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Abstract

We present a learning algorithm for neural networks, called Alopex. Instead of
error gradient, Alopex uses local correlations between changes in individual weights
and changes in the global error measure. The algorithm does not make any assump-
tions about transfer functions of individual neurons, and does not explicitly depend on
the functional form of the error measure. Hence, it can be used in networks with arbi-
trary transfer functions and for minimizing a large class of error measures. The learn-
ing algorithm is the same for feed-forward and recurrent networks. All the weightsin a
network are updated simultaneously, using only local computations. This allows com-
plete parallelization of the algorithm. The algorithm is stochastic and it uses a ‘tem-
perature’ parameter in a manner similar to that in simulated annealing. A heuristic
‘annealing schedule’ is presented which is effective in finding global minima of error
surfaces. In this paper, we report extensive simulation studies illustrating these advan-
tages and show that learning times are comparable to those for standard gradient des-
cent methods. Feed-forward networks trained with Alopex are used to solve the
MONK'’s problems and symmetry problems. Recurrent networks trained with the
same algorithm are used for solving temporal XOR problems. Scaling properties of the
algorithm are demonstrated using encoder problems of different sizes and advantages
of appropriate error measures are illustrated using a variety of problems.
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1. Introduction

Artificial neural networks are very useful because they can represent complex
classification functions and can discover these representations using powerful learning
algorithms. Multi-layer perceptrons using sigmoidal non-linearities at their computing
nodes can represent large classes of functions (Hornik, Stichcomb, and White, 1989).
In general, an optimum set of weights in these networks are learned by minimizing an
error functional. But many of these functions (that give error as a function of weights)
contain local minima, making the task of learning in these networks difficult (Hinton,
1989). This problem can be mitigated by (i) choosing appropriate transfer functions at
individual neurons and appropriate error functional for minimization and (ii) by using
powerful learning algorithms.

Learning algorithms for neural networks can be categorized into two classes.! The
popular back-propagation (BP) and other related algorithms calculate explicit gra-
dients of the error with respect to the weights. These require detailed knowledge of the
network architecture and involve calculating derivatives of transfer functions. This
limits the original version of BP (Rumelhart, Hinton, and Williams, 1986) to feed-
forward networks with neurons containing smooth, differentiable and non-saturating
transfer functions. Some variations of this algorithm (Williams and Zipser, 1989, for
example) have been used in networks with feedback; but, these algorithms need non-
local information, and are computationally expensive.

A general purpose learning algorithm, without these limitations, can be very use-
ful for neural networks. Such an algorithm, idealy, should use only locally available
information; impose no restrictions on the network architecture, error measures or
transfer functions of individual neurons; and should be able to to find global minima of
error surfaces. It should also allow simultaneous updating of weights and hence reduce
the overhead on hardware implementations.

Learning algorithms that do not require explicit gradient calculations may offer a
a better choice in this respect. These algorithms usualy estimate the gradient of the

error by local measurements. One method is to systematically change the parameters

1 Methods that are not explicitly based on gradient concepts have also been used for training
layered networks (Minsky, 1954; Rosenblatt, 1962). These methods are limited in their perfor-
mance and applicability and hence are not considered in our discussions.
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(weights) to be optimized and measure the effect of these changes (perturbations) on
the error to be minimized. Parameter perturbation methods have a long history in adap-
tive control, where they were commonly known as the "MIT rule" (Draper, and Li,
1951; Whitaker, 1959). Many others have recently used perturbations of single weights
(Jabri, and Flower, 1991), multiple weights (Dembo, and Kailath, 1990; Alspector et
al., 1993), or single neurons (Widrow, and Lehr, 1990).

