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ALÒS TYPE DECOMPOSITION FORMULA FOR

BARNDORFF-NIELSEN AND SHEPHARD MODEL

TAKUJI ARAI*

Abstract. An Alòs type decomposition formula for call options is estab-
lished for the Barndor↵-Nielsen and Shephard model: an Ornstein-Uhlenbeck
type stochastic volatility model driven by a subordinator without drift. Alòs
[2] introduced a decomposition expression for the Heston model by using Ito’s
formula. In this paper, we extend it to the Barndor↵-Nielsen and Shephard
model. As far as we know, this is the first result on the Alòs type decompo-
sition formula for models with infinite active jumps.

1. Introduction

Stochastic volatility models have drawn considerable attention in mathematical
finance since they are very useful for capturing the volatility skew and smiles, but
there is no closed-form option pricing formula for stochastic volatility models in
general. Thus, some authors have presented decomposition expressions of option
prices, which are useful to derive approximations of option prices and to analyze
implied volatilities. Firstly, for continuous stochastic volatility models with no
correlation between the asset price and the volatility processes, Hull and White [12]
provided an option price expression with a conditional expectation of the Black-
Scholes formula by substituting the future average volatility for the volatility in
the Black-Scholes formula. Alòs [1] has extended it to correlated models by means
of Malliavin calculus in order to deal with Ito’s formula for anticipating processes,
since the future average volatility is a non-adapted process. Besides, extensions to
more general models have been done by [4], [5], [14] and so on. On the other hand,
Alòs [2] obtained a new decomposition formula for the Heston model by using the
average squared future volatility, instead of the future average volatility. Since
the average squared future volatility is an adapted process, she made use of the
classical Ito calculus, not the Malliavin calculus. The decomposition formula in [2]
is given as the sum of the Black-Scholes formula and terms due to the volatility
process. In addition, using the obtained decomposition expression, approximate
option pricing formulas were also presented. This Alòs type decomposition formula
has been extended to more general models by [16], [17] and so on. Among them,
Merino et al. [15] has extended to stochastic volatility models with finite active
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jumps. Moreover, for the Heston model, Alòs et al. [3] suggested an approximation
of the implied volatility and a calibration method by using the results of [2].

The objective of this paper is to obtain an Alòs type decomposition expression of
call option prices for the Barndor↵-Nielsen and Shephard (BNS) model by applying
Ito’s formula to the Black-Scholes formula. It is given as the sum of the Black-
Scholes formula, a term due to the impact of the asset price jumps, and some
residual terms due to the asset price jumps and changes of the volatility. Unlike
[2], we use the current squared volatility value instead of the average squared
future volatility, and substitute it to the volatility in the Black-Scholes formula.
To our best knowledge, this is the first result of the Alòs type decomposition
formula for models with infinite active jumps, but Jafari and Vives [14] derived
a Hull-White type decomposition formula for models with infinite active jumps
by means of Malliavin calculus. Now, the BNS model is a representative jump-
type stochastic volatility model undertaken by [9], [10], and its volatility process
is given by a non-Gaussian Ornstein-Uhlenbeck process. The BNS model is still
being actively researched, e.g. Humayra and SenGupta [13] discussed an optimal
hedging strategy for commodity markets for a refined BNS model, and Shantanu
and SenGupta [20] analyzed the first-exit time for an approximate BNS model.
For details on the BNS model, see also [18] and [19]. The BNS model has the
following three features: First, the asset price process has jumps, but all jumps
are negative. Second, there is no Brownian component in the volatility process.
Third, the jump component is common between the asset price and the volatility
processes. We note that the jumps might be infinite active. Our decomposition
formula will be derived by making the most of these features of the BNS model.

The structure of this paper is as follows: We give some mathematical preliminar-
ies and notations in the following section. Section 3 introduces our decomposition
formula. Its proof is given in Section 4, and conclusions are summarized in Section
5.

2. Preliminaries

2.1. Model description. Consider throughout a financial market model in
which only one risky asset and one riskless asset are tradable. Let r � 0 be
the interest rate of our market, and T > 0 a finite time horizon. In the BNS
model, the risky asset price at time t 2 [0, T ] is described by

St := S0 exp

⇢Z t

0

✓
r + µ� 1

2
⌃2

u

◆
du+

Z t

0

⌃udWu + ⇢H�t

�
, t 2 [0, T ], (2.1)

where S0 > 0, ⇢  0, µ 2 R, � > 0, H is a subordinator without drift, and W

is a 1-dimensional standard Brownian motion. Here ⌃ is the volatility process,
of which squared process ⌃2 is given by an Ornstein-Uhlenbeck process driven by
the subordinator H�, that is, the solution to the following stochastic di↵erential
equation:

d⌃2

t = ��⌃2

tdt+ dH�t, t 2 [0, T ] (2.2)

with ⌃2
0
> 0. Note that the asset price process S is defined on some filtered

probability space (⌦,F , (Ft)0tT ,P) with the usual condition, where (Ft)0tT
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is the filtration generated by W and H�. In addition, we denote by X the log
price process logS, that is,

Xt := logSt = logS0 +

Z t

0

✓
r + µ� 1

2
⌃2

u

◆
du+

Z t

0

⌃udWu + ⇢H�t, t 2 [0, T ].

