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Abstract

e present a learning algorithm for neural networks, called Alopex. Instead of

a

error gradient, Alopex uses local correlations between changes in individual weights

nd changes in the global error measure. The algorithm does not make any assump-

t

tions about transfer functions of individual neurons, and does not explicitly depend on

he functional form of the error measure. Hence, it can be used in networks with arbi-

-

i

trary transfer functions and for minimizing a large class of error measures. The learn

ng algorithm is the same for feed-forward and recurrent networks. All the weights in a

-

p

network are updated simultaneously, using only local computations. This allows com

lete parallelization of the algorithm. The algorithm is stochastic and it uses a ‘tem-

‘

perature’ parameter in a manner similar to that in simulated annealing. A heuristic

annealing schedule’ is presented which is effective in finding global minima of error

-

t

surfaces. In this paper, we report extensive simulation studies illustrating these advan

ages and show that learning times are comparable to those for standard gradient des-

M

cent methods. Feed-forward networks trained with Alopex are used to solve the

ONK’s problems and symmetry problems. Recurrent networks trained with the

e

a

same algorithm are used for solving temporal XOR problems. Scaling properties of th

lgorithm are demonstrated using encoder problems of different sizes and advantages

�

of appropriate error measures are illustrated using a variety of problems.
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1. Introduction

Artificial neural networks are very useful because they can represent complex

g

a

classification functions and can discover these representations using powerful learnin

lgorithms. Multi-layer perceptrons using sigmoidal non-linearities at their computing

.

I

nodes can represent large classes of functions (Hornik, Stichcomb, and White, 1989)

n general, an optimum set of weights in these networks are learned by minimizing an

)

c

error functional. But many of these functions (that give error as a function of weights

ontain local minima, making the task of learning in these networks difficult (Hinton,

i

1989). This problem can be mitigated by (i) choosing appropriate transfer functions at

ndividual neurons and appropriate error functional for minimization and (ii) by using

powerful learning algorithms.

Learning algorithms for neural networks can be categorized into two classes. The1

-

d

popular back-propagation (BP) and other related algorithms calculate explicit gra

ients of the error with respect to the weights. These require detailed knowledge of the

s

l

network architecture and involve calculating derivatives of transfer functions. Thi

imits the original version of BP (Rumelhart, Hinton, and Williams, 1986) to feed-

t

forward networks with neurons containing smooth, differentiable and non-saturating

ransfer functions. Some variations of this algorithm (Williams and Zipser, 1989, for

-

l

example) have been used in networks with feedback; but, these algorithms need non

ocal information, and are computationally expensive.

-

f

A general purpose learning algorithm, without these limitations, can be very use

ul for neural networks. Such an algorithm, ideally, should use only locally available

r

t

information; impose no restrictions on the network architecture, error measures o

ransfer functions of individual neurons; and should be able to to find global minima of

t

error surfaces. It should also allow simultaneous updating of weights and hence reduce

he overhead on hardware implementations.

Learning algorithms that do not require explicit gradient calculations may offer a

e

e

a better choice in this respect. These algorithms usually estimate the gradient of th

rror by local measurements. One method is to systematically change the parameters

� �✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

Methods that are not explicitly based on gradient concepts have also been used for training
l

1

ayered networks (Minsky, 1954; Rosenblatt, 1962). These methods are limited in their perfor-
mance and applicability and hence are not considered in our discussions.
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n

t

(weights) to be optimized and measure the effect of these changes (perturbations) o

he error to be minimized. Parameter perturbation methods have a long history in adap-

,

1

tive control, where they were commonly known as the "MIT rule" (Draper, and Li

951; Whitaker, 1959). Many others have recently used perturbations of single weights

t

a

(Jabri, and Flower, 1991), multiple weights (Dembo, and Kailath, 1990; Alspector e

l., 1993), or single neurons (Widrow, and Lehr, 1990).

a

(

A set of closely related techniques in machine learning are Learning Automat

Narendra, and Thathachar, 1989) and Reinforcement Learning (Barto, Sutton, and

sBrouwer, 1981). In this paper we present an algorithm called ‘Alopex’ that is in thi2

r

s

general category. Alopex has had one of the longest history of such methods, eve

ince its introduction for mapping visual receptive fields (Harth, and Tzanakou, 1974).

