6 ∕ r
2  (Burcaw et al. 2015) is based on the signal 

attenuation in the wide-pulse limit (Neuman 1974), and ⟨…⟩ denotes averaging over fiber 

segments of all axons. The mean diameter 2⟨r⟩ showed no obvious time-dependence (Fig. 

3e); however, the dMRI-measured effective diameter 2reff, dominated by a sufficiently high-

order moment of the distribution, showed significant time-dependence, ~ 17% change, for 

diffusion time t ranging over 1-100 ms.

g-ratio

The histogram of the outer axonal diameter, inner axonal diameter, and the g-ratio are shown 

in Fig. 4a-c. Their mean ± SD is for the outer axonal diameter = 1.68 ± 0.45 μm, inner 

axonal diameter = 0.99 ± 0.42 μm, and g-ratio = 0.57 ± 0.09. For further comparisons with 

other studies, we also reported the median and the IQR in parenthesis for the outer axonal 

diameter = 1.61 (0.58) μm, inner axonal diameter = 0.90 (0.51) μm, and g-ratio = 0.57 

(0.13).

The dependency of g-ratio on the inner diameter (Fig. 4d) is consistent with previous studies 

and fitted well by the reported log-linear functional form (Berthold et al. 1983; Little and 

Heath 1994; West et al. 2015), where the myelin sheath thickness is proportional to the 

number of myelin lamellae nl = C0 + C1 · (2r) + C2 · ln(2r). The fit in our data (red curve in 

Fig. 4d) has corresponding parameters C0k = 0.35 μm, C1k = 0.006, and C2k = 0.024 μm, 

where k is the myelin lamellar width (repeat distance).

The above estimated g-ratio values were obtained using a myelin thickness upper bound = 

0.4 μm for the myelin sheath segmentation. However, the estimated myelin thickness and g-

ratio could be biased by choosing an inappropriate upper bound value (Appendix A, Fig. 7): 

Lee et al. Page 10

Brain Struct Funct. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A small upper bound could lead to a underestimated myelin thickness and an overestimated 

g-ratio, and vice versa.

In addition, the histogram of the along-axon variation of outer and inner axonal diameters 

are shown in Fig. 4e-f. Their mean ± SD is for the coefficient of variation of outer diameter 

= 0.17 ± 0.07, coefficient of variation of inner diameter = 0.28 ± 0.11. Their median (IQR) 

for the coefficient of variation of outer diameter = 0.16 (0.09), and coefficient of variation of 

inner diameter = 0.27 (0.16).

Fiber orientation distribution

The fiber skeleton was built based on the segmented IAS, with the fiber orientation 

calculated accordingly, and each axon’s skeleton was smoothed and displayed with a 3d 

view angle (Fig. 5a) or a 2d projection (Fig. 5b) for t = [1, 10, 100] ms. Longer diffusion 

time leads to a longer diffusion length and a wider smoothing kernel, and effectively 

smooths out each axon’s tortuous skeleton. The FOD, displayed either on a triangulated 

spherical surface (Fig. 5c) or by a SH-constructed 3d glyph up to the order of l = 10 (Fig. 

5d), indicates that longer diffusion time corresponds to a narrower fiber dispersion, which 

can be quantified by the dispersion angle in Fig. 6.

To compare with (Schilling et al. 2016) that applies a smoothing kernel of a 1 μm width, we 

also fitted the FOD of t = 1 ms (σ = 1 μm) to a Bingham distribution (Bingham 1974; 

Sotiropoulos et al. 2012), yielding fitting parameters κ1 = 19.2 and κ2 = 4.5. The orientation 

dispersion index, defined by (Mollink et al. 2017)

ODI1, 2 =
2
π

tan−1 1
κ1, 2

,

is ODI1 = 0.033 and ODI2 = 0.140.

Dispersion angle and rotational invariants

As the orientation of each fiber segment was known, we estimated the dispersion angle 

observed in 2d histology (θ2d) by projecting fiber segments on projection planes parallel to 

the main direction. The variation of the (cross-sectional) projected dispersion angle θ2d(ϕ) 

(Fig. 6a) and the effective dispersion angle θeff(ϕ) (Eq. (1), Fig. 6b) with respect to the 

azimuthal angle ϕ is hardly influenced by diffusion times t = [1, 10, 100] ms. Generally, 

θ2d(ϕ) varies between 8° to 23°, and θeff(ϕ) varies between 6° to 31°.

Further, we evaluated the dispersion angle of biophysical modeling of dMRI by analyzing 

the 3d orientation distribution of fiber segments (θeff) and its SH-based rotational invariants 

(θp2, pl). The time-dependence of rotational invariants (Eq. (3), Fig. 6c) is small for p2 

(3 %), moderate for p4 (11 %), and large for p6 (23 %) for t ranging over 1-20 ms, and is 

small for p2 (0.9 %), p4 (2.6 %) and p6 (4.7 %) for diffusion time > 20 ms.