(2.3)
We note that the term ⇢H�t in (2.3) (or (2.1)) accounts for the leverage e↵ect,
which is a stylized fact such that the asset price declines at the moment when the
volatility increases.

For later use, we enumerate some properties of ⌃: Firstly, we have

⌃2

t = e
��t⌃2

0
+

Z t

0

e
��(t�u)

dH�u � e
��T⌃2

0
(2.4)

for any t 2 [0, T ], that is, ⌃ is bounded from below. Next, the integrated squared
volatility is represented as

Z T

t
⌃2

udu = ✏(T � t)⌃2

t +

Z T

t
✏(T � u)dH�u (2.5)

for any t 2 [0, T ], where

✏(t) :=
1� e

��t

�
.

In addition, (2.5) implies
Z T

0

⌃2

udu  1

�
(H�T + ⌃2

0
). (2.6)

Now, we denote by N the Poisson random measure of H�. Hence, we have

H�t =

Z 1

0

zN([0, t], dz), t 2 [0, T ].

Letting ⌫ be the Lévy measure of H�, we find that

eN(dt, dz) := N(dt, dz)� ⌫(dz)dt

is the compensated Poisson random measure. Note that ⌫ is a �-finite measure on
(0,1) satisfying Z 1

0

(z ^ 1)⌫(dz) < 1

by Proposition 3.10 of [11]. The asset price process S is also given as the solution
to the following stochastic di↵erential equation:

dSt = St�

⇢
↵dt+ ⌃tdWt +

Z 1

0

(e⇢z � 1) eN(dt, dz)

�
, t 2 [0, T ],

where

↵ := r + µ+

Z 1

0

(e⇢z � 1)⌫(dz).

Note that St > 0 holds for any t 2 [0, T ].
Now, we introduce our standing assumption as follows:

Assumption 2.1. (1) µ =

Z 1

0

(1� e
⇢z)⌫(dz).
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(2)

Z 1

1

e
2✏(T )z

⌫(dz) < 1.

The above condition 1 implies that the discounted asset price process bSt := e
�rt

St

becomes a local martingale. On the other hand, the condition 2 ensures that
Z 1

0

z
2
⌫(dz) < 1,

which yields E[H2

�T ] < 1 by Proposition 3.13 of [11], and

E
"

sup
t2[0,T ]

X
2

t

#
< 1 (2.7)

by (2.6). In addition,

E
"

sup
t2[0,T ]

S
2

t

#
< 1 (2.8)

holds under the condition 2 from the view of Subsection 2.3 of [8]. Thus, bS is a
square-integrable martingale under Assumption 2.1.

Example 2.2. We introduce two important examples of the squared volatility
process ⌃2.

(1) The first one is the case where ⌃2 follows an IG-OU process. The corre-
sponding Lévy measure ⌫ is given by

⌫(dz) =
�a

2
p
2⇡

z
� 3

2 (1 + b
2
z) exp

⇢
�1

2
b
2
z

�
dz, z 2 (0,1),

where a > 0 and b > 0. Note that this is a representative example of the
BNS model with infinite active jumps, that is, ⌫((0,1)) = 1. In this case,
the invariant distribution of ⌃2 follows an inverse-Gaussian distribution
with parameters a > 0 and b > 0. Note that the condition 2 of Assumption
2.1 is satisfied whenever b2

2
> 2✏(T )

(2) The second example is the gamma-OU case. In this case, ⌫ is described as

⌫(dz) = �abe
�bz

dz, z 2 (0,1),

and the invariant distribution of ⌃2 is given by a gamma distribution
with parameters a > 0 and b > 0. If b > 2✏(T ), then the condition 2 of
Assumption 2.1 is satisfied.

2.2. Black-Scholes formula. In this subsection, consider the so-called Black-
Scholes model with volatility � > 0 and interest rate r � 0, and the call option
with strike price K > 0 and maturity T > 0. We describe the call option price
at time t 2 [0, T ) with the log asset price x 2 R by a function BS on not only
t and x, but also squared volatility �

2. Thus, the function BS(t, x,�2), which is
well-known as the Black-Scholes formula, is given as

BS(t, x,�2) := e
x�(d+)�Ke

�r⌧t�(d�), t 2 [0, T ), x 2 R,� > 0, (2.9)
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where ⌧t = T � t, � is the cumulative distribution function of the standard normal
distribution, and

d
± :=

x� logK + r⌧t

�
p
⌧t

±
�
p
⌧t

2
. (2.10)

For later use, we denote

xz := x+ ⇢z, �z :=
p
�2 + z, ⌘

± := r ± �
2

2
, ⌘

±
z := r ± �

2
z

2
= ⌘

± ± z

2
(2.11)

for z > 0, x 2 R and � > 0. Thus, d± is rewritten as

d
± =

x� logK + ⌘
±
⌧t

�
p
⌧t

.

Furthermore, we define

d
±
⇢z :=

xz � logK + ⌘
±
⌧t

�
p
⌧t

= d
± +

⇢z

�
p
⌧t
. (2.12)

and

d
±
⇢z,z :=

xz � logK + ⌘
±
z ⌧t

�z
p
⌧t

(2.13)

for z > 0. We note that the time parameter t included in d
±, d±⇢z and d

±
⇢z,z might

be replaced with u or s according to the situation. In addition, since we have

lim
t!T

BS(t, x,�2) = (ex �K)+,

the domain of the function BS can be extended to [0, T ]⇥R⇥ (0,1), and we may
define

BS(T, x,�2) := (ex �K)+.