U

It has subsequently been modified and used in models of visual perception (Harth, and

nnikrishnan, 1985; Harth, Unnikrishnan, and Pandya, 1987; Harth, Pandya, and

-

n

Unnikrishnan, 1990), visual development (Nine, and Unnikrishnan, 1993; Unnikrish

an, and Nine, 1993), for solving combinatorial optimization problems (Harth, Pandya,

,

1

and Unnikrishnan, 1986), for pattern classification (Venugopal, Pandya, and Sudhakar

991 & 1992b), and for control (Venugopal, Pandya, and Sudhakar, 1992b). In this

-

p

paper we present a very brief description of the algorithm and show results of com

uter simulations where it has been used for training feed-forward and recurrent net-

r

c

works. Detailed theoretical analysis of the algorithm and comparisons with othe

losely related algorithms such as reinforcement learning will appear elsewhere (Sas-

2

try, and Unnikrishnan, 1993).

. The Alopex Algorithm

Learning in a neural network is treated as an optimization problem. The objec-3

a

g

tive is to minimize an error measure, E , with respect to network weights w, for

iven set of training samples. The algorithm can be described as follows: consider a

-neuron i with an interconnection strength w from neuron j . During the n iterai j
th

i j
4

�

tion, the weight w is updated according to the rule,
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

Alopex is an acronym for Algorithm for pattern extraction, and refers to the alopecic per-
f

2

ormance of the algorithm.
Earlier versions of this have been presented at conferences (Unnikrishnan, and Pandit,

1

3

991; Unnikrishnan, and Venugopal, 1992).
.4 For the first two iterations, weights are chosen randomly
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w (n ) = w (n −1) + δ (n ) (1)

i

i j i j i j

jwhere δ (n ) is a small positive or negative step of size δ with the following proba-

bilities:5

i j
i j

i j
)

−δ with probability p (n )
(2)

T

δ (n ) =

�✁✄✂
+δ with probability 1−p (n

he probability p (n ) for a negative step is given by the Boltzmann distribution:i j

i j
−

T (n )

C (n )☎✆☎✝☎✝☎✝☎✝☎ij
p (n ) =

1 + e

1✞✟✞✠✞✠✞✠✞✠✞✠✞✠✞✠✞✠✞✠✞ (3)

where C (n ) is given by the correlation:i j

i j i jC (n ) = ∆w (n ) . ∆E (n ) (4)

tand T (n ) is a positive ‘temperature’. ∆w (n ) and ∆E (n ) are the changes in weighi j

wi j and the error measure E over the previous two iterations (Eqs. 5a and 5b).

)∆w (n ) = w (n −1) − w (n −2) (5ai j i j i j

∆E (n ) = E (n −1) − E (n −2) (5b)

‘

The ‘temperature’ T in Eq. (3) is updated every N iterations using the following

annealing schedule’:

T (n ) =
N .M
✞ 1✞✠✞✠✞✠✞ ✡ C (n ′) ✡ if n is a multiple of N (6a)

n −1

i j
N

Σ
i j n ′=n −

Σ Σ

T (n ) = T (n −1) otherwise. (6b)

f

∆

M in the above equation is the total number of connections. Since the magnitude o

w is the same for all weights, Eq. (6a) reduces to:

T (n ) =
N
δ✞☛✞ ✡ ∆E (n ′) ✡ (6c)

n −1

Nn ′=n −
Σ

2.1 Behavior of the Algorithm

Equations (1) - (5) can be rewritten to make the essential computations clearer.

☞ ☞✌☞✌☞✌☞✌☞✌☞✌☞✌☞✌☞✌☞✌☞✌☞✌☞✌☞
In simulations, this is done by generating a uniform random number between 0 and 1 and5

i j )comparing it with p (n
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w (n ) = w (n −1) + δ.x (n −1) (7)

i

i j i j i j

jδ is the step size and x is either +1 or -1 (randomly assigned for the first two itera-

tions).

x (n −1) =

�
✁✄✂

−x (n −2) with probability 1−p (n )

x (n −2) with probability p (n )
(8)

i j i j

j

where

i j
i j i

p (n ) =

1 + e

1☎ ☎✆☎✆☎✆☎✆☎✆☎✆☎✆☎✆☎✆☎✆☎ (9)✝ ✝✞✝✞✝✞✝✞✝✞✝)∆E (n
)

F

i j
δ.