A set of closely related techniques in machine learning are Learning Automata
(Narendra, and Thathachar, 1989) and Reinforcement Learning (Barto, Sutton, and
Brouwer, 1981). In this paper we present an algorithm called ‘Alopex’? that is in this
general category. Alopex has had one of the longest history of such methods, ever
since its introduction for mapping visual receptive fields (Harth, and Tzanakou, 1974).
It has subsequently been modified and used in models of visual perception (Harth, and
Unnikrishnan, 1985; Harth, Unnikrishnan, and Pandya, 1987; Harth, Pandya, and
Unnikrishnan, 1990), visual development (Nine, and Unnikrishnan, 1993; Unnikrish-
nan, and Nine, 1993), for solving combinatorial optimization problems (Harth, Pandya,
and Unnikrishnan, 1986), for pattern classification (Venugopal, Pandya, and Sudhakar,
1991 & 1992b), and for control (Venugopal, Pandya, and Sudhakar, 1992b). In this
paper we present a very brief description of the agorithm and show results of com-
puter simulations where it has been used for training feed-forward and recurrent net-
works. Detailed theoretica anaysis of the algorithm and comparisons with other
closely related algorithms such as reinforcement learning will appear elsewhere (Sas-
try, and Unnikrishnan, 1993).

2. The Alopex Algorithm

Learning in a neural network is treated as an optimization problem.3 The objec-
tive is to minimize an error measure, E, with respect to network weights w, for a
given set of training samples. The algorithm can be described as follows: consider a
neuron i with an interconnection strength w;; from neuron j. During the nt itera-

tion, the weight w;; is updated according to the rule?

2 Alopex is an acronym for Algorithm for pattern extraction, and refers to the alopecic per-
formance of the agorithm.

3 Earlier versions of this have been presented at conferences (Unnikrishnan, and Pandit,
1991; Unnikrishnan, and Venugopal, 1992).

4 For the first two iterations, weights are chosen randomly.
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wij (n) = w;j(n-1) + g;(n) (1)
where §;;(n) is a small positive or negative step of size & with the following proba-
bilities:®

=0 with probability p;;(n)
6;(M) =1 +5with probability 1-p;; (n) <

The probability pj; (n) for a negative step is given by the Boltzmann distribution:

_ 1
pij(n) = T om ©)
1+e T
where Cj; (n) is given by the correlation:
Cij(n) = Aw;;(n) . AE(n) (4)

and T(n) is a positive ‘temperature’. Aw;;(n) and AE(n) are the changes in weight

w;; and the error measure E over the previous two iterations (Egs. 5a and 5b).
AWiJ' (n) = Wij (n _1) - Wij (n _2) (5a)

AE(N) =E(n-1) - E(n-2) (5b)
The ‘temperature’ T in EQ. (3) is updated every N iterations using the following
‘“annealing schedule':

1 n-1

T(n) = TR Z > IGj(n) I if nis a multiple of N (6a)
j

n'=n-N

T(n) = T(n-1) otherwise. (6b)
M in the above equation is the total number of connections. Since the magnitude of

Aw is the same for all weights, Eq. (6a) reduces to:

b n-1
T(n) = m > | AE(N') | (6¢)

n'=n-N

2.1 Behavior of the Algorithm

Equations (1) - (5) can be rewritten to make the essential computations clearer.

5 In simulations, this is done by generating a uniform random number between 0 and 1 and
comparing it with p;; ()
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Wi (n) = w;; (n—1) + &% (n-1) (7)

O is the step size and x;; is either +1 or -1 (randomly assigned for the first two itera-
tions).

Xj (n=2) with probability p;; (n)

(071 =7y (n-2) with probability 1-p; (n) (8)

where
_ 1
pij(n) = ) )
1+e TM

From Egs. (7) - (9) we can see that if AE is negative, the probability of moving each
weight in the same direction is greater than 0.5. If AE is positive, the probability of
moving each weight in the opposite direction is greater than 0.5. In other words, the
algorithm favors weight changes that will decrease the error E.

The temperature T in Eq. (3) determines the stochasticity of the algorithm. With
a non-zero value for T, the algorithm takes biased random walks in the weight space
towards decreasing E. If T is too large, the probabilities are close to 0.5 and the algo-
rithm does not settle into the global minimum of E. If T istoo small, it gets trapped
in local minima of E. Hence the value of T for each iteration is chosen very carefully.
We have successfully used the heuristic ‘annealing schedule’ shown in Eqg. (6). We
start the simulations with a large T, and at regular intervals, set it equal to the average
absolute value of the correlation C;; over that interval. This method automatically
reduces T when the correlations are small (which is likely to be near minima of error
surfaces) and increases T in regions of large correlations. The correlations need to be
averaged over sufficiently large number of iterations so that the annealing does not
freeze the algorithm at loca minima. Towards the end, the step size & can aso be
reduced for precise convergence.

