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Along but beyond mean-variance: 
Utility maximization in a semimartingale model 

Bank of Finland Research 
Discussion Papers 5/2008 

Heli Huhtala 
Monetary Policy and Research Department 
 
 
Abstract 

It is well known that under certain assumptions the strategy of an investor 
maximizing his expected utility coincides with the mean-variance optimal 
strategy. In this paper we show that the two strategies are not equal in general and 
find the connection between a utility maximizing and a mean-variance optimal 
strategy in a continuous semimartingale model. That is done by showing that the 
utility maximizing strategy of a CARA investor can be expressed in terms of 
expectation and the expected quadratic variation of the underlying price process. 
It coincides with the mean-variance optimal strategy if the underlying price 
process is a local martingale. 
 
Keywords: mean-variance portfolios, utility maximization, dynamic portfolio 
selection, quadratic variation 
 
JEL classification numbers: G11, C61 
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Keskiarvo-varianssiportfoliosta hyödyn 
maksimointiin: portfolion optimointi 
semimartingaalimallissa 

Suomen Pankin keskustelualoitteita 5/2008 

Heli Huhtala 
Rahapolitiikka- ja tutkimusosasto 
 
 
Tiivistelmä 

Kuten hyvin tiedetään, tiettyjen oletusten vallitessa sijoittajan keskiarvo-varians-
siltaan optimaalinen strategia on myös hyödyn maksimoiva strategia. Tässä tutki-
muksessa osoitetaan, että nämä kaksi strategiaa eivät jatkuvassa semimartingaali-
mallissa ole yleisesti samat. Samalla löydetään yhteys strategioiden välillä. Tämä 
tehdään näyttämällä, että sijoittajan hyödyn maksimoiva allokaatio voidaan esittää 
tuoton odotusarvon ja odotetun kvadraattisen variaation funktiona. 
 
Avainsanat: odotusarvo-varianssiportfolio, hyödyn maksimointi, dynaaminen 
portfolion valinta, kvadraattinen variaatio 
 
JEL-luokittelu: G11, C61 
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1 Introduction

Considering recent development in portfolio optimization methods in
stochastic finance it is surprizing how widely used the classical mean-variance
optimization methods introduced by Markowitz (1952) still are among
practioneers. Criticism on the mean-variance approach is well known (see
f.ex. Philippatos, 1979) and wide spread especially among theorists, but the
approach is still a standard in the financial industry. It is considered as a good
enough an approximation of the true optimal portfolio because the trade-off
between using a simplistic model that is computationally efficient and easy
to understand and a sophisticated model that is hard or impossible to solve
usually favors using the mean-variance model.
The assumption of log-normally distributed returns is a close

approximation for many asset classes like government bonds or currencies of
major industrial countries. But in recent years the development of financial
markets has increased the use of more structured products, products with
credit risk and even products whose structure is unknown to the investor
at the time of investment. A typical example of the latter is a hedge fund
investment where the investor gives the portfolio manager full discretion on
the investment. When return distributions are skewed and fat tailed, or when
the distribution is fully unknown to the investor, use of variance as a measure
of risk is hardly justified anymore.
As an alternative to the mean-variance method the investor could try

to use the results from stochastic finance, where the solution of the utility
maximization problem is well understood even in a general semimartingale
incomplete market setting (see Schachermayer, 2001, and references therein).
Solution to the problem is presented as a density process of an equivalent
martingale measure and as a consequence the stochastic finance literature has
been concentrated on finding the optimal martingale measure (see Gundel,
2004, and references therein). Usually the portfolio optimization problem is
first tried to be solved directly and if that fails, the dual problem is formulated.
The solution of the problem involves specifying the true underlying market
model and solving for the density of the equivalent martingale measure, wich
can be a burdensome task (see f. ex. Musiela, Rutkowski, 2005).
The aim of this paper is to some part fill the gap between mean-variance

optimization and utility maximization. Firstly we want to to introduce a
criteria for portfolio selection (or asset allocation) that is easily applicable but
at the same time theoretically more general and resulting in higher utility
than the mean-variance approach. In the process of doing that we will reach
our second goal which is to build a bridge between the two optimization
approaches. The bridge turns out to be the measure of uncertainty, which in
our setting will be revealed as expected quadratic variation of the underlying
process in contrast to variance of the underlying model in the mean-variance
approach.
This paper is mainly inspired by a recent paper of Xia (2005) where it is

shown that in a semimartingale model with bankruptcy prohibition a portfolio
minimizing a quadratic loss function coincides with a mean-variance optimal
portfolio. In this paper we want to extend the analysis to a wider class of
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utility functions and market models. By making the approach more general
we will lose the equivalence of the two portfolios but, to caompensate, we will
find the connection between them.
Other recent comparisons of utility maximization and mean-variance

optimality include work from Ottucsak and Vajda (2004) who have studied
the difference in utility derived from the two optimization methods with
logarithmic utility and certain assumptions on the price process using methods
from asymptotic statistics. In another context Christensen and Platen (2005)
take a different viewpoint to the problem and consider utility derived from
different allocation rules. Their result is a general remark that Sharpe ratio
based investment (that is essentially based on the mean-variance criteria) is
not utility maximizing.
The main results of this paper are presented in Theorem 13 and in

Corollary 16. The first result presents the optimal strategy of a utility
maximizing investor as a function of the expected drift and expected quadratic
variation of the underlying process. The result gives us an explicit way
of describing the optimal asset allocation that does not require us to know
the true stochastic structure of the underlying model. Instead, we can
directly model quadratic variation of the price process, which presents us
the potential of the process to move. The second result relates to the
observation made by Xia (2005) by comparing the optimal strategies of
mean-variance and utility maximizing investor in a semimartingale framework.
Decomposing the underlying stochastic process into a martingale component
and a predictable process of bounded variation enables us to prove that in
our set up mean-variance optimal portfolio coincides with the (cara-) utility
maximizing portfolio if the underlying price process is a local martingale.
The relevance of the results in this paper is both theoretical and practical.