T (n

rom Eqs. (7) - (9) we can see that if ∆E is negative, the probability of moving each

f

m

weight in the same direction is greater than 0.5. If ∆E is positive, the probability o

oving each weight in the opposite direction is greater than 0.5. In other words, the

algorithm favors weight changes that will decrease the error E .

The temperature T in Eq. (3) determines the stochasticity of the algorithm. With

e

t

a non-zero value for T , the algorithm takes biased random walks in the weight spac

owards decreasing E . If T is too large, the probabilities are close to 0.5 and the algo-

i

rithm does not settle into the global minimum of E . If T is too small, it gets trapped

n local minima of E . Hence the value of T for each iteration is chosen very carefully.

s

We have successfully used the heuristic ‘annealing schedule’ shown in Eq. (6). We

tart the simulations with a large T , and at regular intervals, set it equal to the average

absolute value of the correlation C over that interval. This method automaticallyi j

reduces T when the correlations are small (which is likely to be near minima of error

a

surfaces) and increases T in regions of large correlations. The correlations need to be

veraged over sufficiently large number of iterations so that the annealing does not

r

freeze the algorithm at local minima. Towards the end, the step size δ can also be

educed for precise convergence.

The use of a controllable ‘temperature’ and the use of probabilistic parameter

-

c

updates are similar to the method of simulated annealing (Kirkpatrick, Gelatt, and Vec

hi, 1983). But Alopex differs from simulated annealing in three important aspects: (i)

;

(

the correlation (∆E .∆w ) is used instead of the change in error ∆E for weight updates

ii) all weight changes are accepted at every iteration; and (iii) during an iteration, all

weights are updated simultaneously.
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2.2 ""Universality"" of the algorithm

The algorithm makes no assumptions about the structure of the network, the error

i

measure being minimized, or the transfer functions at individual nodes. If the change

n the error measure is broadcast to all the connection sites, then the computations are

c

n

completely local and all the weights can be updated simultaneously. The stochasti

ature of the algorithm can be used to find the global minimum of error function. The

r

above features allow the use of Alopex as a learning algorithm in feed-forward and

ecurrent networks, and for solving a wide variety of problems.

-

t

In this paper we demonstrate some of these advantages through extensive simula

ion experiments. Convergence times of Alopex for solving XOR, parity, and encoder

a

problems are shown to be comparable to those taken by back-propagation. Learning

bility of Alopex is demonstrated on the MONK’s problems (Thrun, et al., 1991) and

d

e

on the mirror symmetry problem (Peterson, and Hartman, 1989) that have been use

xtensively for benchmarking. Scaling properties of Alopex are investigated using

g

l

encoder problems of different sizes. The utility of annealing schedule for overcomin

ocal minima of error surfaces is demonstrated while solving the XOR problem. Since

-

m

Alopex allows the usage of different error measures, we show that the use of an infor

ation theoretic error measure (Hopfield, 1987; Baum, and Wilczek, 1988; Unnikrish-

s

nan, Hopfield, and Tank, 1991), instead of the customary squared error results in

moother error surfaces and improved classifications. Finally we demonstrate its ability

d

t

to train recurrent networks for solving temporal XOR problems. It should be stresse

hat in all these experiments, the same learning module was used for these diverse net-

3

work architectures and problems.

. Simulation Results

In this section we present results from an extensive set of simulation experiments.

t

The algorithm has three main parameters; the initial temperature T , the step-size δ, and

he number of iterations N over which the correlations are averaged for annealing. The

-

r

initial temperature is usually set to a large value of about 1000. This allows the algo

ithm to get an estimate of the average correlation in the first N iterations and reset it

s

to an appropriate value according to Eq. (6). Hence this parameter does not affect the

imulations substantially. N is chosen empirically, and usually has a value between 10

sand 100. Again, this is not a very critical parameter and for most of the iterations, i
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.

W

not optimized. On the other hand, δ is a critical parameter, and is chosen with care

e have found that a good initial value is about 0.001 to 0.01 times the dynamic

e

w

range of the weights. We terminate learning when the output-neuron responses ar

ithin 0.1 of their targets for the entire training set.