To further display the time-dependence of the dispersion angle, we calculated the averaged 

dispersion angle of the three definitions for t ranging over 1-100 ms in Fig. 6d, where the 

averaged θ2d (rms of θ2d(ϕ) at ϕ = 1°, 2°, …,360°) decreases with the diffusion time, from 
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18.2° (t = 1 ms, σ = 1 μm) to 16.8° (t = 100 ms, σ = 10 μm); the dMRI-sensitive dispersion 

angle θeff (Eq. (1)), calculated by using all axon segments, demonstrates a similar time-

dependence, and is always larger than the corresponding histology-observed projected 

dispersion angle θ2d for all diffusion times; the dispersion angle θp2 (Eq. (4)), estimated by 

rotational invariants of the FOD, is slightly smaller than θeff and shows a similar time-

dependence as well. The reason of θp2 ≤ θeff is that the FOD’s axial asymmetry leads to 

contributions of m ≠ 0 terms to p2 values; therefore, ⟨cos2 θi⟩p2 is overestimated, and θp2 is 

underestimated, c.f. Eq. (4) and explanations right after. Generally, the time-dependence of 

dispersion angles (θ2d, θeff, θp2) is small (≈ 1.7° for t = 1-100 ms) and negligible for 

diffusion time > 20 ms.

Rotational invariants seem to obey a power-law in a range of l = 2, 4, …, 10 (Fig. 6e). 

However, this power-law behavior is not well-normalized and overshoots at l = 0. To 

compensate for that, a negative isotropic term needs to be introduced into the power-law, 

losing the simplicity of the Poisson kernel, i.e.

pl ≃ C ⋅ λ
l − (C − 1)δ0l , #(5)

where C is a constant ≥ 1, and δ0l is a Kronecker delta. In Fig. 6f, the dispersion parameters 

(λ,C) are obtained by using a linear fit of logpl with respect to l = 2-10. The base of the 

power-law is estimated via the slope log λ, and the predicted p0 is given by the intercept C 

at l = 0. By definition, p0 ≡ 1; yet, this power-law relation (λ ≈ 0.8) predicts a p0 > 1, as 

manifested by an intercept C (≈ 1.1-1.2) > 1 at l = 0. The time-dependence of dispersion 

parameters is small (Fig. 6f) for λ (7 %) and moderate for C (14%) for t ranging over 1-100 

ms.

Discussion

Quantifying microstructural features from histology is essential for the validation of 

biophysical modeling. Here, we evaluated MRI-relevant metrics of brain white matter, via 

3d high-resolution EM images, by quantifying the (inner) axon diameter, its distribution and 

variation along the axon, as well as the axonal dispersion, both in 2d and 3d. For that, we 

successfully segmented myelinated axons using a semi-automatic random-hopping-based 

algorithm. Effective diffusion time-dependence of the dMRI-relevant orientation-related and 

size-related tissue characteristics of the brain white matter microstructure is, for the first 

time, analyzed. The estimated dispersion angle of myelinated axons has negligible diffusion 

time-dependence at typical diffusion times observed with dMRI. In contrast, the estimated 

inner axonal diameter has a non-trivial time-dependence at diffusion times relevant for both 

pre-clinical and clinical diffusion imaging.

Here, we discuss our RaW algorithm as compared to a commonly used interactive 

segmentation tool, as well as how our results of size-related (g-ratio, inner axonal diameter) 

and orientation-related (FOD, dispersion angle, rotational invariants) tissue parameters 

compare to previous histological and MRI studies. Finally, we address some limitations of 

our methods.
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Segmentation methods (ground-truth and RaW)

Although ilastik greatly facilitates tracing of individual axons (one axon at a time), as in 

(Maco et al. 2014), it is still very labor-intensive to manually carve the segmentation. Each 

individual axon required much training data (object markers and background markers) in 

multiple slices, and the segmentation results change dynamically while new markers are 

added, increasing the load of proofreading.

In contrast, RaW algorithm is straightforward, and depends solely on the quality of the 

binary myelin mask. An imperfect myelin mask results in a segmentation (random-hopping 

trajectory) infiltrating into other axons or compartments, such as extra-axonal space. In this 

study, we successfully segmented ~ 70 % of axons crossing the central slice, and ~ 30 % of 

axons were deleted by the proofreading because of a leaky myelin mask. Our random-

hopping-based method minimizes the need of manual seeding and proofreading (e.g., 2 

days, ~ 320 axons/person), reducing hard labor and simplifying the segmentation pipeline, 

e.g. 12 weeks, ~ 100 axons/person for the ground-truth. The manual seeding step can be 

further automated by extracting the regional maxima from the distance transform map of the 

myelin mask and the dilated edges (Abdollahzadeh et al. 2017). Confirmed with the ground-

truth, RaW algorithm is robust and reliable to segment the IAS of myelinated axons. 