On theoretical side it becomes apparent that as the optimal allocation can be
described by expected drift and quadratic variation of asset prices, we can focus
on path properties of the underlying price process instead of the stochastic
structure of the underlying model. On practical side the result provides for a
compact and easily applicable way of expressing the optimal allocation. Using
the method presented here one can increase expected utility of the terminal
wealth without complicating the optimization procedure when compared to
the mean-variance approach. In practice the only difference in optimization
will be that instead of estimating variance of the underlying model one has
to estimate quadratic variation of the path of the process. When estimating
variance we have to make assumptions of the distribution of returns for all
ω ∈ Ω whereas when estimating quadratic variation we are only dealing with
one particular realization ω̇ of the true model, which means that we need to
make fewer assumptions to construct the optimal portfolio.
Because quadratic variation can be interpreted as squared length of the

path of a process we are directly handling the uncertainty related to the
underlying asset. By modelling and estimating quadratic variation we have
means to treat the problem of higher moments. That gives new possibilities
in managing risk borne from non-normally distributed asset classes like credit
and event risk.
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The structure of the paper is as follows. In section 2 we specify the
model and present the basic framework of utility maximization that is used in
stochastic finance. In section 3 we transform the general utility maximization
problem into an equivalent asset allocation problem. Through the equivalence
we will be able to specify the structure of the optimal strategy. In section 4
we show how the problem can be solved recursively by optimizing the value
process of the portfolio. We also give a criterion according to which the
optimal strategy will be selected. In section 5 we construct a sequence of
simple strategies converging to the optimal strategy process. With the help of
the simple strategies we are able to present the utility maximizing strategy is
closed form as a mean — expected quadratic variation — optimal portfolio. In
section 6 we study the relationship between variance and quadratic variation
with some examples. Section 7 concludes.

2 Market model

We denote by S = ((Si
t)0≤t≤T )0≤i≤d the price process of the d risky assets

and suppose that the price of the riskless asset S0 is constant, S0 ≡ 1. The
process S is assumed to be a semimartingale adapted to a filtered probability
space (Ω,F , (Ft)0≤t≤T ,P) satisfying the normal assumptions of completeness
and right continuity. The time horizon is assumed to be finite and denoted by
T .
A portfolio of assets is defined as a pair (x,H), where the constant x ∈ R0+

is the initial wealth of the investor and H = ((Hi
t)0≤t≤T )0≤i≤d is the called the

strategy process of the investor. H is assumed to be a predictable S-integrable
process specifying the amount of each asset held in the portfolio. The strategy
process is assumed to be self-financing so that the value process of the portfolio
is given by

Vt = x+

Z t

0

HudSu, 0 ≤ t ≤ T (2.1)

We exclude doubling strategies by limiting the portfolio value process from the
downside

(H · S)t :=
Z t

0

HudSu ≥ −C, for 0 ≤ t ≤ T, C ∈ R+ (2.2)

The set of S-integrable strategies satisfying (2.1) and (2.2) is denoted by H.
We denote byMe(S) the set of measures Q equivalent to P (denote Q ∼ P)

such that for each admissible integrandH the processH ·S is a local martingale
under Q. As is stated in Delbaen and Schachermayer (1994) the condition of
no arbitrage in the market is equivalent to the condition that the setMe(S) is
non-empty. So we use the words ‘no arbitrage’ in the meaning ‘no free lunch
with vanishing risk’ in the terminology of Delbaen and Schachermayer. In this
paper we assume that the setMe(S) is non-empty.
We define a function w 7→ U(w) modeling the investor’s utility from wealth

w at the terminal time T , with the following standard properties
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Definition 2.1 The utility function U : R→ R ∪ {∞} is assumed to be
increasing, continuous on {U > −∞}, differentiable and strictly concave in
the interior of {U > −∞} and satisfy the Inada conditions

U 0(w̄) := lim
w→w̄+

U 0(w) =∞ (2.3)

and

U 0(∞) := lim
w→∞

U 0(w) = 0 (2.4)

where w̄ refers to the domain in which the utility function U is defined:
dom(U) =]w̄,∞[, that is the interior of {U > −∞}.
Definition 2.2 The dual function Ũ related to a utility function U satisfying
assumptions (2.3) and (2.4) in Definition 1 is defined by

Ũ(x) = sup
ξ∈R
(U(ξ)− xξ), x > 0 (2.5)

The dual function Ũ is finitely valued, differentiable, strictly convex on ]0,∞[
and it satisfies

Ũ 0(0) = lim
x↓0

Ũ 0(x) = lim
x↓0
sup
ξ∈R
(U 0(ξ)− xξ) = −∞

lim
x→∞

Ũ(x) = lim
v→0

U(v) and lim
x→∞

Ũ 0(x) = 0, when dom(U) = R+ and

lim
x→∞

Ũ(x) =∞ and lim
x→∞

Ũ 0(x) =∞, when dom(U) = R

The inverse function −Ũ 0(y) will be denoted by I following Karatzas, Lehocky,
Shreve and Xu (1991).