3.1 Comparisons with other learning algorithms

The first set of experiments were done to compare the convergence time of Alo-

-

m

pex with back-propagation. Alopex was used to train multi-layer perceptrons with sig

oidal transfer functions, using the mean-squared error measure. Table 1 shows the

,

p

performance of Alopex and a standard version of the back-propagation on the XOR

arity, and encoder problems. A 2-2-1 network was used for solving the XOR, a 4-4-1

r

s

network was used for solving the (4 bit) parity, and a 4-2-4 network was used fo

olving the (4 bit) encoder problem. The average number of iterations taken by the two

T

algorithms over 100 trials are given in Tbl. 1.

ABLE 1 HERE

We can see that the average number of iterations taken by Alopex is comparable

e

w

to those taken by back-propagation. It should be pointed out that in Alopex all th

eights are updated simultaneously and hence with a parallel implementation, the

-

p

computation time taken per updating would be much less than that of back

ropagation.

The next set of experiments were done to compare Alopex with Reinforcement

i

Learning and Learning Automata. The multiplexer task, which involves learning a six-

nput boolean function, has been solved using both these methods (Barto, 1985;

c

Mukhopadhyay, and Thathachar, 1989). Of the six input lines, four carry data and two

arry addresses. The task is to transmit the appropriate data, as specified by the

r

i

address, to the output line. Following Barto (1985), we chose a network with six linea

nput units, four sigmoidal hidden units and a sigmoidal output unit, with 39 parame-

i

ters (34 weights and five thresholds) to adjust. The training data was continuously fed

nto the network and the parameters were updated after every 64 examples. The train-

M

ing was stopped when 1000 consecutive examples were correctly classified. Following

ukhopadhyay and Thathachar (1989), we created three tasks with three different sets

s

of address lines. Table 2 shows the average number of updates (over 10 trails, each

tarting with a different set of weights) needed for solving each of the tasks. From
� �✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

6

Mukhopadhyay and Thathachar (1989) specifies the convergence criterion as the correct6
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e

u

Tbl. 2 we can see that Alopex compares favorably with these algorithms. Since th

pdating and stopping criteria are slightly different in the three studies, the numbers

i

can not be compared directly. Table 3 shows the number of iterations taken (from one

nitial set of weights) for different step-sizes, using the mean-squared error and the log

T

error (see section 3.4).

ABLES 2 AND 3 HERE

The third set of experiments were done to compare Alopex with weight perturba-

X

tion methods. Figure 1 shows the mean square error as a function of iterations for the

OR problem. A 2-2-1 network was used. The data for weight perturbation and back-

e

propagation is taken from Jabri and Flower (1991). For a small step-size (δ=0.008), the

rror decrement for Alopex is fairly smooth and it takes about the same number of

b

iterations as the other two methods to converge. The convergence can be speeded up

y using larger steps, as shown by the plot for δ = 0.03. The error decrement is no

F

longer smooth.

IGURE 1 HERE

s3.2 The MONK’s problem

These are a set of three classification problems used for extensive bench-marking

1

f

of machine learning techniques and neural network algorithms (see Thrun et al., 199

or details). Samples are represented by six, discrete-valued attributes and each prob-

-

d

lem involves learning a binary function defined over this domain. Problem 1 is in stan

ard disjunctive normal form. Problem 2 is similar to parity problems and combines

r

c

different attributes in a way that makes it complicated to describe in disjunctive o

onjunctive normal forms using only the given attributes. Problem 3 is again in dis-

r

junctive normal form, but contains about 5% misclassifications. In the database, 124

andomly chosen samples are designated for training the first problem, 169 for training

-

p

the second problem and 122 for training the third problem. The entire set of 432 sam

les are used for testing.

A feed-forward network with 15 input units, 3 hidden units, and an output unit

a

was trained to solve these problems. The network contained sigmoidal non-linearities

nd Alopex was used to minimize the mean-squared error. The network learned to

c
� �✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

lassification of the 64 training examples. With this criterion, the number of iterations are
lower.
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t

s

classify the first test set with 100% accuracy after 5,000 iterations and the second tes

et after 10,000 iterations. The third test set was correctly classified after 1,000 itera-

F

tions and Fig. 2 shows the network output for the 432 samples.

IGURE 2 AND TABLE 4 HERE

Table 4 compares the performance of feed-forward perceptrons trained using standard

-

n

back-propagation, back-propagation with weight decay, the cascade-correlation tech

ique, and Alopex on these problems. We can see that Alopex is the only method

5

l

capable of correctly learning all the three problems. It should be noted that about 2

earning methods were compared in Thrun, et al., but none of them achieved 100%

a

p

accuracy on all three test sets. These experiments show that Alopex can be used as

owerful, general learning algorithm.