Mitochondria attached to the myelin sheath are deemed to be part of the myelin mask and 

therefore not delineated accurately, though it should be possible to separately identify the 

mitochondria using the semi-automatic pipeline incorporating superpixel-based simple-

linear-iterative-clustering (SLIC) method (Abdollahzadeh et al. 2017; Achanta et al. 2012).

One potential use of Raw is for machine-learning-based segmentation methods, where it is 

time-consuming to produce training, development, and test data set from 3d EM data. Using 

RaW method, we can rapidly generate enough data to train and validate other segmentation 

algorithms.

Inner axonal diameter distribution and along-axon variation

In this study, we first investigated the effect of different definitions of axonal diameters. 

While we used the equivalent circle diameter to evaluate inner and outer axonal diameters 

and the genuine g-ratio, the inner axonal diameter can also be estimated by other definitions, 

such as short and long axis length of the fitted ellipse, and the inscribed circle diameter 

(Table 2). In general, median diameters are smaller than mean diameters by 8-11 %; 

compared with the equivalent circle diameter, the short axis length is smaller by ~ 11 %, the 

long axis length is larger by ~ 21 %, and the inscribed circle diameter is smaller by ~ 26 %. 

The inscribed circle diameter was used as a diameter estimate in many histology studies 

(Aboitiz et al. 1992; Caminiti et al. 2009; Liewald et al. 2014), while some studies, on the 

other hand, did not mention their calculation methods of inner diameters. Hence, to 

unbiasedly compare diameter estimates between different studies, it is essential to clarify the 

definition used for diameter quantifications.

Compared to previous EM studies in mouse brain genu of CC, our inner diameter estimates 

(equivalent circle diameter) are larger by a factor of 1.1-2: 0.47 μm for 45-day-old mice in 

(Sturrock 1980), 0.88 μm for > 18-week-old mice in (Mason et al. 2001), 0.56 μm for adult 
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mice in (West et al. 2015) (age not specified), and 0.54 μm for an 8-week-old mouse in 

(Sepehrband et al. 2016a). This is potentially caused by differences in calculation methods 

(e.g., equivalent circle diameter, short axis length, and inscribed circle diameter) and the 

image quality.

Furthermore, it is of interest to consider the inner axon diameter distribution. Indeed, 

although the Gamma distribution is the most commonly used, the generalized extreme value 

(GEV) distribution was previously found to describe the diameter distribution better 

(Sepehrband et al. 2016a). This argument also holds in our data for the inner diameter 

distribution shown in Fig. 4b (fits to distributions are shown in Appendix B and Fig. 8), 

implying that the assumption of Gamma distribution may oversimplify the realistic 

distribution of inner axonal diameters.

To evaluate the dMRI modeling assumption of perfectly straight cylindrical axons, we 

calculated the along-axon coefficient of variation of inner (≈ 0.3) and outer (≈ 0.2) 

diameters, indicating that the diameter variation is not negligible. This observation, as well 

as the non-zero eccentricity of the axon cross-section (Abdollahzadeh et al. 2017), suggests 

that the assumption of perfectly cylindrical axons is potentially inapplicable to dMRI models 

of the brain, and needs to be further understood, also by studying the time-dependence due 

to diffusional coarse-graining, as discussed next.

To further understand this assumption, as well as understand the effect of diffusional coarse-

graining, we studied the diffusion time-dependence, and found that the MRI-sensitive 

effective diameter 2reff varies from 1.60 μm to 1.38 μm for t = 1-100 ms (Fig. 3e), showing 

that longer diffusion times leads to smaller estimates of the effective diameter 2reff as 

measured by dMRI. This non-trivial time-dependence of 2reff rejects the assumption of 

axonal shapes in perfect cylinders, which would imply no time-dependence of MRI-sensitive 

diameters. Our reported values of 2reff are slightly larger than values in a previous 

histological study (1.32 μm) (Sepehrband et al. 2016b). However, in previous MRI literature, 

the dMRI-measured diameter is larger than our 2reff estimation by a factor of ≥ 1.4, even 

when applying very strong diffusion-sensitive gradients ∣g∣ ≤ 1350 mT/m (Sepehrband et al. 