We will present the results in this paper for a specific class of utility functions
defined via the Arrow-Pratt coefficient of absolute risk aversion as follows

Definition 2.3 The Arrow-Pratt coefficient of absolute risk aversion at level
x is defined as

α(x) = −U
00(x)

U 0(x)

For an investor with constant absolute risk aversion we have

α(x) = c, c > 0

which implies (up to affine transformations) a utility function called cara
utility that is of the form

U(x) = −e
−cx

c
(2.6)

The class of utility functions of the form (2.6) will be denoted by Uc
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Relating with a utility function U ∈ Uc the conjugate function Ũ and its
inverse I are of the form

Ũ(y) =
y

c
(ln(y)− 1), c > 0

I(y) = −Ũ 0(y) = −1
c
ln(y) (2.7)

With notation defined above the general utility maximization problem can be
stated as

sup
H∈H

EP[U(x+ (H · S)T )] subject to (2.8)

EQ[(H · S)T )] = x

Utility derived from optimizing (2.8) can be expressed by a value function

Û(x) := sup
H∈H

EP[U(x+ (H · S)T )], x ∈ dom(U), U ∈ Uc (2.9)

For any utility function satisfying assumptions in definition (1) and H ∈ H we
know that Û in (2.9) is also a utility function (see Schachermayer, 2001).
For the analysis we shortly present two very fundamental concepts

of stochastic analysis, stochastic exponent and quadratic variation of a
semimartingale. They are both analyzed in much more detail in any standard
textbook of modern probability like Protter (1990).

Definition 2.4 For a continuous semimartingale X, X0 = 0, the stochastic
exponent of X (denoted by E(X)) is the unique semimartingale Zt satisfying
the equation Zt = 1 +

R t
0
Zs−dXs. E(X) is given by

E(X)t = exp(Xt − 1
2
[X,X]t)

Definition 2.5 For a continuous stochastic process X the process of
quadratic variation [X,X] = [X,X]t,0≤t≤T is defined as

[X,X]t = X2
t − 2

Z t

0

XsdXs

It can be shown that for a cadlag adapted process X, [X,X] is a cadlag,
increasing and adapted process. If X is continuous so is [X,X]. If πn is a
sequence of partitions of [0, T ] and 0 = T n

0 ≤ T n
1 ≤ ... ≤ Tn

i ≤ ... ≤ T n
kn
= t a

sequence of stopping times, then

X2
0 +

X
i

(XTni+1 −XTni )2 → [X,X]t (2.10)

as n → ∞ for any t ∈ [0, T ]. As expression (2.10) is for each ω ∈ Ω, it gives
an intuitive meaning to quadratic variation as the squared length of the path
of X.
To treat the case of multiple asset portfolio in what follows, we also define

the quadratic covariation process
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Definition 2.6 Let X and Y be two continuous semimartingales. The process
of quadratic covariation of X and Y is defined by

[X,Y ]t = XYt −
Z t

0

XsdYs −
Z t

0

YsdXs

We also have the plolarization identity

[X,Y ]t =
1

2
([X + Y,X + Y ]t − [X,X]t − [Y, Y ]t) (2.11)

3 Utility maximization problem

In this section we will convert the general utility maximization problem into
an equivalent asset allocation problem. In this paper the problem is solved in
a continuous semimartingale model with one risky asset. The extension to the
case of d risky assets is a straightforward extension from 1 to d dimensions by
using polarization identity (2.11).
The asset allocation problem is stated in a form that can be related to

an equivalent martingale measure using Girsanov teorem in reverse. In that
way we will be able to start solving the asset allocation problem in a way
that is consistent with the classical mean-variance portfolio selection problem
introduced by Markowitz (1952).

Lemma 3.1 The general utility maximization problem

max
H∈H

EP [U(x+ (H · S)T ]

s.t.EQ[(H · S)T ] = x (3.1)

is equivalent to the problem

max
Q∈Me(P )

EP [U(xEQ[
dP

dQ
| FT ])] (3.2)

Proof. In the case of sigle risky asset strategy process Ht can be presented
as a couple (πt, βt) where πt denotes the number of risky assets in the portfolio
and βt denotes the number of riskless assets in the portfolio. As we work in
discounted terms and use the riskless asset as a numeraire we can express the
portfolio value process in the form

Vt(x) = x+

Z t

0

πudSu, 0 ≤ t ≤ T

If we consider a problem of optimal asset allocation we have to optimize the
portfolio weights γSt and γ

B
t = 1− γSt defined by

γt = γSt =
πtSt
Vt
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and write the portfolio value process as

Vt(x) = x+

Z t

0

γuVu
Su

dSu, 0 ≤ t ≤ T

If we assume that the underlying model for the risky asset is the solution of
the stochastic differental equation

dSt = StdXt

where Xt is a semimartingale, we can write the portfolio value process as a
stochastic exponent

Vt(x) = x+

Z t

0

γuVudXu = xE(
Z ·

0

γudXu)t

= x exp(

Z t

0

γudXu − 1
2
[

Z ·

0

γudXu,

Z ·

0

γudXu]t)

= x exp(

Z t

0

γudXu − 1
2

Z t

0

γ2ud[X,X]u)