The use of a controllable ‘temperature’ and the use of probabilistic parameter
updates are similar to the method of simulated annealing (Kirkpatrick, Gelatt, and Vec-
chi, 1983). But Alopex differs from simulated annealing in three important aspects: (i)
the correlation (AE-Aw) is used instead of the change in error AE for weight updates,
(ii) al weight changes are accepted at every iteration; and (iii) during an iteration, all
weights are updated simultaneously.



2.2 "Universality" of the algorithm

The agorithm makes no assumptions about the structure of the network, the error
measure being minimized, or the transfer functions at individual nodes. If the change
in the error measure is broadcast to all the connection sites, then the computations are
completely local and all the weights can be updated simultaneously. The stochastic
nature of the algorithm can be used to find the global minimum of error function. The
above features allow the use of Alopex as a learning algorithm in feed-forward and
recurrent networks, and for solving a wide variety of problems.

In this paper we demonstrate some of these advantages through extensive simula-
tion experiments. Convergence times of Alopex for solving XOR, parity, and encoder
problems are shown to be comparable to those taken by back-propagation. Learning
ability of Alopex is demonstrated on the MONK'’s problems (Thrun, et al., 1991) and
on the mirror symmetry problem (Peterson, and Hartman, 1989) that have been used
extensively for benchmarking. Scaling properties of Alopex are investigated using
encoder problems of different sizes. The utility of annealing schedule for overcoming
local minima of error surfaces is demonstrated while solving the XOR problem. Since
Alopex alows the usage of different error measures, we show that the use of an infor-
mation theoretic error measure (Hopfield, 1987; Baum, and Wilczek, 1988; Unnikrish-
nan, Hopfield, and Tank, 1991), instead of the customary squared error results in
smoother error surfaces and improved classifications. Finally we demonstrate its ability
to train recurrent networks for solving temporal XOR problems. It should be stressed
that in all these experiments, the same learning module was used for these diverse net-
work architectures and problems.

3. Simulation Results

In this section we present results from an extensive set of ssimulation experiments.
The algorithm has three main parameters; the initial temperature T, the step-size §, and
the number of iterations N over which the correlations are averaged for annealing. The
initial temperature is usually set to a large value of about 1000. This allows the algo-
rithm to get an estimate of the average correlation in the first N iterations and reset it
to an appropriate value according to Eq. (6). Hence this parameter does not affect the
simulations substantially. N is chosen empirically, and usually has a value between 10
and 100. Again, this is not a very critical parameter and for most of the iterations, is
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not optimized. On the other hand, o is a critical parameter, and is chosen with care.
We have found that a good initial value is about 0.001 to 0.01 times the dynamic
range of the weights. We terminate learning when the output-neuron responses are
within 0.1 of their targets for the entire training set.

3.1 Comparisons with other learning algorithms

The first set of experiments were done to compare the convergence time of Alo-
pex with back-propagation. Alopex was used to train multi-layer perceptrons with sig-
moidal transfer functions, using the mean-squared error measure. Table 1 shows the
performance of Alopex and a standard version of the back-propagation on the XOR,
parity, and encoder problems. A 2-2-1 network was used for solving the XOR, a 4-4-1
network was used for solving the (4 bit) parity, and a 4-2-4 network was used for
solving the (4 bit) encoder problem. The average number of iterations taken by the two
algorithms over 100 trials are given in Thl. 1.

TABLE 1 HERE

We can see that the average number of iterations taken by Alopex is comparable
to those taken by back-propagation. It should be pointed out that in Alopex al the
weights are updated simultaneously and hence with a paralel implementation, the
computation time taken per updating would be much less than that of back-
propagation.