2016b). This discrepancy could be due to neglecting the diffusion time-dependence of the 

extra-axonal signal (Burcaw et al. 2015; De Santis et al. 2016; Fieremans et al. 2016; Lee et 

al. 2017), i.e. potentially due to misinterpreting the extra-axonal signal change as the intra-

axonal one. Furthermore, when applying strong diffusion gradients, the dMRI-measured 

diameter is further biased by neglecting the higher order ∣g∣4 corrections (Lee et al. 2017) to 

the intra-axonal model in (Neuman 1974).

g-ratio

We measured a relatively smaller histology g-ratio value ≈ 0.6, as compared to previous 

histological studies: 0.808 for > 18-week-old mice (Mason et al. 2001), 0.81 for adult mice 

(West et al. 2015) (age not specified), and 0.76 for 2-month-old mice (Yang et al. 2016). 

This could be caused by (1) the difference of changes in myelin structures during the EM 

processing (Kirschner and Hollingshead 1980), such as fixation and dehydration, and (2) 

potentially inaccurate segmentation of the myelin sheath. Since we only segmented some 

axons, instead of all, the watershed algorithm cannot avoid overestimation of the segmented 
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myelin sheath touching the myelin sheath of the unsegmented axons, leading to an overall 

overestimated myelin sheath thickness and a slightly underestimated g-ratio in our study.

Different definitions of g-ratio are used in the field of histology versus MRI, with the latter 

( gMRI ) sometimes being called the aggregate g-ratio , as defined by gMRI = 1 − MVF ∕ FVF

(Stikov et al. 2011), where MVF and FVF are the myelin volume fraction and the fiber 

volume fraction, respectively. However, while MRI models typically assume a single g-ratio 

value for the axons within an MRI voxel, we reported that the genuine g-ratio g from 

histology has a non-negligible variation over our sample size (Fig. 4c) which is much 

smaller than a typical MRI voxel (by an order of 100). In order to compare MRI 

measurement with histology, (West et al. 2016) proposed the following relation between the 

gMRI and the genuine histology g:

gMRI
2 =

g2
r
′2

r
′2

,

which corresponds to an estimated gMRI = 0.61 in this study, in agreement with the 

aggregate g-ratio = 0.62 for rat brain CC in (Abdollahzadeh et al. 2017) and aggregate g-

ratio = 0.69 for macaque brain CC in (Stikov et al. 2015).

FOD, dispersion angle, and rotational invariants

Our study presents a 3d EM-based extraction of fiber dispersion in the mouse brain genu of 

CC, and reports good agreement with dispersion estimated using confocal microscopy and 

light microscopy. In particular, the FOD at t = 1 ms (smoothed by σ = 1 μm) fitted to a 

Bingham distribution suggests a κ1 value (≈ 19), corresponding to small dispersion (e.g., 

single fiber dispersion), consistent with existing literature ~ 21 (Schilling et al. 2016), where 

the structure tensor analysis was applied to 3d stacks of confocal microscopy images in 

monkey brains by using a Gaussian kernel (standard deviation = 1 μm) to calculate spatial 

derivatives. In contrast, the κ2 value (≈ 5 in this study), related to large dispersion (e.g., fiber 

fanning), is different from the previous study ~ 12 (Schilling et al. 2016), probably 

influenced by the sampling site in CC.

In addition, the estimated 2d dispersion angle θ2d (Appendix C) is in agreement with 

previous 2d histological studies yielding a dispersion of ~ 18.1° for the human brain CC in 

(Ronen et al. 2014) and 17° for the rat brain CC in (Leergaard et al. 2010). Remarkably, the 

estimated 3d dispersion angle θp2 (Eq. (4)) based on rotational invariant p2 is also in 

agreement with the recently dMRI-estimated in vivo fiber dispersion ~ 26° in the human 

brain CC (Novikov et al. 2018c; Veraart et al. 2018b). Along directions with small fiber 

spread (ϕ ≈ −30° and 150° in Fig. 6a-b), the dispersion angle is ≈ 8° with ODI1 = 0.033, 

consistent with values estimated from confocal microscopy images of the CC (Schilling et 

al. 2018).

Theoretically, the 2d dispersion angle θ2d is smaller than the 3d dispersion angle θ3d (e.g., 

θeff, θp2): For a fiber bundle with an axially symmetric FOD, the 2d and 3d dispersion 

angles are related via (Appendix C)
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cos2
θ2d = ∣ cos θi ∣

≃ cos θ3d .

#(6)

For small dispersion angles, performing Taylor expansions for both sides of Eq. (6) leads to 

a simple relation θ2d
≃ θ3d

∕ 2.

Although the estimated FOD of our sample is not in perfectly axial symmetry (Fig. 5), the 

estimated 2d dispersion angles (Fig. 6d) can still be predicted by 3d dispersion angles via 

Eq. (6) with 7% error (Fig. 9b). With the knowledge of FOD’s rotational invariants pl of 

even order l, we can estimate the 2d dispersion angle with only 3% error caused by a lack of 

perfect axial symmetry in our FOD (Appendix C, Eq. (C3), Fig. 9b). The above simple 

relations between 2d and 3d dispersion angles help to compare recent studies (e.g., 3d 

histology, dMRI measurements) with previous 2d histological results.