By the assumptions, the risky assets price process is a continuous
semimartingale and the starategy process H is a bounded and adapted function
of the underlying price process Therefore process γt = γ(Xt) is bounded and
adapted, and

zt = exp(

Z t

0

γ(Xu)dXu − 1
2

Z t

0

γ(Xu)
2d[X,X]u) (3.3)

defines a continuous local martingale on (Ω,F ,Ft, Q). As it was assumed that
the set of equivalent martingale measuresMe(P ) is non-empty, we can write

VT (x) = xzT

= xEQ[
dP

dQ
| FT ] (3.4)

It has been shown (see f. ex. Schachermayer, 2001) that for a general utility
maximization problem of the form (3.1) the solution is given as a optimal value
process V̂ that is of the form

V̂ (y) = I(y
dQ̂

dP
)

where I is the inverse function as defined in (2.7), y is related to initial wealth
through y = Û 0(x) and Q̂ ∈Me(S).
In a continuous model the set of measures with respect to which the

underlying process is a martingale is equal toMe(S) (Delbaen, Schachermayer,
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2002). For any two measures P ∼ Q we have z̃ = dP
dQ
= 1

z
, where z = dQ

dP
.

Therefore

z̃t = EQ[
dP

dQ
| Ft]

= exp(

Z t

0

γ(Xu)dXu − 1
2

Z t

0

γ(Xu)
2d[X,X]u)

=
1

zt
=

1

EP [dQdP | Ft]

= exp(−
Z t

0

γ(Xu)dXu +
1

2

Z t

0

γ(Xu)
2d[X,X]u)

for a measurable bounded γ.
Potential candidates for the optimal portfolio value process can thus be

presented as a sequence of random variables of the form

V̂t(x) = I(y
dQt

dPt
)

= I(y exp(−
Z t

0

γ(Xu)dXu +
1

2

Z t

0

γ(Xu)
2d[X,X]u)) (3.5)

for Q ∈Me(S) and a bounded measurable γ.
The question that remains is whether all measures Q ∈ Me(S) can be

presented in the form (3.3). We do not actually have to show that since it
will become apparent later that the optimal value Û can be reached using an
allocation γ from above.

4 Recursive version of the problem

Instead of solving the problem for the whole period [0, T ] at a time, we will
now turn the attention to a local solution for a period defined by two stopping
times τ 1and τ 2 ∈ [0, T ]. For that we will present the problem in a recursive
form, where the investor is choosing the optimal allocation process for any
period [τ 1, τ 2[⊂ [0, T ] assuming that the expected utility will be maximized for
the remaining period [τ 2, T ]. The allocation is then optimized by maximizing
the expected value of the portfolio in the first period. We show that utility
from optimizing this recursive problem equals the optimal value process of the
general utility maximization problem.
For selecting γ we present a criteria that produces a strategy process that

is optimal in the sense that the value process of a portfolio using the given
allocation rule is asymptotically indishtinguishable from the optimal value
process of the general problem.
Let τ 0, ..., τn be an increasing sequence of stopping times such that they

form a partition of the interval [0, T ], that is, 0 = τ 0 ≤ τ 1 ≤ ... ≤ τn−1 ≤ τn =
T . We will refer to the partition by πn = {τ 0, τ 1, ..., τn−1, τn} We know that
for Q ∼ P the Radon-Nikodym derivativedQT

dPT
= EP [dQdP | FT ] can be presented
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as a product

dQT

dPT
= hτ1hτ2 · ... · hτn

where hτ i > 0 and EP [hτ i | Fτ i−1] = 1. Specifically, in the model studied here
we will be interested in the formulation

zT = EP [
dQ

dP
| FT ]

= exp(−
Z T

0

γudXu +
1

2

Z T

0

γ2ud[X,X]u)

= exp(−
Z τ1

0

γudXu +
1

2

Z τ1

0

γ2ud[X,X]u) · ...

... · exp(−
Z T

τn−1
γudXu +

1

2

Z T

τn−1
γ2ud[X,X]u)

= zτ1 ·
zτ2
zτ1

· ... · zT
zτn−1

that is, hi = zi
zi−1

. If needed, we will make explicit the function γ driving z and
h by notation zγt and hγt respectively.
Corresponding to the set of allowed strategies H we denote by Aτ , τ ∈ πn,

the set of admissible allocations such that for a random variable ξ ∈ Fτ

γ ∈ Aτ⇔ξzt ≥ , for τ ≤ t ≤ T, > 0

Because we are working with a continuous model we can use the results from
Ankirchner (2004) and assume that the process γ is a stopped process fulfilling
the downside constraint.