3.3 The mirror symmetry problem

The mirror symmetry problem has also been used for bench-marking learning

;

B

algorithms (see Peterson, and Hartman, 1989; Sejnowski, Kienker, and Hinton, 1986

arto, and Jordan, 1987). The inputs are NxN-bit patterns with either a horizontal, a

a

vertical, or a diagonal axis of symmetry and the task of the network is to classify them

ccordingly. For comparing numerical generalization accuracies, we used the fixed

t

d

training set paradigm described in Peterson, and Hartman (1989). Ten sets of 4x4-bi

ata, with each set containing 100 training samples, were used in the experiments. A

e

t

feed-forward network with 16 input units, 12 hidden units and 3 output units wer

rained on each one of these data sets and the training was terminated when all the

etraining samples were correctly classified according to the "mid-point" criteria. Th7

e

s

generalization accuracy was determined on the remaining 9 sets of data, using th

ame criterion. Experiments were done using patterns where the elements had probabil-

a

ities of 0.4, 0.5, and 0.6 for being on. Table 5 shows the generalization accuracies and

verage number of training iterations. Alopex was used to minimize the mean-squared

d

T

error measure and the log error measure (see below). The accuracies for Mean Fiel

heory Learning (MFT) and back-propagation (BP) are also shown. The generalization

e

o

accuracy for Alopex is slightly better in one case and is considerably better in th

ther two cases.8
� �✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

The responses of "correct" output units should be greater than 0.5 and the responses of
"

7

incorrect" output units should be less than 0.5.
The average number of iterations can not be compared, as Peterson and Hartman updates8
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TABLE 5 HERE

3.4 Usefulness of different error measures

In most of the studies reported above, we had used the mean-squared error meas-

r

b

ure. When the output nodes are sigmoidal, this error function has an upper and lowe

ound and may contain multiple minima even for a single layer network (no hidden

e

d

units). Alopex can be used for minimizing arbitrary error measures. In this section w

emonstrate the advantage of using an information theoretic (log) error measure. The

classification error in this case is defined as:

E = target log (
output

target
�✁�✂�✂�✂�✂�✂� ) + (1− target ) log (

1−output

1−target
�✄�✂�✂�✂�✂�✂�✂�✂� ) (10)

i

i

i
i

i
Σ
i

i

9 r

o

where the targets for the output units are either 0 or 1. For a network with one laye

f connections (no hidden units), and containing sigmoid non-linearities at output

(

nodes, this error function has been shown to contain only a single minimum

Unnikrishnan, Hopfield, and Tank, 1991).

Table 6 shows the average number of iterations (over 100 trials) taken by net-

-

l

works using the squared and log errors to solve the XOR, parity, and encoder prob

ems. The number of times these networks failed to converge after 20,000 iterations,

‘

are also shown in this table. For the XOR problem, a network using the log error got

stuck’ during 4% of the trials while a network using the squared error got stuck dur-

,

g

ing 19% of the trials. A network using back-propagation, and hence the squared error

ot stuck during 14% of the trials.

EFIGURE 3 (a-e) AND TABLE 6 HER

The improved performance of networks using the log error is due to the fact that

s

these error surfaces are much smoother and contain fewer local minima. Figure 3a

hows the network used for the XOR problem and Figs. 3b-e show the error surfaces

,

h

around the solution point. The surfaces are plotted with respect to pairs of weights

olding the other weights at their final, converged values. We can see that the surfaces

☎

for the log error are much smoother than those for the squared error.

☎✆☎✆☎✆☎✆☎✆☎✆☎✆☎✆☎✆☎✆☎✆☎✆☎✆☎

the weights after 5 patterns are presented, while we update the weights after all the 100 pat-
terns are presented.

Since derivatives of transfer functions are not explicitly calculated in Alopex, targets for
l

9

earning can be 1.0 or 0.0.
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Networks using the log error always converged faster during our experiments.

a

For example, the third MONK’s problem was solved by a network using the log error

fter only 665 iterations, while a network using the squared error took 1000 iterations.

u

This is also evident in the data shown in Tbl. 5 for the symmetry problem. Networks

sing the log error consistently converged faster (and generalized a little better).