Furthermore, the estimated dispersion angle is comparable between dMRI studies using 

different diffusion times, as we found the time-dependence of dispersion angles is minimal 

(~ 8 % for t = 1-100 ms in Fig. 6d). Similarly, for diffusion time > 20 ms, the time-

dependence of rotational invariants (p2, p4, p6) is minimal (0.9-4.7 % for t = 20-100 ms in 

Fig. 6c), confirming that the SH-based models estimate the genuine FOD shape, and the 

diffusional coarse-graining has negligible effects.

As initially proposed by (Reisert et al. 2017), we verified that the rotational invariants 

approximately obey a power-law (Poisson kernel) of the order l for 1 = 2-10, and found that 

this power-law behavior is not well-normalized and overshoots at l = 0 (Fig. 6e). The 

dispersion parameters (λ, C) defined in Eq. (5) are obtained by using a linear fit of log pl 

with respect to l = 2-10, whereby the fitted C > 1 indicates the overshoot of the power-law 

relation at l = 0 (Fig. 6f).

Limitations

This study may have some limitations that may be addressed in future research. First, the 

random-hopping-based segmentation method (RaW) may be further improved, as it depends 

strongly on the quality of the myelin mask. In particular, mitochondria directly attached to 

the inner myelin border are sometimes recognized as part of the myelin mask and need to be 

separately identified by other algorithms (Abdollahzadeh et al. 2017; Achanta et al. 2012). 

In addition, while segmenting the individual myelin sheath for each axon, we assigned an 

upper bound for the myelin thickness (Kleinnijenhuis et al. 2017) to limit errors in our 

segmentation. This upper bound could influence the g-ratio estimation (Appendix A, Fig. 7): 

A small upper bound leads to an under-segmented myelin sheath and a large g-ratio, and a 

large upper bound leads to an over-expanded myelin sheath and a small g-ratio. Determining 

the upper bound of the myelin thickness is crucial when evaluating the g-ratio and the actual 

myelin thickness.

Lee et al. Page 16

Brain Struct Funct. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Next, our EM sample is relatively small, as compared with other imaging techniques, such 

as light microscopy (Grussu et al. 2016; Ronen et al. 2014), polarized light imaging 

(Mollink et al. 2017), and confocal microscopy (Schilling et al. 2016; Schilling et al. 2018), 

and results based on EM segmentations could be less representative because of the limited 

field-of-view. Nonetheless, the size of our sample was large enough to study the effect of 

coarse-graining due to finite diffusion times as employed in dMRI, leading to relevant 

findings for interpreting this non-invasive imaging method.

Finally, in this study, we only focused on myelinated axons. Other structures, such as 

unmyelinated axons, astrocytes, and blood vessels, are also important and should be studied 

in further work to extend the current analysis.

Code sharing

The source codes of our segmentation pipeline and analysis tools can be downloaded on our 

github page (https://github.com/NYU-DiffusionMRI).

Conclusions

We quantified several axonal features related to the size and dispersion in a 3d SEM sample 

of the genu CC of mouse brain. For that, we developed a random-hopping-based 

segmentation method facilitating a 3d EM segmentation pipeline in brain white matter, and 

estimated the inner and outer axonal diameter as well as the myelin g-ratio according to 

various definitions by analyzing the cross-section perpendicular to the axon skeleton. 

Furthermore, non-trivial variations in inner and outer diameters are observed, implying that 

the assumption of perfectly cylindrical axons is inapplicable to dMRI modeling of the brain. 

This is further confirmed by our estimate of diffusional coarse-graining, showing that the 

diffusion time-dependence of the dMRI-derived axon diameter metric is non-negligible, as it 

leads to narrowing of the effective axonal diameter distribution and to a decrease of the 

effective MRI-derived axonal diameter. Besides size-related metrics, the 3d EM 

segmentation provides an accurate and reliable evaluation of the fiber orientation dispersion, 

and the calculated projected dispersion angle is compatible with previous 2d histological 

studies, as well as agreement of the estimated MRI-measured dispersion angle with previous 

MRI studies, with a very small diffusion time-dependence.
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Appendix A. The myelin thickness upper bound used for the segmentation 

could influence g-ratio estimations

The estimated g-ratio values could be influenced by the myelin thickness upper bound used 

for dilating the segmented IAS to further segment the myelin sheath (Myelin sheath and g-

ratio, Materials and Methods). In Fig. 7, six different upper bound values, varying from 0.1 

μm to 0.6 μm, are used to segment the myelin sheath and calculate the mean g-ratio, ranging 

from 0.77 to 0.55, indicating that the upper bound has to be carefully chosen for an accurate 

g-ratio estimation. A small upper bound (e.g., Fig. 7, upper left) could lead to a 

underestimated myelin thickness and an overestimated g-ratio; in contrast, a large upper 

bound (e.g., Fig. 7, upper right) could lead to an overestimated myelin thickness and a 

underestimated g-ratio.