The next set of experiments were done to compare Alopex with Reinforcement
Learning and Learning Automata. The multiplexer task, which involves learning a six-
input boolean function, has been solved using both these methods (Barto, 1985;
Mukhopadhyay, and Thathachar, 1989). Of the six input lines, four carry data and two
carry addresses. The task is to transmit the appropriate data, as specified by the
address, to the output line. Following Barto (1985), we chose a network with six linear
input units, four sigmoida hidden units and a sigmoidal output unit, with 39 parame-
ters (34 weights and five thresholds) to adjust. The training data was continuously fed
into the network and the parameters were updated after every 64 examples. The train-
ing was stopped when 1000 consecutive examples were correctly classified. Following
Mukhopadhyay and Thathachar (1989), we created three tasks with three different sets
of address lines. Table 2 shows the average number of updates (over 10 trails, each
starting with a different set of weights) needed for solving each of the tasks.® From

6 Mukhopadhyay and Thathachar (1989) specifies the convergence criterion as the correct
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Thl. 2 we can see that Alopex compares favorably with these agorithms. Since the
updating and stopping criteria are dlightly different in the three studies, the numbers
can not be compared directly. Table 3 shows the number of iterations taken (from one
initial set of weights) for different step-sizes, using the mean-squared error and the log
error (see section 3.4).

TABLES 2 AND 3 HERE

The third set of experiments were done to compare Alopex with weight perturba
tion methods. Figure 1 shows the mean square error as a function of iterations for the
XOR problem. A 2-2-1 network was used. The data for weight perturbation and back-
propagation is taken from Jabri and Flower (1991). For a small step-size (6=0.008), the
error decrement for Alopex is fairly smooth and it takes about the same number of
iterations as the other two methods to converge. The convergence can be speeded up
by using larger steps, as shown by the plot for & = 0.03. The error decrement is no
longer smooth.

FIGURE 1 HERE

3.2 The MONK's problems

These are a set of three classification problems used for extensive bench-marking
of machine learning techniques and neural network agorithms (see Thrun et al., 1991
for details). Samples are represented by six, discrete-valued attributes and each prob-
lem involves learning a binary function defined over this domain. Problem 1 is in stan-
dard disunctive normal form. Problem 2 is similar to parity problems and combines
different attributes in a way that makes it complicated to describe in digunctive or
conjunctive normal forms using only the given attributes. Problem 3 is again in dis-
junctive normal form, but contains about 5% misclassifications. In the database, 124
randomly chosen samples are designated for training the first problem, 169 for training
the second problem and 122 for training the third problem. The entire set of 432 sam-
ples are used for testing.

A feed-forward network with 15 input units, 3 hidden units, and an output unit
was trained to solve these problems. The network contained sigmoida non-linearities
and Alopex was used to minimize the mean-squared error. The network learned to

classification of the 64 training examples. With this criterion, the number of iterations are
lower.
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classify the first test set with 100% accuracy after 5,000 iterations and the second test
set after 10,000 iterations. The third test set was correctly classified after 1,000 itera-
tions and Fig. 2 shows the network output for the 432 samples.

FIGURE 2 AND TABLE 4 HERE

Table 4 compares the performance of feed-forward perceptrons trained using standard
back-propagation, back-propagation with weight decay, the cascade-correlation tech-
nique, and Alopex on these problems. We can see that Alopex is the only method
capable of correctly learning all the three problems. It should be noted that about 25
learning methods were compared in Thrun, et al., but none of them achieved 100%
accuracy on al three test sets. These experiments show that Alopex can be used as a

powerful, general learning agorithm.