For simplicity, substituting Xt and ⌃2
t defined in (2.3) and (2.2) for x and �

2

respectively in the function BS, we denote

BSt := BS(t,Xt,⌃
2

t )

for t 2 [0, T ].
More importantly, defining an operator DBS as

DBS
f(t, x,�2) :=

✓
@t +

�
2

2
@
2

x + ⌘
�
@x � r

◆
f(t, x,�2)

for R-valued function f(t, x,�2), t 2 [0, T ), x 2 R, � > 0, we have

DBS
BS(t, x,�2) = 0, t 2 [0, T ), x 2 R,� > 0. (2.14)

We observe that partial derivatives of BS are given as

@xBS(t, x,�2) = e
x�(d+), (2.15)

@
2

xBS(t, x,�2) = e
x�(d+) +

e
x

�
p
⌧t
�(d+), (2.16)

and

@�2BS(t, x,�2) =
⌧t

2
(@2

x � @x)BS(t, x,�2) =

p
⌧t

2�
e
x
�(d+), (2.17)
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where � is the probability density function of the standard normal distribution. All
of the above derivatives are positive functions. For later use, we define additionally
the following operators for R-valued function f(t, x,�2), t 2 [0, T ), x 2 R, � > 0:

�a,b
f(t, x,�2) := f(t, x+ a,�

2 + b)� f(t, x,�2), a, b 2 R,

Lz
f(t, x,�2) := �⇢z,0

f(t, x,�2) + @xf(t, x,�
2)(1� e

⇢z), z > 0,

and

Lf(t, x,�2) :=

Z 1

0

Lz
f(t, x,�2)⌫(dz).

3. Main Results

In this section, we introduce our main result, that is, a decomposition formula
for the BNS model introduced in Section 2. Recall that the discounted asset price
process bS is a square-integrable martingale under Assumption 2.1. Thus, for the
vanilla call option with strike price K > 0 and maturity T > 0, its price at time
t 2 [0, T ] is given as

Vt := e
�r⌧tE[BST |Xt,⌃

2

t ].

In Theorem 3.1 below, we derive a decomposition expression of Vt by applying Ito’s
formula to the Black-Scholes function BS. Its proof is postponed until Section 4.

Theorem 3.1. Under Assumption 2.1, we have, for t 2 [0, T ],

Vt = BSt + ⌧tLBSt + I1 + I2 + I3 + I4 + I5. (3.1)

Here, I1, . . . , I5 are defined as follows:

I1 := E
"Z T

t
e
�r(u�t)

@�2BSu(��⌃2

u)du
���Xt,⌃

2

t

#
,

I2 := E
"Z T

t
e
�r(u�t)

Z 1

0

�
�⇢z,z ��⇢z,0

�
BSu⌫(dz)du

���Xt,⌃
2

t

#
,

I3 := E
"Z T

t
e
�r(u�t)

⌧u@xLBSuµdu

���Xt,⌃
2

t

#
,

I4 := E
"Z T

t
e
�r(u�t)

⌧u@�2LBSu(��⌃2

u)du
���Xt,⌃

2

t

#
,

and

I5 := E
"Z T

t
e
�r(u�t)

⌧u

Z 1

0

�⇢z,zLBSu⌫(dz)du
���Xt,⌃

2

t

#
,

where ⌧u := T � u.

Remark 3.2. In the decomposition formula (3.1), the first two terms in the right
hand side are regarded as principal terms. In particular, the second term ⌧tLBSt

represents the impact of the jumps of the asset price process. Indeed, it becomes
0 whenever ⇢ = 0. Note that this term converges to 0 with order 1 as the time to
maturity ⌧t tends to 0. Here we give interpretations of I1, . . . , I5 in turn. First of
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all, we can say that I1 represents the influence of the continuous fluctuation of the
squared volatility process ⌃2. Next, decomposing I2 into the following two terms

E
"Z T

t
e
�r(u�t)

Z 1

0

�0,z
BSu⌫(dz)du

���Xt,⌃
2

t

#
, (3.2)

and

E
"Z T

t
e
�r(u�t)

Z 1

0

�
�⇢z,z ��⇢z,0 ��0,z

�
BSu⌫(dz)du

���Xt,⌃
2

t

#
, (3.3)

we can say that (3.2) represents the impact of the jumps of the squared volatility
process, but (3.3) is corresponding to the impact of that jumps occur simultane-
ously in the asset price process and the squared volatility process. As for the last
three terms, the comparison between (3.1) and (4.4) below gives

I3 + I4 + I5 = E
"Z T

t
e
�r(u�t)LBSudu

���Xt,⌃
2

t

#
� ⌧tLBSt.

Thus, the sum I3 + I4 + I5 is corresponding to the residual part of the impact of
the asset price jumps. Each I3, I4 and I5 represents the interaction of the impact
of the asset price jumps with the continuous fluctuation of the asset price process,
the continuous fluctuation of the squared volatility process, and the fact that
jumps occur simultaneously in the asset price and the squared volatility processes,
respectively.