3.5 Using the ‘annealing schedule’ to reach global minimum

The annealing schedule described in Eq. (6) automatically controls the random-

g

ness of the algorithm and it has been successfully used on many occasions to reach

lobal minima of error surfaces. Figure 4 illustrates a case for the XOR network

e

a

shown in Fig. 3a. Alopex was used to minimize the log error. The path taken by th

lgorithm to reach the solution point is plotted over the error surface with respect to

e

g

two of the weights. The algorithm had to overcome several local minima to reach th

lobal minimum. (These minima are not completely evident in the figure as the other

w

weights are held at their optimum values for plotting the error surface. These weights

ere changing during learning.)

FIGURE 4 HERE

3.6 Scaling properties of Alopex

The ability of Alopex to learn in networks with large number of output classes

n

was investigated using encoder problems of different sizes. Table 7 shows average

umber of iterations in 25 trials. A network using the squared error could not solve

-

l

problems bigger than 8 bits, but one using the log error could successfully learn prob

ems up to 32 bits long that we attempted. The error per bit during these learning

-

u

experiments are shown in Fig. 5. These results show that with appropriate error meas

res, Alopex can be used in networks with large numbers of output nodes.

FIGURE 5 AND TABLE 7 HERE

3.7 Learning in networks with feedback

Conventional feed-forward networks have limited ability to process real-time tem-

f

t

poral signals, model dynamical systems, or control them. We investigated the ability o

he Alopex algorithm for training recurrent networks that could be used more

h

effectively for such applications. Three-layered networks with totally interconnected

idden layers (including self loops) were used to solve temporal XOR problems with
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arious delays. The task is to make the network output at time t , the XOR of the input

f

at time t −τ and the input at time t −(τ+1). For this, the network needs to store values

rom τ+1 time-steps in the past.

A randomly generated, 3000 bits long string was used for training and another

e

100 bits long string was used for testing. Alopex was used to minimize the squared

rror. A network with two hidden units (1-2-1 network) was able to learn the τ = 0

n

4

problem in 6,000 iterations. The τ = 1 problem was learned by a 1-4-1 network i

,668 iterations and the τ = 2 problem was learned by a 1-6-1 network in 27,000 itera-

.

7

tions. Figure 6b shows the output of the last network along with the test data and Fig

shows the average error per pattern for the three networks during learning.

4

FIGURE 6 (a-b) AND FIGURE 7 HERE

. Neurobiological Connection

In this paper, we have presented Alopex as an algorithm for artificial neural net-

-

l

works, It was originally developed for modeling aspects of brain functions and the fol

owing three characteristics make it ideal for these purposes:

(

(i) it is able to handle hierarchical networks with feedback;

ii) it is a correlation based algorithm; and

(iii) it is a stochastic algorithm.

The mammalian sensory systems are organized in a hierarchic fashion and there

d

are extensive interconnections between neurons within a layer and between neurons in

ifferent layers (Van Essen, 1985). During development, some of these feedback con-

.

W

nections are established even before the feed-forward connections (Shatz, et al., 1990)

e have extensively used simulations of multi-layer networks with feedback to inves-

U

tigate the dynamics of sensory information processing and development (Harth, and

nnikrishnan, 1985; Harth, Unnikrishnan, and Pandya, 1987; Harth, Pandya, and

,

1

Unnikrishnan, 1990; Unnikrishnan, and Nine, 1991; Janakiraman, and Unnikrishnan

992; Janakiraman, and Unnikrishnan, 1993; Unnikrishnan, and Janakiraman, 1992;

,

A

Nine, and Unnikrishnan, 1993; Unnikrishnan, and Nine, 1993). In all these studies

lopex is used as the underlying computational algorithm.

f

c

In the nervous system, mechanisms such as the NMDA receptors are capable o

omputing temporal correlations between inputs in a natural fashion (Brown, Kairiss,

and Keenan, 1990). Computer simulations of known neural circuitry in the mammalian
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t

A

visual system have demonstrated the capability of these mechanisms for carrying ou

lopex (Sekar, and Unnikrishnan, 1992; Unnikrishnan, and Sekar, 1993).

d

D

There is considerable randomness in the responses of neurons (VerVeen, an

erksen, 1965). Stochastic algorithms like Alopex takes this aspect of the nervous

5

system into consideration.