3.3 The mirror symmetry problem

The mirror symmetry problem has also been used for bench-marking learning
algorithms (see Peterson, and Hartman, 1989; Senowski, Kienker, and Hinton, 1986;
Barto, and Jordan, 1987). The inputs are NxN-bit patterns with either a horizontal, a
vertical, or a diagonal axis of symmetry and the task of the network is to classify them
accordingly. For comparing numerical generalization accuracies, we used the fixed
training set paradigm described in Peterson, and Hartman (1989). Ten sets of 4x4-bit
data, with each set containing 100 training samples, were used in the experiments. A
feed-forward network with 16 input units, 12 hidden units and 3 output units were
trained on each one of these data sets and the training was terminated when all the
training samples were correctly classified according to the "mid-point” criteria.’ The
generalization accuracy was determined on the remaining 9 sets of data, using the
same criterion. Experiments were done using patterns where the elements had probabil-
ities of 0.4, 0.5, and 0.6 for being on. Table 5 shows the generalization accuracies and
average number of training iterations. Alopex was used to minimize the mean-squared
error measure and the log error measure (see below). The accuracies for Mean Field
Theory Learning (MFT) and back-propagation (BP) are also shown. The generalization
accuracy for Alopex is dightly better in one case and is considerably better in the
other two cases.8

7 The responses of "correct” output units should be greater than 0.5 and the responses of
"incorrect” output units should be less than 0.5.

8 The average number of iterations can not be compared, as Peterson and Hartman updates
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TABLE 5 HERE

3.4 Usefulness of different error measures

In most of the studies reported above, we had used the mean-squared error meas-
ure. When the output nodes are sigmoidal, this error function has an upper and lower
bound and may contain multiple minima even for a single layer network (no hidden
units). Alopex can be used for minimizing arbitrary error measures. In this section we
demonstrate the advantage of using an information theoretic (log) error measure. The
classification error in this case is defined as:

tar get, 1_tar get,

output; )+ (1~ target;) log ( 1-output; ) (10)

E =3 target; log (
i

where the targets for the output units are either 0 or 1.° For a network with one layer
of connections (no hidden units), and containing sigmoid non-linearities at output
nodes, this error function has been shown to contain only a single minimum
(Unnikrishnan, Hopfield, and Tank, 1991).

Table 6 shows the average number of iterations (over 100 trials) taken by net-
works using the squared and log errors to solve the XOR, parity, and encoder prob-
lems. The number of times these networks failed to converge after 20,000 iterations,
are aso shown in this table. For the XOR problem, a network using the log error got
‘stuck’ during 4% of the trials while a network using the squared error got stuck dur-
ing 19% of the trials. A network using back-propagation, and hence the squared error,
got stuck during 14% of the trials.

FIGURE 3 (a-e) AND TABLE 6 HERE

The improved performance of networks using the log error is due to the fact that
these error surfaces are much smoother and contain fewer loca minima. Figure 3a
shows the network used for the XOR problem and Figs. 3b-e show the error surfaces
around the solution point. The surfaces are plotted with respect to pairs of weights,
holding the other weights at their final, converged values. We can see that the surfaces

for the log error are much smoother than those for the squared error.

the weights after 5 patterns are presented, while we update the weights after all the 100 pat-
terns are presented.

9 Since derivatives of transfer functions are not explicitly calculated in Alopex, targets for
learning can be 1.0 or 0.0.
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Networks using the log error always converged faster during our experiments.
For example, the third MONK’s problem was solved by a network using the log error
after only 665 iterations, while a network using the squared error took 1000 iterations.
This is also evident in the data shown in Thl. 5 for the symmetry problem. Networks
using the log error consistently converged faster (and generalized a little better).

3.5 Using the ‘annealing schedule’ to reach global minimum

The annealing schedule described in Eq. (6) automatically controls the random-
ness of the algorithm and it has been successfully used on many occasions to reach
global minima of error surfaces. Figure 4 illustrates a case for the XOR network
shown in Fig. 3a. Alopex was used to minimize the log error. The path taken by the
algorithm to reach the solution point is plotted over the error surface with respect to
two of the weights. The algorithm had to overcome several local minima to reach the
global minimum. (These minima are not completely evident in the figure as the other
weights are held at their optimum values for plotting the error surface. These weights
were changing during learning.)