Remark 3.3. As mentioned in Section 1, the decomposition formula (3.1) is given
as an extension of the result of [2] for Heston model, in which the average squared
future volatility V2

t has been substituted for the volatility in the Black-Scholes
formula, where V2

t is defined as

V2

t :=
1

⌧t

Z T

t
E[⌃2

u|⌃2

t ]du.

Note that V2
t for the BNS model is given as

V2

t =
✏(⌧t)

⌧t
⌃2

t +
1

�

✓
1� ✏(⌧t)

⌧t

◆Z 1

0

z⌫(dz)

by (2.4). In this paper, we use the current squared volatility value ⌃2
t , not V2

t ,
since the use of ⌃2

t simplifies our calculations drastically. In addition, as indicated
in Figure 1 below, the di↵erence between BSt = BS(t,Xt,⌃2

t ) and BS(t,Xt,V2
t )

is su�ciently small. Thus, the choice of ⌃2
t or V2

t does not make a big impact.

4. Proof of Theorem 3.1

We shall show Theorem 3.1 by applying Ito’s formula twice to the Black-Scholes
function.
Step 1. Fix s, t 2 [0, T ) with s > t arbitrarily for the time being. Note that the
function e

�ru
BSu, u 2 [s, t] is su�ciently smooth to apply Ito’s formula. From
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Panel (A) Panel (B)

Figure 1. We consider the IG-OU case of the BNS model in-
troduced in Example 2.2. We fix t to 0 and set ⇢ = �4.7039,
� = 2.4958, a = 0.0872, b = 11.98, r = 0.01, S0 = 468.44
and ⌃0 = 0.064262, where this parameter set comes from Ta-
ble 5.1 of [18], who used S&P 500 index option price data on
November 2, 1993. We note that the above parameter set meets
Assumption 2.1. In this figure, we compute the values of V0,
BS(0, X0,⌃2

0
) and BS(0, X0,V2

0
). Note that the values of V0 are

computed by the fast Fourier transform-based numerical scheme
developed in Section 6 of [7] in order to compute the local risk-
minimizing strategies for the BNS model as an extension of the
so-called Carr-Madan method. Panel (A) shows the values of V0,
BS(0, X0,⌃2

0
) and BS(0, X0,V2

0
) for the call options with strike

price K = 440, 440.1, . . . , 480 when the maturity T is fixed to
0.25. In Panel (B), fixing K to 460, and moving T instead from
0.02 to 0.40 at steps of 0.02, we compute the same values for the
option with K = 460. The black, red and blue curves represent
the values of V0, BS(0, X0,⌃2

0
) and BS(0, X0,V2

0
), respectively.

the view of Lemma 4.2 below, we have

e
�rs

BSs = e
�rt

BSt � r

Z s

t
e
�ru

BSudu

+

Z s

t
e
�ru

@tBSudu+

Z s

t
e
�ru

@xBSu

✓
r + µ� ⌃2

u

2

◆
du

+

Z s

t
e
�ru(@xBSu)⌃udWu +

1

2

Z s

t
e
�ru(@2

xBSu)⌃
2

udu

+

Z s

t
e
�ru

@�2BSu(��⌃2

u)du

+

Z s

t
e
�ru

Z 1

0

�⇢z,z
BSu�N(du, dz)
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= e
�rt

BSt +

Z s

t
e
�ruDBS

BSudu+

Z s

t
e
�ru

@xBSuµdu

+

Z s

t
e
�ru(@xBSu)⌃udWu +

Z s

t
e
�ru

@�2BSu(��⌃2

u)du

+

Z s

t
e
�ru

Z 1

0

�⇢z,z
BSu�N(du, dz). (4.1)

Now, we take the conditional expectation given Xt and ⌃2
t on both sides of

(4.1). By (2.14) and Lemmas 4.1 and 4.2, we have

e
�rsE[BSs|Xt,⌃

2

t ] = e
�rt

BSt + E
Z s

t
e
�ru

@xBSuµdu

���Xt,⌃
2

t

�

+ E
Z s

t
e
�ru

@�2BSu(��⌃2

u)du
���Xt,⌃

2

t

�

+ E
Z s

t
e
�ru

Z 1

0

�⇢z,z
BSu⌫(dz)du

���Xt,⌃
2

t

�
. (4.2)

Taking the limitation on the left hand side as s tends to T , we have

lim
s!T

E[BSs|Xt,⌃
2

t ] = E[BST |Xt,⌃
2

t ],

since |BSs|  supt2[0,T ] St + K, which is integrable. Next, the partial deriva-
tives @xBS and @�2BS are positive by (2.15) and (2.17). Thus, the monotone
convergence theorem provides that

lim
s!T

E
Z s

t
e
�ru

@xBSudu

���Xt,⌃
2

t

�
= E

"Z T

t
e
�ru

@xBSudu

���Xt,⌃
2

t

#
(4.3)

and

lim
s!T

E
Z s

t
e
�ru

@�2BSu(��⌃2

u)du
���Xt,⌃

2

t

�

= E
"Z T

t
e
�ru

@�2BSu(��⌃2

u)du
���Xt,⌃

2

t

#
.

Moreover, from the view of the proof of Lemma 4.2, the dominated convergence
theorem implies

lim
s!T

E
Z s

t
e
�ru

Z 1

0

�⇢z,z
BSu⌫(dz)du

���Xt,⌃
2

t

�

= E
"Z T

t
e
�ru

Z 1

0

�⇢z,z
BSu⌫(dz)du

���Xt,⌃
2

t

#
.

To summarize the above, taking the limitation on both sides of (4.2) as s tends to
T , and multiplying e

rt on both sides, we obtain

Vt = BSt + E
"Z T

t
e
�r(u�t)