Lemma 4.1 Denote Ûτ,T (ξ) = supEP [U(Vτ,T (ξ)) | Fτ ], where 0 ≤ τ < κ ≤ T
are two stopping times from the partition πn. Then

Ûτ,T (ξ) = sup
γ∈Aτ

EP [Ûκ,T (Vτ,κ(ξ)) | Fτ ] (4.1)

Proof. Let γτ,T ∈ Aτ and γκ,T ∈ Aκ be two strategies defined on intervals
[τ , T ] and [κ, T ] respectively. Then a strategy

γ̃ = γτ,T1[τ,κ[ + γκ,T1[κ,T [

is also admissible, that is γ̃ ∈ Aτ . We denote hτ,κ = zκ
zτ

=

exp(− R τ
κ
γ(Xu)dXu +

1
2

R τ
κ
γ(Xu)

2d[X,X]u). Using the definition of the value
process from (3.4) and with notation defined here we have for any γτ,T ∈ Aτ ,
γκ,T ∈ Aκ

Ûτ,T (ξ) = sup
γ
EP [U(ξhτ,T ) | Fτ ]

≥ sup
γ̃∈Aτ̃

EP [U(ξhγ̃τ ,T ) | Fτ ]

= sup
γτ,T∈Aτ ,γκ,T∈Aκ

EP [U(ξhγ
τ,T

τ,κ hγ
κ,T

κ,T ) | Fτ ]

= sup
γτ,T∈Aτ ,γκ,T∈Aκ

EP [EP [U(ξhγ
τ,T

τ,κ hγ
κ,T

κ,T ) | Fκ] | Fτ ]

15



So specifically, as X is continuous and locally bounded

Ûτ,T (ξ) ≥ sup
γτ,T∈Aτ

EP [ sup
γκ,T∈Aκ

EP [U((ξhγ
τ,T

τ,κ )h
γκ,T

κ,T ) | Fκ] | Fτ ]

= sup
γ∈Aτ

EP [Ûκ,T (ξhτ,κ) | Fτ ]

= sup
γ∈Aτ

EP [Ûκ,T (Vτ,κ(ξ)) | Fτ ]

On the other hand, let γn = γ1]κ,T ]1{zγκ≤n}. Then γ
n ≤ γ1]κ,T ] and lim sup γn =

γ1]κ,T ] so

Ûτ,T (ξ) = sup
γ∈Aτ

EP [U(ξhτ,T ) | Fτ ]

≤ sup
γτ,T∈Aτ ,γκ,T∈Aκ

EP [EP [U(ξhγτ,κh
γn

κ,T ) | Fκ] | Fτ ]

≤ sup
γ
EP [sup

n
EP [U(ξhγτ,κh

γn

κ,T ) | Fκ] | Fτ ]

≤ sup
γ
EP [Û(ξhγτ,T ) | Fτ ]

because EP [U(ξhγτ,κh
γn

κ,T ) | Fκ] ≤ supEP [U(ξhγτ,κhγκ,T ) | Fκ] for all n.

Next we show that the solution to the recursive problem is identical with the
solution of the general problem at any period [τ , T ] defined by a stopping time
τ ≤ T.

Lemma 4.2 Let γ∗ be the optimal allocation in the general utility
maximization problem and denote by γ̂ the optimal allocation in the recursive
utility maximization problem (4.1). Then we have

γ̂ = γ∗1[τ,T ] (4.2)

Proof. Let H∗ the the optimal strategy process of the general utility
maximization problem (3.1) and Ĥ the optimal strategy of the corresponding
recursive utility maximization problem. We proof the claim in the form
Ĥ = H∗1[τ,T ], that is, we show that

sup
H
EP [U(ξ +

Z T

τ

HudSu) | Fτ ] = EP [U(ξ +
Z T

τ

(H∗1[τ,T ])udSu) | Fτ ]

As the model is continuous we can work the proof in the set ξ ∈ [−C,M ] where
Ĥ is admissible if H∗ is admissible. So we have

EP [U(ξ +
Z T

τ

ĤudSu) | Fτ ] = EP [U(ξ +
Z T

τ

(H∗1[τ,T ])udSu) | Fτ ]

≤ sup
H
EP [U(ξ +

Z T

τ

HudSu) | Fτ ]
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On the other hand we can represent ξ ∈ Fτ with the help of an admissible
strategy L as ξ = l +

R τ
0
LudSu, l ∈ R, and we have

sup
H
EP [U(ξ +

Z T

τ

HudSu) | Fτ ] = sup
H
EP [U(l +

Z τ

0

LudSu +

Z T

τ

HudSu) | Fτ ]

= sup
H
EP [U(l +

Z T

0

(Lu1[0,τ [ +Hu1[τ,T ])dSu) | Fτ ]

≤ EP [U(l +
Z T

0

H∗
udSu) | Fτ ]

= EP [U(l +
Z τ

0

H∗
udSu +

Z T

τ

H∗
udSu) | Fτ ]

= EP [U(ξ +
Z T

τ

H∗
udSu) | Fτ ]

for an l ∈ R s.t. l +
R τ
0
H∗

udSu = ξ. As the model is continuous and locally
bounded, we have corresponding to any strategy H ∈ H a unique allocation
γ ∈ A and thus the claim is proved.

We now move to the structure of the actual strategy that gives us the optimal
level of utility at the terminal time T , or as we have just seen, at any stopping
time 0 ≤ τ ≤ T . We first characterize the strategy as a general decision rule
and then calculate the strategy explicitely in the next section.

Lemma 4.3 Let γ∗ ∈ A be such that

EP [V γ
τ,κ(ξ)) | Fτ ] ≤ EP [V γ∗

τ,κ(ξ)) | Fτ ]

for any γ ∈ A. Then γ∗ is an utility maximizing strategy.