. Discussion

Our simulations show that Alopex is a robust, general purpose learning algorithm.

c

By avoiding explicit gradient calculations, it overcomes many of the difficulties of

urrent methods. We have used the same algorithm to train feed-forward and recurrent

p

networks and for solving a large class of problems like XOR, parity, encoder, and tem-

oral XOR. With appropriate error measures, it is able to learn up to 32-bit encoder

-

t

problems. Our results on the MONK’s problems are the best ones reported in litera

ure. The generalization results on the 4x4 symmetry problems, using a fixed training

-

l

set, are better than the ones quoted for BP and MFT. Results on the switching prob

em shows that the network takes comparable number of iterations to solve this task as

e

taken by reinforcement learning or learning automata. Other recent studies, reported

lsewhere, has shown the applicability of Alopex for solving diverse problems such as

,

a

recognition of underwater sonar targets and handwritten digits (Venugopal, Pandya

nd Sudhakar, 1991 & 1992a), and control of non-linear dynamics of an underwater

vehicle (Venugopal, Pandya, and Sudhakar, 1992b).

A continuous-time version of Alopex, using differentials instead of differences,

m

and integrals instead of sums, has been developed recently (E. Harth, personal com-

unication). It has been implemented in analog hardware and used for a variety of

m

adaptive control applications. Analog VLSI implementations of these circuits may

ake real-time learning in neural networks possible.

.

T

The algorithm uses a single scalar error information to update all the weights

his may pose a problem in networks with large (hundreds) number of output units

-

d

and in networks with large number of hidden layers. Learning may have to be sub

ivided in these networks. A preliminary mathematical analysis of convergence proper-

-

n

ties of Alopex has been done and will be presented elsewhere (Sastry, and Unnikrish

an, 1993).
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Finally we would like to say that it was the long history of Alopex in brain

l

n

modeling that prompted us to investigate it as a learning algorithm for artificial neura

etworks. We believe that, after all, knowledge of biological neural functions would be

A

useful in developing effective learning algorithms for artificial neural networks.
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Table Captions

able 1: Average number of iterations taken by back-propagation and Alopex to solve

l

w

three different problems. The average was taken over 100 trials with different initia

eights. For back-propagation; the learning rate and momentum were 0.9 & 0.7

r

A

respectively for XOR, 0.5 & 0.8 respectively for parity, and the same for encoder. Fo

lopex; δ and N were 0.35 & 20 respectively for XOR, 0.1 & 30 for parity, and 0.05

T

& 100 for encoder.

able 2: Number of iterations taken by Alopex, Learning Automata (LA), and Rein-

a

forcement Learning (ARP) to solve the four-bit switching problem. See Mukhopadhyay

nd Thathachar (1989) for a description of the three tasks. The data for LA is taken

t

u

from the above paper and the ARP data is taken from Barto (1985). Slightly differen

pdating and stopping criteria are used in each method and hence the three can not be

e

o

compared directly. For Alopex and LA, each task was run 10 times and for ARP on

f the tasks were run 30 times. For Alopex, δ was 0.0025 and N was 10.

t

s

Table 3: Number of iterations taken by Alopex to solve the switching task for differen

tep-sizes (δ) and error measures. All networks were started with the same initial con-

T

ditions.

able 4: Performance of different gradient descent methods and Alopex on MONK’s

n

problems. For Alopex, δ was 0.01 and N was 10. Training was terminated when the

etwork had learned to correctly classify all the test samples. (Data for back-

T

propagation and cascade-correlation is from Thrun, et al., 1991.)

able 5: Average number of training iterations and generalization accuracies for the 4

y

l

x 4 mirror symmetry problem. Data for back-propagation (BP) and mean field theor

earning (MFT) are taken from Peterson and Hartman (1989). For Alopex, δ was 0.003

T

and N was 10.

able 6: Comparison of experiments using different error measures. An experiment

p

was categorized as ‘stuck’ if it did not converge after 20,000 iterations. The learning

arameters used for back-propagation (BP) and Alopex are the same as in Table 1.

fTable 7: Average number of iterations (over 25 trials) for encoder problems o
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-

w

different sizes. δ was 0.005 for the 4-bit and 8-bit networks, 0.004 for the 16-bit net

ork, and 0.001 for the 32 bit network. N was 10 for all the networks.

F

Figure Captions

igure 1: The mean square error as a function of iterations for learning the XOR prob-

t

p

lem with a 2-2-1 network. Back-prop - Back-propagation algorithm; Wt-pert - weigh

erturbation algorithm; Alpx (sml) - Alopex with a small step size (δ = 0.008); Alpx

d

w

(lrg) - Alopex with a large step size (δ = 0.03). The plots for back-propagation an

eight perturbation are reproduced from Jabri and Flower (1991).