Appendix B. Axonal diameter estimates per various definitions

In this section, distributions of axonal diameters are shown based on different definitions, 

such as equivalent circle diameter (Fig. 8a), short and long axis length of the fitted ellipse 

(Fig. 8b-c), and inscribed circle diameter (Fig. 8d). To compare with a previous study 

(Sepehrband et al. 2016a), we fitted the axonal diameter histogram to Gamma distribution 

and generalized extreme value (GEV) distribution in Fig. 8, which shows that GEV 

distribution fits better to the experimental diameter distribution (of all four definitions) than 

Gamma distribution does, consistent with the conclusion in (Sepehrband et al. 2016a). Also, 

GEV distribution has a longer tail than Gamma distribution does for thick axons in 

diameters > 3-5 μm, manifested by semi-logarithmic plots of diameter distributions in the 

bottom row of Fig. 8.

Appendix C. Relations between 2d and 3d dispersion angles

The purpose of this Appendix is to relate the 2d dispersion angle θ2d derived from 2d 

histology (using, e.g., structure tensor) to the 3d dispersion angle θ3d (defined, e.g., as θeff or 

θp2 in the main text). It is quite obvious that, generally, θ2d ≤ θ3d, since the projection onto a 

plane removes part of the orientational variance (in the direction transverse to that plane). 

Here we address this relation quantitatively, and also estimate the 2d dispersion angle in 

terms of the 3-dimensional FOD’s SH coefficients and rotational invariants.

Aligning the z-axis with the main direction of a fiber bundle, the i-th fiber segment is 

defined by the polar and azimuthal angles (θi, ϕi). Its 2d projection angle θ
i
′ = θ

i
′(θ

i
, ϕ

i
) within 

a plane (e.g., x-z plane in Fig. 9a) parallel to the main direction (z-axis), can be determined 

as
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cos θ
i
′ =

z

x
2 + z

2
=

cos θ
i

sin2
θ
i
cos2

ϕ
i
+ cos2

θ
i

.

We now define the 2d dispersion angle. One can average the above θ
i
′ over the FOD,

θ2d
2 ≡ θ

i
′2 ,

such that

cos2
θ2d

= cos2
θ
i
′2 ≃ 1 − θ

i
′2 ≃ cos2

θ
i
′ ,

or, alternatively, adopt the above Taylor approximation as a definition, since it is actually 

more natural to average cos2 θ2d rather than the angle itself, as cos2 θ2d corresponds to the 

structure tensor component.

The FOD average will be performed in two steps. First, we average cos2
θ

i
′ over the azimuthal 

angle ϕi. This can be explicitly done if the FOD is axially-symmetric. We also note that 

random histological sampling performed on a sufficiently large scale effectively performs 

such azimuthal averaging. The uniform averaging can be performed exactly for any fixed θi:

cos2
θi′

ϕ
i

≡ ∫
0

2π

cos2
θi′

dϕi

2π
= ∣ cos θi ∣ . #(C1)

Hence, we explicitly see that the azimuthal 2d dispersion variance is given by the first power 

of cos θi, which is greater than the 3d variance cos2 θi, corresponding to a narrower 2d 

dispersion, θ2d ≤ θ3d, cf. Eq. (6) of the main text.

At the second step, we average Eq. (C1) over the remaining polar angle θi to obtain cos2 θ2d 

= ⟨∣ cos θi ∣⟩. We can already see that for narrow FODs, Taylor-expanding up to θ
i
2 ≃ θ3d

2 , 

we find θ2d
≃ θ3d

∕ 2, which is just a statement that the variance of the axial radius ⟨x2 + 

y2⟩ = 2⟨x2⟩ is given by twice the variance of its x- or y-coordinate. Note, however, that this 

approximation ceases to be correct for the higher orders of θ, essentially because of the 

nontrivial denominator x
2 + z

2 in the definition of cos θ
i
′, as opposed to x

2 + y
2 + z

2 = 1.

To estimate the 2d dispersion angle based on FOD’s SH coefficients plm in Eq. (2), we 

average the right-hand side of Eq. (C1) where only the m = 0 SH contribute due to the axial 

symmetry. Using Eq. (2) and Y
l0(θ) = 2l + 1

4π
P

l
(cos θ), where Pl(cos θ) are the Legendre 

polynomials, we obtain
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cos2
θ2d ≃ cos2

θi′ = ∫
−1

1
∣ cos θi ∣ �(n) ⋅

1
2

d(cos θi)

=
1
2

+ ∑
l = 2, 4…

∞

pl0 ⋅
2l + 1

4π
⋅ ∫

0

1
z Pl(z) dz,

#(C2)

where the integral

∫
0

1
zP

l
(z) dz =

( − 1)l ∕ 2 + 1

(l − 1)(l + 2)
⋅

(l − 1)!!
l!!