FIGURE 4 HERE

3.6 Scaling properties of Alopex

The ability of Alopex to learn in networks with large number of output classes
was investigated using encoder problems of different sizes. Table 7 shows average
number of iterations in 25 trials. A network using the squared error could not solve
problems bigger than 8 bits, but one using the log error could successfully learn prob-
lems up to 32 bits long that we attempted. The error per bit during these learning
experiments are shown in Fig. 5. These results show that with appropriate error meas-
ures, Alopex can be used in networks with large numbers of output nodes.

FIGURE 5 AND TABLE 7 HERE

3.7 Learning in networks with feedback

Conventional feed-forward networks have limited ability to process real-time tem-
poral signals, model dynamical systems, or control them. We investigated the ability of
the Alopex agorithm for training recurrent networks that could be used more
effectively for such applications. Three-layered networks with totally interconnected
hidden layers (including self loops) were used to solve temporal XOR problems with
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various delays. The task is to make the network output at time t, the XOR of the input
at time t—T1 and the input at time t—(t+1). For this, the network needs to store values
from 1+1 time-steps in the past.

A randomly generated, 3000 bits long string was used for training and another
100 bits long string was used for testing. Alopex was used to minimize the squared
error. A network with two hidden units (1-2-1 network) was able to learn the T = 0
problem in 6,000 iterations. The T = 1 problem was learned by a 1-4-1 network in
4,668 iterations and the T = 2 problem was learned by a 1-6-1 network in 27,000 itera-
tions. Figure 6b shows the output of the last network along with the test data and Fig.
7 shows the average error per pattern for the three networks during learning.
FIGURE 6 (a-b) AND FIGURE 7 HERE

4. Neurobiological Connection

In this paper, we have presented Alopex as an algorithm for artificial neural net-
works, It was originally developed for modeling aspects of brain functions and the fol-
lowing three characteristics make it ideal for these purposes:

(i) it is able to handle hierarchical networks with feedback;
(it) it is a correlation based algorithm; and
(iii) it is a stochastic algorithm.

The mammalian sensory systems are organized in a hierarchic fashion and there
are extensive interconnections between neurons within a layer and between neurons in
different layers (Van Essen, 1985). During development, some of these feedback con-
nections are established even before the feed-forward connections (Shatz, et al., 1990).
We have extensively used simulations of multi-layer networks with feedback to inves-
tigate the dynamics of sensory information processing and development (Harth, and
Unnikrishnan, 1985; Harth, Unnikrishnan, and Pandya, 1987; Harth, Pandya, and
Unnikrishnan, 1990; Unnikrishnan, and Nine, 1991; Janakiraman, and Unnikrishnan,
1992; Janakiraman, and Unnikrishnan, 1993; Unnikrishnan, and Janakiraman, 1992,
Nine, and Unnikrishnan, 1993; Unnikrishnan, and Nine, 1993). In all these studies,
Alopex is used as the underlying computational algorithm.

In the nervous system, mechanisms such as the NMDA receptors are capable of
computing temporal correlations between inputs in a natural fashion (Brown, Kairiss,
and Keenan, 1990). Computer simulations of known neural circuitry in the mammalian
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visual system have demonstrated the capability of these mechanisms for carrying out
Alopex (Sekar, and Unnikrishnan, 1992; Unnikrishnan, and Sekar, 1993).

There is considerable randomness in the responses of neurons (VerVeen, and
Derksen, 1965). Stochastic algorithms like Alopex takes this aspect of the nervous

system into consideration.

5. Discussion

Our simulations show that Alopex is a robust, general purpose learning algorithm.
By avoiding explicit gradient calculations, it overcomes many of the difficulties of
current methods. We have used the same algorithm to train feed-forward and recurrent
networks and for solving a large class of problems like XOR, parity, encoder, and tem-
poral XOR. With appropriate error measures, it is able to learn up to 32-bit encoder
problems. Our results on the MONK’s problems are the best ones reported in litera-
ture. The generalization results on the 4x4 symmetry problems, using a fixed training
set, are better than the ones quoted for BP and MFT. Results on the switching prob-
lem shows that the network takes comparable number of iterations to solve this task as
taken by reinforcement learning or learning automata. Other recent studies, reported
elsewhere, has shown the applicability of Alopex for solving diverse problems such as
recognition of underwater sonar targets and handwritten digits (Venugopal, Pandya,
and Sudhakar, 1991 & 1992a), and control of non-linear dynamics of an underwater
vehicle (Venugopal, Pandya, and Sudhakar, 1992b).