.

T

Figure 2: Network responses for the 432 test samples of the third MONK’s problem

he network was trained on 122 training samples for 1000 iterations. The test samples

h

are shown on a 18x24 grid, following the convention of Thrun et al. (1991). The

eight of the blocks represent the magnitude of network responses, with the maximum

-

b

of 1.0 (deep red) and minimum of 0.0 (deep blue). The six marked samples were deli

erately mis-classified in the training set. Responses to these samples show the robust-

4

ness of the algorithm. At this point in training, the network correctly classifies all the

32 samples. See text and Thrun et al. (1991) for details of MONK’s problems.

s

i

Figure 3: a) Schematic of the network used for solving the XOR problem. The weight

n the network are labeled w through w . Individual neurons contains sigmoidal non-

l

1 6

inearities. b) -e) Error surfaces around the solution point (center) for square (b & d)

.and log (c & e) errors. Figures b & c show the surfaces with respect to w and w3 6

4 5 d

b

Figures d & e show them with respect to w and w . All the other weights (an

iases) were held at their optimum values for plotting the surfaces.

r

X

Figure 4: Path taken by the Alopex algorithm to reach the global minimum of error fo

OR. It is superimposed on the final error surface with respect to w and w . The3 6

s

fi

actual error surface encountered by the algorithm during learning is different from thi

nal one since the other weights, which are held at their optimum value for this plot,

F

changes during learning.

igure 5: Error per bit for different encoder problems as a function of learning itera-

tions. Alopex was used to minimize the log error.
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y

c

Figure 6: a) Schematic of networks used to solve the temporal XOR problems. The

ontained a totally interconnected (including self loops) hidden layer. b) Output of a

-

p

network (solid line) trained to solve the τ = 2 temporal XOR problem. It is superim

osed on the target sequence (dotted line). We can see that the two plots are almost

F

identical. The network has learned to solve this problem with high accuracy.

igure 7: The average error per bit for the three networks trained to solve temporal

t

s

XOR problems, as a function of learning iterations. The three networks are of differen

izes. δ was 0.005 and N was 10 for all three networks.
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TABLE 3

�� �✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

Step-size Sqr Error Log Error

�� �✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

0.01 12,382 7,802

7

0

0.0075 10,421 6,32

.005 9,416 15,385

0

0

0.0025 6,341 12,91

.001 11,666 9,289

4
�

0.0005 13,657 14,71
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

�
Average 10,647 11,071

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂



TABLE 4

�� �✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

Learning algorithm Problem #1 Problem #2 Problem #3

�� �✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

BP 100% 100% 93.1%

%

C

BP with weight decay 100% 100% 97.2

ascade correlation 100% 100% 97.2%

� Alopex 100% 100% 100%�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
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TABLE 5

�� �✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

PROB 0.5 PROB 0.4 PROB 0.6

�� �✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

Learning Algorithm Aver. no: Gen. Aver. no: Gen. Aver. no: Gen.
)

�
of iters. accuracy(%) of iters. accuracy(%) of iters. accuracy(%

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

A

Alopex (Log) 4417 74.0 3966 79.3 4412 79.8

lopex (Square) 8734 73.3 7735 73.7 6141 76.1

B

Mean Field Theory * 70 * 63 * 62

ack-propagation * 71 * 64 * 63

�
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TABLE 6

��✁�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�

XOR PARITY ENCODER

)

�

(2-2-1 NETWORK) (4-4-1 NETWORK) (4-2-4 NETWORK

�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�

Error Measure Av. no: % of times Av. no: % of times Av. no: % of times
of iters. ’stuck’ of iters. ’stuck’ of iters. ’stuck’

��✁�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�✂�

Log 1484 4 297 0 2996 0

1

B

Square 478 19 353 0 3092

P (Square) 1175 15 595 0 2676 0

�
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TABLE 7
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Size of input and Average number of iterations

r
�

network Square error Log erro
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8

4 Bits (4-2-4 net) 1734 1775

Bits (8-3-8 net) 6771 13,077

0

3

16 Bits (16-4-16 net) (No convergence) 20,28

2 Bits (32-5-32 net) (No convergence) 75,586
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