@�2BSu(��⌃2

u)du
���Xt,⌃

2

t

#
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+ E
"Z T

t
e
�r(u�t)

Z 1

0

{�⇢z,z
BSu + @xBSu(1� e

⇢z)} ⌫(dz)du
���Xt,⌃

2

t

#

= BSt + I1 + I2 + E
"Z T

t
e
�r(u�t)LBSudu

���Xt,⌃
2

t

#
, (4.4)

since µ =
R1
0

(1� e
⇢z)⌫(dz).

Step 2. We shall calculate the last term of (4.4). First of all, we fix t 2 [0, T )
arbitrarily, and define

F (u, x,�2) := e
�r(u�t)

⌧uLBS(u, x,�2), u 2 [t, T ).

Lemma 4.3 ensures that, for any s, t 2 [0, T ) with t < s, LBS(u, x,�2) is a C
1,2,1-

function on [t, s]⇥R⇥ [e��T⌃2
0
,1). We note that the domain of �2 is restricted to

[e��T⌃2
0
,1) from the view of (2.4). Ito’s formula, together with (4.11) in Lemma

4.3, implies

F (s,Xs,⌃
2

s) = F (t,Xt,⌃
2

t )� r

Z s

t
e
�r(u�t)

⌧uLBSudu

�
Z s

t
e
�r(u�t)LBSudu+

Z s

t
e
�r(u�t)

⌧u@tLBSudu

+

Z s

t
e
�r(u�t)

⌧u@xLBSu

✓
r + µ� ⌃2

u

2

◆
du

+

Z s

t
e
�r(u�t)

⌧u(@xLBSu)⌃udWu

+
1

2

Z T

t
e
�r(u�t)

⌧u(@
2

xLBSu)⌃
2

udu

+

Z s

t
e
�r(u�t)

⌧u@�2LBSu(��⌃2

u)du

+

Z s

t
e
�r(u�t)

⌧u

Z 1

0

�⇢z,zLBSu�N(du, dz)

= F (t,Xt,⌃
2

t )�
Z s

t
e
�r(u�t)LBSudu+

Z s

t
e
�r(u�t)

⌧u@xLBSuµdu

+

Z s

t
e
�r(u�t)

⌧u(@xLBSu)⌃udWu

+

Z s

t
e
�r(u�t)

⌧u@�2LBSu(��⌃2

u)du

+

Z s

t
e
�r(u�t)

⌧u

Z 1

0

�⇢z,zLBSu�N(du, dz). (4.5)

We observe that the above integral with respect to N(du, dz) is also well-defined
by Lemma 4.5. Taking the conditional expectation on both sides of (4.5), we have

F (s,Xs,⌃
2

s) = F (t,Xt,⌃
2

t )� E
Z s

t
e
�r(u�t)LBSudu

���Xt,⌃
2

t

�
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+ E
Z s

t
e
�r(u�t)

⌧u@xLBSuµdu

���Xt,⌃
2

t

�

+ E
Z s

t
e
�r(u�t)

⌧u@�2LBSu(��⌃2

u)du
���Xt,⌃

2

t

�

+ E
Z s

t
e
�r(u�t)

⌧u

Z 1

0

�⇢z,zLBSu⌫(dz)du
���Xt,⌃

2

t

�
(4.6)

by Lemmas 4.4 and 4.5.
Now, we take limits as s tends to T on both sides of (4.6). A similar argument

with the proof of Lemma 4.2 yields

lim
s!T

E
Z s

t
e
�ru

Z 1

0

�⇢z,0
BSu⌫(dz)du

���Xt,⌃
2

t

�

= E
"Z T

t
e
�ru

Z 1

0

�⇢z,0
BSu⌫(dz)du

���Xt,⌃
2

t

#
,

from which, together with (4.3),

lim
s!T

E
Z s

t
e
�r(u�t)LBSudu

���Xt,⌃
2

t

�
= E

"Z T

t
e
�r(u�t)LBSudu

���Xt,⌃
2

t

#

holds. In addition, we have

lim
s!T

E
Z s

t
e
�r(u�t)

⌧u@xLBSudu

���Xt,⌃
2

t

�

= E
"Z T

t
e
�r(u�t)

⌧u@xLBSudu

���Xt,⌃
2

t

#
,

and

lim
s!T

E
Z s

t
e
�r(u�t)

⌧u

Z 1

0

�⇢z,zLBSu⌫(dz)du
���Xt,⌃

2

t

�

= E
"Z T

t
e
�r(u�t)

⌧u

Z 1

0

�⇢z,zLBSu⌫(dz)du
���Xt,⌃

2

t

#

from the views of the proofs of Lemmas 4.4 and 4.5, respectively. Summarizing
the above with Lemmas 4.6 and 4.7, we obtain

E
"Z T

t
e
�r(u�t)LBSudu

���Xt,⌃
2

t

#

= F (t,Xt,⌃
2

t ) + E
"Z T

t
e
�r(u�t)

⌧u@xLBSuµdu

���Xt,⌃
2

t

#

+ E
"Z T

t
e
�r(u�t)

⌧u@�2LBSu(��⌃2

u)du
���Xt,⌃

2

t

#

+ E
"Z T

t
e
�r(u�t)

⌧u

Z 1

0

�⇢z,zLBSu⌫(dz)du
���Xt,⌃

2

t

#
.
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This completes the proof of Theorem 3.1.

4.1. Lemmas.

Lemma 4.1.