Proof. For any fixed ξ ∈ Fτ , any strategy δ ∈ A produces a payoff that is
less or equal the optimal value, and on the other hand,

Ûτ,T (ξ) = sup
γ∈A

EP [Ûκ,T (Vτ,κ(ξ)) | Fτ ]

= sup
γ∈A

EP [EP [Ûκ,T (Vτ,κ(ξ)) | Fτ ] | Fτ ]

≤ sup
γ∈A

EP [Ûκ,T (EP [(Vτ,κ(ξ) | Fτ ]) | Fτ ]

≤ sup
γ∈A

EP [Ûκ,T (supEP [(Vτ,κ(ξ) | Fτ ]) | Fτ ]

As γ ∈ A , solution to EP [Vτ,κ(ξ)) | Fτ ]→max! is admissible, and because the
model is continuous Ft = σ(St) is continuous and so γ∗ is a strategy.
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5 Solution for a sequence of simple strategies

Solution of the utility maximization problem is a stochastic process that will
later be referred to as the dynamic solution. In practice portfolio managers
are never able to adjust their portfolios continuously so what is required is an
— even locally — static solution of the problem. In stochastic finance that is
done with the help of simple strategies.
In this section we will define a sequence of simple strategies γn defined on

the partition πn that will converge to the continuous dynamic strategy γ as
n→∞. Using the piecewise defined process we can define a value process that
will converge to the value process of the dynamic portfolio. We then solve
the optimization problem for one piece (or a period defined by two stopping
times τ i and τ i+1 ∈ [0, T ]) at a time. Theorem (13) presents the solution with
a proof that combines the lemmas from above.
In the following we use extensively the results for simple strategies from

Ankirchner (2005).

Definition 5.1 A strategy δ ∈ A0(S, πn) is called simple (with respect to a
partition πn) if it can be presented in the form

δ =
n−1X
i=0

δi1]τ i,τ i+1]

τ i ∈ πn.

Let V n
τ i,τj

(ξ) = I(ξ exp(− R τj
τ i

δudXu +
1
2

R τj
τ i

δud[X,X]u)), where δ is a simple
strategy defined on the partition πn and ξ ∈ Fτ i. In the following we want to
show that there exists a sequence of simple strategies that is asymptotically
optimal in the sense that

P{V̂ n
0,T (ξ)− V̂0,T (ξ) > }→ 0

when the partition of [0, T ] is infinitely refined. In a special case we present the
sequence in a way that is very similar to the mean-variance optimal strategy.

Lemma 5.2 There is a sequence of simple strategies γn = {γn0 , γn1 , ..., γnn−1}
such that

V̂ n
0,T (x) = supEP [V n

T ]

→ V̂0,T (x)

Proof. Let us define a sequence of simple strategies γn by

γni = γτ iI[τ i,τ i+1[

for i = 0, 1, ..., n − 1 and τ i ∈ πn. As S is continuous and locally bounded we
have

(γn ·X)t → (γ ·X)t
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and

((γn)2 · [X,X])t → (γ2 · [X,X])t

as n→∞ for a bounded measurable γ. Thus for all t ∈ [0, T ]

zγ
n

t = exp(−
Z t

0

γnudXu +
1

2

Z t

0

(γnu)
2d[X,X]u)

→ exp(−
Z t

0

γudXu +
1

2

Z t

0

(γu)
2d[X,X]u)

= zγt

By the assumptions that I is continuous and S is locally bounded we have

V̂ n
T (x) = sup

γn
EP [V n

T ]

= sup
γn
EP [I(yzγ

n

T )]

→ sup
γ
EP [I(yzγT )]

= V̂0,T (x)

Now we are finally ready to present the major result of this paper.

Theorem 5.3 For an investor with cara utility function the utility maximizing
allocation γ̂i in the risky asset at any given stopping time τ i ∈ πn is given by

γ̂i =
EP [Xτ i+1 −Xτ i | Fτ ]

EP [[X,X]τ i+1 − [X,X]τ i | Fτ ]
(5.1)

Proof. We consider an asset allocation problem defined in (3.1). According
to lemma 7 the solution to the problem can be given by an optimal utility Û
that can be attained by recursively optimizing value process V̂τ,κ(ξ). Let us
choose a partition πn of the interval [0, T ] such that πn can be infinitely refined.
Corresponding to the partition we define a sequence of simple strategies by
γni = γτ iI[τ i,τ i+1[ for τ i ∈ πn, i = 0, ..., n − 1. According to lemma(10) the
optimal strategy can be found by maximizing the conditional expectation of the
portfolio value for a period [τ i, τ i−1[. For any ς ∈ Fτ i with U(ς) ∈ L1(P ). Set

f(γi) = EP [I(ς exp(−
Z τ i+1

τ i

γni dSu +
1

2

Z τ i+1

τ i

(γni )
2d[S, S]u)) | Fτ i ]

As X is continuous, we have ∆Xτ = Xτ −Xκ → 0 and ∆[X,X]τ = [X,X]τ −
[X,X]κ → 0 for any two stopping times τ and κ as τ → κ. According to
lemma (12) there is a sequence of simple strategies such that V̂ n

0,T (x)→ V̂0,T (x).
Therefore the utility maximization problem can be reduced to a sequence of
static maximization problems

fi(γi)→ max! ∀i ∈ {0, ..., n− 1}
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where fi = EP [I(ς exp(−γni ∆Xτ i +
1
2
(γni )

2∆[X,X]τ i)) | Fτ i ]. Derivating with
respect to γi gives

∂

∂γi
EP [I(ς exp(−γni ∆Xτ i +

1

2
(γni )

2∆[X,X]τ i)] = 0

⇐⇒ EP[I 0(Zτ i)Zτ i

∂

∂γ
(−γni ∆Xτ i +

1

2
(γni )

2∆[X,X]τ i) = 0

⇐⇒ −1
c
EP[−∆Xτ i + γni ∆[X,X]τ i ] = 0

⇐⇒ γni =
EP[∆Xτ i ]

EP[∆[X,X]τ i ]
(5.2)

where we used the fact that for a cara utility function I 0(Zτ i(ω))Zτ i(ω) =
−1

c
for all ω ∈ Ω, and denoted Zτ i = ς exp(−γni ∆Xτ i+

1
2
(γni )

2∆[X,X]τ i). The
result follows.