A continuous-time version of Alopex, using differentials instead of differences,
and integrals instead of sums, has been developed recently (E. Harth, persona com-
munication). It has been implemented in analog hardware and used for a variety of
adaptive control applications. Analog VLSl implementations of these circuits may
make real-time learning in neural networks possible.

The algorithm uses a single scalar error information to update all the weights.
This may pose a problem in networks with large (hundreds) number of output units
and in networks with large number of hidden layers. Learning may have to be sub-
divided in these networks. A preliminary mathematical analysis of convergence proper-
ties of Alopex has been done and will be presented elsewhere (Sastry, and Unnikrish-
nan, 1993).
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Finaly we would like to say that it was the long history of Alopex in brain
modeling that prompted us to investigate it as a learning algorithm for artificial neural
networks. We believe that, after all, knowledge of biological neural functions would be
useful in developing effective learning algorithms for artificial neural networks.
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Table Captions

Table 1. Average number of iterations taken by back-propagation and Alopex to solve
three different problems. The average was taken over 100 trials with different initial
weights. For back-propagation; the learning rate and momentum were 0.9 & 0.7
respectively for XOR, 0.5 & 0.8 respectively for parity, and the same for encoder. For
Alopex; & and N were 0.35 & 20 respectively for XOR, 0.1 & 30 for parity, and 0.05
& 100 for encoder.

Table 2: Number of iterations taken by Alopex, Learning Automata (LA), and Rein-
forcement Learning (ARP) to solve the four-bit switching problem. See Mukhopadhyay
and Thathachar (1989) for a description of the three tasks. The data for LA is taken
from the above paper and the ARP data is taken from Barto (1985). Slightly different
updating and stopping criteria are used in each method and hence the three can not be
compared directly. For Alopex and LA, each task was run 10 times and for ARP one
of the tasks were run 30 times. For Alopex, & was 0.0025 and N was 10.

Table 3: Number of iterations taken by Alopex to solve the switching task for different
step-sizes (0) and error measures. All networks were started with the same initial con-
ditions.

Table 4: Performance of different gradient descent methods and Alopex on MONK’s
problems. For Alopex, & was 0.01 and N was 10. Training was terminated when the
network had learned to correctly classify al the test samples. (Data for back-
propagation and cascade-correlation is from Thrun, et al., 1991.)

Table 5: Average number of training iterations and generalization accuracies for the 4
X 4 mirror symmetry problem. Data for back-propagation (BP) and mean field theory
learning (MFT) are taken from Peterson and Hartman (1989). For Alopex, & was 0.003
and N was 10.

Table 6: Comparison of experiments using different error measures. An experiment
was categorized as ‘stuck’ if it did not converge after 20,000 iterations. The learning

parameters used for back-propagation (BP) and Alopex are the same as in Table 1.

Table 7. Average number of iterations (over 25 trials) for encoder problems of
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different sizes. & was 0.005 for the 4-bit and 8-bit networks, 0.004 for the 16-bit net-
work, and 0.001 for the 32 bit network. N was 10 for all the networks.

Figure Captions

Figure 1. The mean square error as a function of iterations for learning the XOR prob-
lem with a 2-2-1 network. Back-prop - Back-propagation algorithm; Wt-pert - weight
perturbation algorithm; Alpx (sml) - Alopex with a small step size (& = 0.008); Alpx
(Irg) - Alopex with a large step size (6 = 0.03). The plots for back-propagation and
weight perturbation are reproduced from Jabri and Flower (1991).

Figure 2: Network responses for the 432 test samples of the third MONK's problem.
The network was trained on 122 training samples for 1000 iterations. The test samples
are shown on a 18x24 grid, following the convention of Thrun et al. (1991). The
height of the blocks represent the magnitude of network responses, with the maximum
of 1.0 (deep red) and minimum of 0.0 (deep blue). The six marked samples were deli-
berately mis-classified in the training set. Responses to these samples show the robust-
ness of the algorithm. At this point in training, the network correctly classifies all the
432 samples. See text and Thrun et al. (1991) for details of MONK'’s problems.