E
Z s

t
e
�ru(@xBSu)⌃udWu

���Xt,⌃
2

t

�
= 0. (4.7)

Proof. Since bS is a square integrable martingale,
R t
0
bSu⌃udWu is also a square

integrable martingale. Thus, (2.15) yields that

E
"Z T

0

e
�2ru(@xBSu)

2⌃2

udu

#
 E

"Z T

0

bS2

u⌃
2

udu

#
< 1,

which implies (4.7). ⇤
Lemma 4.2. The integral

Z s

t
e
�ru

Z 1

0

�⇢z,z
BSu�N(du, dz)

is well-defined, and we have

E
Z s

t
e
�ru

Z 1

0

�⇢z,z
BSu�N(du, dz)

���Xt,⌃t

�

= E
Z s

t
e
�ru

Z 1

0

�⇢z,z
BSu⌫(dz)du

���Xt,⌃t

�

for any s, t 2 [0, T ) with t < s.

Proof. From the view of Subsection 4.3.2 (p.231) of Applebaum [6], it su�ces to
see Z T

0

Z 1

0

E[|�⇢z,z
BSu|]⌫(dz)du < 1.

Here, C denotes a positive constant, which may vary from line to line. For d± and
d
±
⇢z,z defined in (2.10) and (2.13) respectively, we have

|d±⇢z,z � d
±|  |x� logK + r⌧t|p

⌧t

����
1

�z
� 1

�

����+
|⇢|z

�z
p
⌧t

+
|�z � �|p⌧t

2

 |x� logK + r⌧t|p
⌧t

|� � �z|
��z

+
|⇢|z
�
p
⌧t

+
z
p
⌧t

2(�z + �)

 |x� logK + r⌧t|p
⌧t

z

2�3
+

|⇢|z
�
p
⌧t

+
z
p
⌧t

4�

 C

✓
|x|+ 1
p
⌧t

+
p
⌧t

◆
z

� ^ �3
, (4.8)

where �z is defined in (2.11). Now, (4.8) implies

|�⇢z,z
BS(t, x,�2)|

= |exz�(d+⇢z,z)�Ke
�r⌧t�(d�⇢z,z)� e

x�(d+) +Ke
�r⌧t�(d�)|

 e
xz |�(d+⇢z,z)� �(d+)|+ e

x|e⇢z � 1|�(d+) +Ke
�r⌧t |�(d�⇢z,z)� �(d�)|
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 e
x 1p

2⇡
|d+⇢z,z � d

+|+ e
x|⇢|z +Ke

�r⌧t 1p
2⇡

|d�⇢z,z � d
�|

< C(ex + 1)

✓
|x|+ 1
p
⌧t

+
p
⌧t

◆
z

� ^ �3
+ e

x|⇢|z

< C(ex + 1)(|x|+ 1)

✓
1

p
⌧t

+
p
⌧t + 1

◆
z

1 ^ � ^ �3
.

Note that the second inequality is derived from

|�(d+⇢z,z)� �(d+)| =

�����

Z d+
⇢z,z

d+

�(#)d#

����� 
|d+⇢z,z � d

+|
p
2⇡

,

where � is the probability density function of the standard normal distribution.
Since the volatility process ⌃ is bounded from below by (2.4), we have

Z T

0

Z 1

0

E[|�⇢z,z
BSu|]⌫(dz)du

 C

Z T

0

✓
1

p
⌧u

+
p
⌧u + 1

◆
du

Z 1

0

z⌫(dz)

⇥

vuuutE

2

4
 

sup
t2[0,T ]

St + 1

!2
3

5E

2

4
 

sup
t2[0,T ]

|Xt|+ 1

!2
3

5

< 1 (4.9)

by (2.8) and (2.7), from which Lemma 4.2 follows. ⇤

Lemma 4.3. For any t, s 2 [0, T ) with t < s, and any partial derivative operator

@ 2 {@t, @x, @2
x, @�2}, @LBS(u, x,�2) exists for (u, x,�2) 2 [t, s]⇥R⇥[e��T⌃2

0
,1),

and we have

@LBS(u, x,�2) = L@BS(u, x,�2). (4.10)

In particular,

DBSLBS(u, x,�2) = 0 (4.11)

holds for (u, x,�2) 2 [t, s]⇥ R⇥ [e��T⌃2
0
,1).

Proof. First of all, we show (4.10) for @x. By the definition of L, (2.9) and (2.15),
we have

@xLBS(u, x,�2)

= @x

Z 1

0

Lz
BS(u, x,�2)⌫(dz)

= @x

Z 1

0

⇢
e
xz�(d+⇢z)�Ke

�r⌧u�(d�⇢z)� e
x�(d+) +Ke

�r⌧u�(d�)

+ e
x�(d+)(1� e

⇢z)

�
⌫(dz)

= @x

Z 1

0

⇢
e
xz (�(d+⇢z)� �(d+))�Ke

�r⌧u(�(d�⇢z)� �(d�))

�
⌫(dz)
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= e
x(1 + @x)

Z 1

0

e
⇢z(�(d+⇢z)� �(d+))⌫(dz)

�Ke
�r⌧u@x

Z 1

0

(�(d�⇢z)� �(d�))⌫(dz).