, l = 2, 4, . . .

can be evaluated using the generating function of Legendre polynomials 

1

1 − 2tz + t
2

= ∑
l
P

l
(z)tl, such that ∫ 0

1 z

1 − 2tz + t
2

dz = ∫ −∞
∞ dλ

π
∫ 0

1
zdz e

−λ
2(1 − 2tz + t

2) and the 

subsequent integral is reduced to a few Euler’s Gamma functions.

Finally, we use the definition in Eq. (3) to express pl0 via the rotational invariants pl when 

the other m ≠ 0 FOD harmonics are either zero (axial symmetry) or negligible. As a result, 

we find

cos2
θ2d ≃

1
2

+ ∑
l = 2, 4…

∞

pl ⋅
( − 1)l ∕ 2 + 1(2l + 1)

(l − 1)(l + 2)
⋅

(l − 1)!!
l!!

. #(C3)

It is important to note that the 2d dispersion angle θ2d appears to depend on the SH and 

rotational invariants pl with all l, in contrast to the 3d dispersion angle cos2 θ3d = (2p2 + 1)/3 

in Eq. (4), which only involves the irreducible representation of the SO(3) group of rotations 

with the weight l = 2. It is quite obvious that the 3d definition of the dispersion angle is more 

natural (after all, the FOD is a 3-dimensional object), and mathematically, it is a better 

quantity since it only depends on the l = 2 invariant, and does not mix the irreducible 

representations of SO(3). The above equation gives the precise way to compare 2d and 3d 

FOD estimates.

Fig. 9b shows that the predicted 2d dispersion angle based on rotational invariants and Eq. 

(C3) is close to the value calculated by projecting fiber segments on 2d planes, with only 3% 

error due to a lack of perfect axial symmetry of our FOD.
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Fig. 1. 

The semi-automatic IAS segmentation pipeline. (a) A tissue sample of genu in CC, in a 

volume of 36 × 48 × 20 μm3, was acquired by sequential SEM. (b) The myelin mask (red) 

was obtained by using a pixel-wise classifier for further segmentation of the intra-axonal 

space (IAS). (c) Seeds (red dots) for random diffusion grid-hopping process were assigned 

manually over one central slice (451 seeds). The random-hopping trajectory was bounded by 

the myelin mask in (b). (d) IAS (colors) was filled by all random-hopping trajectories (321 

segmented IAS). The IAS from axons with leaky myelin mask has been excluded by 

proofreading. (e) The individual myelin sheath (colors) is the overlap of the myelin mask 

and the expanded IAS dilated by ≤ 0.4 μm. Touching myelin sheaths of adjacent axons are 

separated based on a non-weighted watershed algorithm. (f-g) By transforming each 

segmented IAS and individual myelin sheath into polyhedrons, it is feasible to perform 

numerical simulations in such 3d realistic microstructure
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Fig. 2. 

IAS segmented (a) manually with the initialization facilitated by the ilastik Carving function 

(blue pixels), (b) by using RaW (red pixels), and (c) the intersection of both methods (yellow 

pixels) in a representing slice. The histogram of the (d) Jaccard index and the (e) Sørensen-

Dice index for the comparison of IAS segmentations from the two methods. The scale bar in 

(a-c) is 4 μm
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Fig. 3. 

The inner axonal diameter (2r) variation, estimated by the cross-sectional area perpendicular 

to the skeleton and displayed along the main direction of each axon (zaxon), was smoothed 

by a Gaussian kernel mimicking the diffusion process with an effective diffusion time t = (a) 

1 ms. (b) 10 ms, and (c) 100 ms. (d) The diameter histogram becomes narrower with longer 

diffusion time. (e) The average diameter 2⟨r⟩ has no significant time-dependence, whereas 

the dMRI-sensitive effective diameter 2reff, where reff
4 = r

6 ∕ r
2  (Burcaw et al. 2015), has 

a non-trivial time-dependence for diffusion time t < 50 ms
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Fig. 4. 

The histogram of (a) outer axonal diameter, (b) inner axonal diameter, and (c) genuine g-

ratio. The relation of g-ratio and inner diameter is shown in (d) as a 2d histogram, fitted by 

the log-linear equation (red curve) proposed by (Berthold et al. 1983). The histogram of (e) 

coefficient of variation (CV) of outer axonal diameter and (f) CV of inner axonal diameter 

show that axons are not perfect cylinders of CV(diameter) = 0.
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Fig. 5. 