Corollary 5.4 The optimal static allocation for a period [0, T ] is given by

γ̂ =
EP [XT −X0]

EP [[X,X]T ]

Utility of the static allocation can be increased by refinig the partition of the
interval so that

lim
n→∞

sup
γn
EP[U(V̂ γn

T )] = Û(x)

Proof. The form of the allocation is a straightforward calculation with
respect to F0. The latter claim follows from the concavity of the utility function
U as we have

sup
γn
EPU(V̂ γn

T ) ≤ sup
γn

U(EP[V̂ γn

T ]) ≤ U( lim
n→∞

sup
γn
EP[V̂ γn

T ]) (5.3)

What theorem 13 says is that the risk-return trade-off of a utility maximizing
investor is really a trade-off between return and quadratic variation of the
return. It is a common practice to use variance as a measure of risk, but as
variance and quadratic variation do not generally coincide the mean-variance
optimal portfolio is not in general a utility maximizing portfolio.
Condition (5.1) also tells us that given a level of target return, the investor

should not be interested on the stochastic properties of the underlying model,
but instead he should select the portfolio according to the expected path
properties of the underlying process. Specifically, different assets can be
divided into separate classes according to the quadratic variation of their paths.
That approach would be very similar to the one proposed by Bender et al
(2006) in the context of asset pricing.
Like in this paper, quadratic variation is recognized as the true measure

of uncertainty in Andersen, Bollerslev, Diebold and Labys (2000) and their
subsequent work. The difference of their approach to the one introduced here
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is that they use realized volatility as an estimate of variance of the underlying
(Gaussian) model. As is shown in the next section the estimate is in general
unbiased only for instaneous variance or local martingales. We approach the
same problem — and come to almost the same solution — from a different angle
by showing that in continuous model we do not need to make the assumpion of
normality if we change the measure of uncertainty from variance to quadratic
variation.

6 Comparison of mean-variance optimal and utility
maximizing strategies

In this section we make explicit the relationship between variance and
quadratic variation. Connection between the two is presented in lemma 15
in the proof of which the basic Doob decomposition for semimartingales is
utilized. As a corollary we get the second major result of this paper that
makes explicit the relationship between a mean-variance optimal strategy and
a utility maximizing strategy. With that we are able to generalize the results
from Xia (2005) to a wider class of utility functions and asset price processes.
We make the presented results more concrete by giving examples of

two different market models and calculating the risk measures variance and
quadratic variation. We then express the optimal strategies for both optimality
criterion. With the examples it will be clarified why the utility maximizing
portfolio is superior to the mean-variance optimal portfolio.
To relate variance and quadratic variation of a continuous stochastic

process we prove the following simple lemma:

Lemma 6.1 Let X be a semimartingale with a decomposition Xt = X0+Mt+
At. If M and A are uncorrelated, variance of X is related to the quadratic
variation of X as

var(Xt) = E[X,X]t + var(At)

Proof. Assuming that X0 = 0, X has a decomposition Xt = Mt + At,
where Mt is a local martingale and the compensator At is predictable and of
bounded variation. If M and A are uncorrelated the variance of the process
X is

var(Xt) = var(Mt +At)

= var(Mt) + var(At)

= E(Mt − EMt)
2 + var(At)

= E(Mt)
2 + var(At)

= E[M,M ]t + var(At) (6.1)

Using polarization equality we get

E[X,X]t = E[M +A,M +A]t

= E[M,M ]t + E[A,A]t
= E[M,M ]t (6.2)
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because A as a compensator is predictable and of bounded variation and thus
has a quadratic variation of zero.

Corollary 6.2 Mean-variance optimal portfolio is a utility maximizing
portfolio for an investor with cara utility if in the underlying market model
the process of the risky asset Xt is a local martingale.

Proof. Decomposition Xt = X0 +Mt +At reduces to Xt = X0 +Mt.

To make the difference between variance and quadratic variation more intuitive
let us consider two simple market models that prove to be very illustrative in
the analysis. In the first example the price process of the risky asset is modelled
with geometric Brownian motion which will be slightly modified in the second
example to include a stochastic drift.

Example 6.3 First, let us assume that stochastics of the underlying model is
generated by Brownian motion W . The risky asset follows a diffusion

dSt
St

= μdt+ σdWt (6.3)

Variance of the return series is

var(
dSt
St
) = σ2var(Wt)

= σ2E(W 2
t )

= σ2t (6.4)

and quadratic variation of the model is

[
dS

S
]t = [σW, σW ]t

= σ2[W,W ]t

= σ2t (6.5)

So we have seen that in the case of Brownian motion the theoretical variance
and quadratic variation process are equal. The optimal strategy γ∗ of a utility
maximizing investor is given by the condition

γ∗ =
EPST

EP[S, S]T

=
μT

σ2T

=
μ

σ2
(6.6)

which coincides with the mean-variance optimal strategy.