We note that d
± and d

±
⇢z appeared in this proof are defined in (2.10) and (2.12)

respectively, but time parameter t is replaced with u. Note that

|�(d+⇢z)� �(d+)| 
|d+⇢z � d

+|
p
2⇡

=
1p
2⇡

|⇢|z
�
p
⌧u

.

Thus, |�(d+⇢z) � �(d+)| is integrable with respect to ⌫(dz). Moreover, since �
0 is

bounded, that is, there is a constant C�0 > 0 such that

|�0(d)| < C�0 (4.12)

for any d 2 R, we have

|@x(�(d+⇢z)� �(d+))| = |(@xd+⇢z)�(d+⇢z)� (@xd
+)�(d+)|

=
1

�
p
⌧u

|�(d+⇢z)� �(d+)|  1

�
p
⌧u

C�0 |⇢|z
�
p
⌧u

,

which is also integrable with respect to ⌫(dz). Similarly, we can see the integra-
bility of |@x(�(d�⇢z) � �(d�))|. Thus, (4.10) holds when @ = @x from the view of
the dominated convergence theorem.

As for @2
x, we have

@
2

xLBS(u, x,�2)

= @xL@xBS(u, x,�2)

= @x

Z 1

0

⇢
@xBS(u, xz,�

2)� @xBS(u, x,�2) + @
2

xBS(u, x,�2)(1� e
⇢z)

�
⌫(dz)

= @x

Z 1

0

⇢
e
xz�(d+⇢z)� e

x�(d+) +

✓
e
x�(d+) +

e
x

�
p
⌧u

�(d+)

◆
(1� e

⇢z)

�
⌫(dz)

= @x

Z 1

0

⇢
e
xz (�(d+⇢z)� �(d+)) +

e
x

�
p
⌧u

�(d+)(1� e
⇢z)

�
⌫(dz)

= e
x(1 + @x)

Z 1

0

⇢
e
⇢z(�(d+⇢z)� �(d+)) +

1

�
p
⌧u

�(d+)(1� e
⇢z)

�
⌫(dz)

by (2.16). Thus, we can show (4.10) for @2
x by a similar argument with the case of

@x. Similarly, (4.10) holds for @�2 , since (2.17), together with (4.12), implies that
��@�2Lz

BS(u, x,�2)
��

=

����
p
⌧u

2�
e
x
�
e
⇢z
�(d+⇢z)� �(d+)

�
+

p
⌧u

2�
e
x
�
�(d+) + @xd

+
�
0(d+)

�
(1� e

⇢z)

����


p
⌧u

2�
e
x

⇢
e
⇢z|�(d+⇢z)� �(d+)|+ C�0

�
p
⌧u

(1� e
⇢z)

�

 C�0e
x

2�2
(e⇢z|⇢|z + 1� e

⇢z)  C�0e
x

2e��T⌃2
0

(e⇢z|⇢|z + 1� e
⇢z), (4.13)
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which is integrable with respect to ⌫(dz). On the other hand, noting that

@td
± =

x� logK

2�⌧
3
2
u

� ⌘
±

2�
p
⌧u

for u 2 [t, s] ⇢ [0, T ), where ⌘
± is defined in (2.11), we can see (4.10) for @t

similarly.
Summarizing the above, together with (2.14), we have (4.11). ⇤

Lemma 4.4.

E
Z s

t
e
�r(u�t)

⌧u(@xLBSu)⌃udWu

���Xt,⌃
2

t

�
= 0

for any s, t 2 [0, T ) with t < s.

Proof. We show this lemma by the same way as the proof of Lemma 4.1. To this
end, recall that

@xLBS(u, x,�2) = L@xBS(u, x,�2)

= e
x

Z 1

0

⇢
e
⇢z
�
�(d+⇢z)� �(d+)

�
+

�(d+)

�
p
⌧u

(1� e
⇢z)

�
⌫(dz).

Thus, we have

��@xLBS(u, x,�2)
��2  e

2x

2⇡�2⌧u

⇢Z 1

0

(e⇢z|⇢|z + 1� e
⇢z) ⌫(dz)

�2

,

which implies

E
Z s

t
e
�2r(u�t)

⌧
2

u(@xLBSu)
2⌃2

udu

�

 Ce
2rT

TE
Z s

t

bS2

udu

�
 Ce

2rT
T

2E
"

sup
u2[0,T ]

|bSu|2
#
< 1

for some C > 0. This completes the proof of Lemma 4.4. ⇤

Lemma 4.5. The integral

Z s

t
e
�r(u�t)

⌧u

Z 1

0

�⇢z,zLBSu�N(du, dz)

is well-defined, and we have

E
Z s

t
e
�r(u�t)

⌧u

Z 1

0

�⇢z,zLBSu�N(du, dz)
���Xt,⌃

2

t

�

= E
Z s

t
e
�r(u�t)

⌧u

Z 1

0

�⇢z,zLBSu⌫(dz)du
���Xt,⌃

2

t

�

for any s, t 2 [0, T ) with t < s.