(a) The skeleton of each segmented axon is smoothed to mimic the diffusion time-dependent 

coarse-grained microstructure along each axon’s main direction with diffusion time t = [1, 

10, 100] ms. (b) The skeleton of each segmented axon in (a) was viewed from another view 

angle. Each axon becomes effectively straighter for longer diffusion times. (c) The FOD of 

tangent vectors of all axon segments, starting at the center of a unit sphere, shows the 

intrinsic axonal dispersion. The unit of the colorbar is steradian−1. (d) The 3d FOD glyph 

was generated by fitting the FOD in (c) to spherical harmonics up to the order of l = 10. 

Arrows in (c) indicate the view angle for FOD glyphs in (d)
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Fig. 6. 

(a) Projected dispersion angle θ2d(ϕ) and (b) dMRI-sensitive dispersion angle θeff(ϕ) (Eq. 

(1)), calculated within a bin width Δϕ = 12°, with respect to the azimuthal angle ϕ at 

diffusion time t = [1, 10, 100] ms. (c) The rotational invariants (P2, P4, P6 in Eq. (3)) show a 

small time-dependence for diffusion time t = 20-100 ms. (d) The dispersion angle averaged 

over all ϕ shows a time-dependence of ≈ 1.7° for diffusion time t = 1-100 ms. (e) Rotational 

invariants pl with respect to the even orders l = 2, 4, …, 10 at diffusion time t = [1, 10, 100] 

ms. (f) Dispersion parameters of the modified power-law relation (λ, C in Eq. (5)) obtained 

by using a linear fit of log pl with respect to l = 2-10 for diffusion time t = 1-100 ms

Lee et al. Page 30

Brain Struct Funct. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 

The artificial upper bound applied for myelin sheath segmentation influences the estimated 

mean g-ratio. A small upper bound for the myelin thickness leads to under-segmented 

individual myelin sheaths (top left, upper bound = 0.1 μm). In contrast, a large upper bound 

causes over-expanded individual myelin sheaths (top right, upper bound = 0.6 μm). In this 

study, an upper bound of 0.3-0.4 μm results in appropriate individual myelin sheaths (top 

middle, upper bound = 0.4 μm).
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Fig. 8. 

The distribution of axonal diameters, defined by (a) equivalent circle diameter calculated 

from the cross-sectional area, (b) short axis length and (c) long axis length of the fitted 

ellipse, and (d) inscribed circle diameter. The upper row shows an exemplified axon cross-

section (gray area) and the corresponding diameter estimates (double-arrowed lines). The 

middle row shows experimental diameter distributions (gray bars) and the fits based on the 

Gamma distribution (red) and the generalized extreme value distribution (GEV) (blue). The 

bottom row is the middle row displayed in a semi-logarithmic scale for experimental data 

(data points) and the fits (solid lines)
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Fig. 9. 

(a) Considering a fiber bundle with its main direction aligned to the z-axis, the 3d dispersion 

angle θ3d is defined by the fiber segment (black) orienting into (θi, ϕi) in 3d space, and the 

2d dispersion angle θ2d is defined by the fiber segment projection (red) on a 2d plane (e.g., 

x-z plane) with a 2d projection angle θ
i
′. (b) The 3d dispersion angle (e.g., θρ2 in Eq. (4)) is 

larger than the 2d dispersion angle as in Fig. 6d. The prediction of 2d dispersion angle based 

on FOD’s rotational invariants up to the order l = 20, Eq. (C3) (red solid line), has a 3% 

error. Similarly, the prediction based on the 3d dispersion angle (e.g., θp2), Eq. (6) (blue 

dash-dotted line), has a 7% error. These errors are potentially caused by the axial asymmetry 

in our FOD, as shown in Fig. 5.
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Table 1.

Similarity metrics to compare IAS segmentations of the ground-truth and RaW

Similarity metric IAS segmentations (ground-truth, RaW)

Jaccard Index 0.85

Sørensen-Dice index 0.92

Vrand 0.68

Vinfo 0.89
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Table 2.

Inner axonal diameter of myelinated axons, calculated by the equivalent circle diameter (cross-sectional area), 

the short axis length and the long axis length of the fitted ellipse, and the inscribed circle diameter. Standard 

deviation (SD) and interquartile range (IQR) are shown in the parenthesis

Inner axonal diameter (µm)

Mean (SD) Median (IQR)

Equivalent circle diameter = = 2 Ω ∕ π 0.99 (0.42) 0.90 (0.51)

Short axis length 0.88 (0.38) 0.80 (0.47)

Long axis length 1.19 (0.50) 1.10 (0.63)

Inscribed circle diameter 0.74 (0.34) 0.66 (0.41)
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