Example 6.4 To incorporate the widely recognized stylized fact of fat tails into
the underlying market model and still keep the model continuous we add to the
basic model an integrated compound Poisson process Ut defined by

Ut =

Z t

0

Csds (6.7)
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where Ct =
P∞

n=1Xk1{τk≤n}, Xk ∼ x−αx (α > 0), τk ∼ Poisson(λ) (λ > 0).
The modified market model is defined via the price process of the risky asset

dŜt

Ŝt
= μdt+ σdWt + Ut (6.8)

where for simplicity we assume that Wt and Ut are independent. The model
belongs to the class of semimartingale models because it admits a canonical
decomposition dSt

St
= Mt + At, where Mt = σdWt is a martingale and At =

μdt + Ut is continuous and of finite variation and predictable process. The
process Ut is of zero quadratic variation because

lim
|πn|→0

X
(Utnk

− Utnk−1 )
2 = lim

|πn|→0

X
(

Z tnk

0

Csds−
Z tnk−1

0

Csds)
2

= lim
|πn|→0

X
(

Z tnk

tnk−1

Csds)
2

= 0

where πn is a partition of the interval [0, T ] as in (13). From the polarization
identity (15) we get

[
dŜ

Ŝ
]t = [σW + U, σW + U ]t

= [σW, σW ]t

= σ2t (6.9)

Calculating theoretical variance gives us

var(
dSt
St
) = σ2var(Wt) + var(Ut)

= σ2t+ var(Ut) (6.10)

Because Ut is a stochastic process with non-constant paths the variance term
var(Ut) is strictly positive and so the variance of the process is stictly greater
than the quadratic variation of the process. In this case the optimal strategy
γ∗ of a utility maximizing investor is given by the condition

γ∗ =
EPŜT

EP[Ŝ, Ŝ]T

=
EPŜT
σ2T

=
μT + EP[UT ]

σ2T
(6.11)

That utility maximizing strategy is clearly different from the mean variance
optimal strategy γMV that would be given by

γMV =
μT + EP[UT ]

σ2T + var(UT )
(6.12)
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Intuitively the difference between the two risk measures can be explained as
noting that in the case of variance also the predictable part of variation would
be considered as risk. If the investor is able to adjust the allocation continuously
he can constantly hedges away the predictable part of the variation.

In the above examples we have assumed that we know the underlying market
model to make clear the difference between variance and quadratic variation.
From the practioneers point of view, however, the most appealing feature in
the optimal strategy given in Theorem 13 is that one does not have to know the
true market model. Instead, the investor can directly focus on the potential
variability of the process that is specified as quadratic variation.
Quadratic variation as a measure of uncertainty has been previosly studied

by Andersen et al (2003) and its estimation has been considered on one hand
in stochastics by Dzhaparidze and Spreij (1994) and in finance lately among
others by Ait-Sahalia and Mancini (2007) and references terein. In finance
literature quadratic variation is often referred to as relized volatility (RV).
We want to stress that quadratic variation is used here as a measure

of uncertainty and not as a measure of risk in the sense of Artzner et al
(1999). As a risk measure quadratic variation would fulfill the requirement
of convexity but it is not coherent as it punishes also for upward movements.
Still, Compared to variance quadratic variation works better as a measure
of uncertainty because rewards diversification better (see f.ex. Föllmer and
Schied, 2001). That might give us a reason to think that risk measures, i.e.
functions on measures of uncertainty, based on quadratic variation would do
better than risk measures based on variance (like VaR). But as the question is
far beyond the scope of this paper it is left for further research.

7 Conclusions

In this paper we have shown that the optimal allocation can be presented in
terms of expected drift and quadratic variation of the underlying price process.
As a by-product we also show why mean-variance optimal portfolio is not in
general a utility maximizing one. Heuristically that can be understood via
the canonical decomposition of a semimartingale, as part of the variability of
a stochastic process comes from a predictable component. As variance also
accounts for that predictable (and thus hedgeable) part of variation of the
process it is in a sense overestimating true uncertainty related to the underlying
process. The second major drawback of variance is that by using it as a
measure of uncertainty the investor assumes that the distribution of returns
can be fully described by its first two moments. It is well documented that
that is not the case and so variance does not capture all of the risk borne from
non-normal distributions. Quadratic variation instead is model independent
and it exists for any stochastic process that is a semimartingale. By counting
the squared length of path of a process it is able to capture phenomena like
fat tails and skewed distributions. With the help of polarization identity we
can also treat portfolios with different types of risk.

24



The result leads to the same direction as some earlier research (Bender et
al, 2006) saying that the true measure of uncertainty is quadratic variation and
not variance (or any other stochastic property of the asset price process). It is
also in agreement with the fact from stochastic analysis that a semimartingale
can be fully presented by a triplet consisting of measures of drift, quadratic
variation and jumps. As the model studied here is continuous, the result
that optimal asset allocation can be presented in terms of drift and quadratic
variation seems logical.
For practioneers the result should come as welcome news as expecting

something from the behaviour of the path of a stochastic process is much less
than knowing the whole distribution of the process. So by using the allocation
rule presented here the investor can increase his utility by assuming less. On
the practical side, estimation of quadratic variation — or realized variance — is
very simple as one does not have to have anything else than the market prices
because quadratic variation is model-free and non-parametric.
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