Proof. By the same manner as Lemma 4.2, it su�ces to see
Z T

0

⌧u

Z 1

0

E[|�⇢z,zLBSu|]⌫(dz)du < 1. (4.14)
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Recall that

LBS(t, x,�2) =

Z 1

0

⇢
e
xz�(d+⇢z)�Ke

�r⌧u�(d�⇢z)� e
x�(d+) +Ke

�r⌧u�(d�)

+ e
x�(d+)(1� e

⇢z)

�
⌫(dz)

=

Z 1

0

⇢
e
xz
�
�(d+⇢z)� �(d+)

�
�Ke

�r⌧u
�
�(d�⇢z)� �(d�)

��
⌫(dz).

This implies

�⇢z,zLBS(t, x,�2)

=

Z 1

0

⇢
Lw

BS(t, xz,�
2

z)� Lw
BS(t, x,�2)

�
⌫(dw)

=

Z 1

0

⇢
e
xz+w

�
�(d+⇢z+⇢w,z)� �(d+⇢z,z)

�
�Ke

�r⌧u
�
�(d�⇢z+⇢w,z)� �(d�⇢z,z)

�

� e
xw
�
�(d+⇢w)� �(d+)

�
+Ke

�r⌧u
�
�(d�⇢w)� �(d�)

��
⌫(dw)

=

Z 1

0

⇢
e
xz+w

Z d+
⇢z+⇢w,z

d+
⇢z,z

�(#)d#�Ke
�r⌧u

Z d�
⇢z+⇢w,z

d�
⇢z,z

�(#)d#

� e
xw

Z d+
⇢w

d+

�(#)d#+Ke
�r⌧u

Z d�
⇢w

d�
�(#)d#

�
⌫(dw)

=
⇢

�z
p
⌧t

Z 1

0

Z w

0

⇢
e
xz+w�(d+⇢z+⇢⇣,z)�Ke

�r⌧u�(d�⇢z+⇢⇣,z)

�
d⇣⌫(dw)

� ⇢

�
p
⌧t

Z 1

0

Z w

0

⇢
e
xw�(d+⇢⇣)�Ke

�r⌧u�(d�⇢⇣)

�
d⇣⌫(dw)

=
⇢

�z
p
⌧t

Z 1

0

Z w

0

⇢
e
xz+w�(d+⇢z+⇢⇣,z)� e

xz+⇣�(d+⇢z+⇢⇣,z)

�
d⇣⌫(dw)

� ⇢

�
p
⌧t

Z 1

0

Z w

0

⇢
e
xw�(d+⇢⇣)� e

x⇣�(d+⇢⇣)

�
d⇣⌫(dw)

=
⇢e

x

p
⌧t

Z 1

0

Z w

0

(e⇢w � e
⇢⇣)

⇢
e
⇢z

�z
�(d+⇢z+⇢⇣,z)�

1

�
�(d+⇢⇣)

�
d⇣⌫(dw). (4.15)

Note that the fifth equality of (4.15) comes from the following general fact:

e
x
�(d+) = Ke

�r⌧t�(d�)

for any t 2 [0, T ), x 2 R and � > 0. In addition, the following inequality holds:
����
e
⇢z

�z
�(d+⇢z+⇢⇣,z)�

1

�
�(d+⇢⇣)

����

 �(d+⇢z+⇢⇣,z)

����
e
⇢z

�z
� 1

�

����+
1

�
|�(d+⇢z+⇢⇣,z)� �(d+⇢⇣)|

 1p
2⇡

����
e
⇢z � 1

�z
+

1

�z
� 1

�

����+
C�0

�

⇢
|d+⇢z,z � d

+|+ |⇢|⇣
p
⌧t

����
1

�z
� 1

�

����

�
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 1p
2⇡

✓
|⇢|z
�

+
z

2�3

◆
+

C�0

�

⇢
C

✓
|x|+ 1
p
⌧t

+
p
⌧t

◆
z

� ^ �3
+

|⇢|⇣
p
⌧t

z

2�3

�

for some C > 0. We observe that C�0 is the positive constant defined in (4.12),
and the last inequality is due to (4.8). Thus, (4.15) is less than
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for some C > 0. As a result, substituting u, Xu and ⌃2
u for t, x and �

2 respectively,
we can see (4.14) by a similar way with (4.9). ⇤

Lemma 4.6. lims!T F (s, x,�2) = 0 for any x 2 R and � > 0.

Proof. First of all, we have
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Now, we evaluate the above integrand as follows:
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which is integrable with respect to ⌫(dz). Thus, the dominated convergence theo-
rem implies
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Lemma 4.7.
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Proof. By (4.13), we have
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for some C > 0. Thus, we can find a constant C > 0 such that
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which is integrable with respect to P. Hence, Lemma 4.7 follows by the dominated
convergence theorem. ⇤
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5. Conclusions

An Alòs type decomposition formula for the vanilla call option for the BNS
model has been derived by using Ito’s formula twice. Figure 1 shows that the
values of V0 are away from the values of BS(0, X0,⌃2

0
). This indicates that we

need to develop an approximate option pricing formula by using our decomposition
formula, but we leave it to future works. Besides, such an approximation would
enable us to develop an approximation of implied volatilities and a calibration
method for model parameters.
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