Figure 3: @) Schematic of the network used for solving the XOR problem. The weights
in the network are labeled w4 through wg. Individual neurons contains sigmoidal non-
linearities. b) -e) Error surfaces around the solution point (center) for square (b & d)
and log (c & €) erors. Figures b & c show the surfaces with respect to w5 and wg.
Figures d & e show them with respect to w, and ws. All the other weights (and
biases) were held at their optimum values for plotting the surfaces.

Figure 4: Path taken by the Alopex algorithm to reach the global minimum of error for
XOR. It is superimposed on the final error surface with respect to w3 and wg. The
actual error surface encountered by the algorithm during learning is different from this
final one since the other weights, which are held at their optimum value for this plot,
changes during learning.

Figure 5: Error per bit for different encoder problems as a function of learning itera-
tions. Alopex was used to minimize the log error.
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Figure 6. @) Schematic of networks used to solve the temporal XOR problems. They
contained a totally interconnected (including self loops) hidden layer. b) Output of a
network (solid line) trained to solve the T = 2 temporal XOR problem. It is superim-
posed on the target sequence (dotted line). We can see that the two plots are almost
identical. The network has learned to solve this problem with high accuracy.

Figure 7: The average error per bit for the three networks trained to solve temporal
XOR problems, as a function of learning iterations. The three networks are of different

sizes. 0 was 0.005 and N was 10 for al three networks.



TABLE 1

BP Alopex
XOR (2-2-1 network) 1175 478
Parity (4-4-1 network) 595 353
Encode (4-2-4 network) 2676 3092




TABLE 2

Taskl Task2 Task3 Overall
Algorithm Lo Hi Av Lo Hi Av Lo Hi Av Lo Hi Av
Alopex 6306 | 14532 9851 7141 | 16619 | 11249 6206 | 13872 9948 6206 16619 10349
LA 10659 | 15398 | 12628 | 10748 | 15398 | 12641 | 10403 | 12939 | 11917 | 10403 15398 12395
* * * * * * * * * 37500 | 350000 | 133149

ARP




TABLE 3

Step-size Sgr Error Log Error
0.01 12,382 7,802
0.0075 10,421 6,327
0.005 9,416 15,385
0.0025 6,341 12,910
0.001 11,666 9,289
0.0005 13,657 14,714

Average 10,647 11,071




TABLE 4

Learning algorithm Problem #1 Problem #2 Problem #3
BP 100% 100% 93.1%
BP with weight decay 100% 100% 97.2%
Cascade correlation 100% 100% 97.2%
Alopex 100% 100% 100%




TABLE 5

PROB 0.5 PROB 0.4 PROB 0.6
Learning Algorithm | Aver. no: Gen. Aver. no: Gen. Aver. no: Gen.
of iters. accuracy(%) of iters. accuracy(%) of iters. accuracy(%)
Alopex (Log) 4417 74.0 3966 79.3 4412 79.8
Alopex (Square) 8734 733 7735 737 6141 76.1
Mean Field Theory * 70 * 63 * 62
Back-propagation * 71 * 64 * 63




TABLE 6

XOR

(2-2-1 NETWORK)

PARITY

(4-4-1 NETWORK)

ENCODER
(4-2-4 NETWORK)

Error Measure Av. no: % of times Av. no: % of times Av. no: % of times
of iters. "stuck’ of iters. "stuck’ of iters. "stuck’

Log 1484 4 297 2996 0

Square 478 19 353 3092 1

BP (Square) 1175 15 595 0 2676 0




TABLE 7

Size of input and Average number of iterations

networ k Square error Log error
4 Bits (4-2-4 net) 1734 1775
8 Bits (8-3-8 net) 6771 13,077

16 Bits (16-4-16 net) | (No convergence) 20,280
32 Bits (32-5-32 net) | (No convergence) 75,586
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