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ABSTRACT

Wireless multi-hop networks are particularly susceptible to

attacks based on flooding and the interception, tampering

with, and forging of packets. Thus, reliable communication

in such networks quintessentially depends on mechanisms

to verify the authenticity of network traffic and the identity

of communicating peers. A major challenge to achieve this

functionality are the tight resource constraints of such de-

vices as smartphones, mesh- and sensor nodes with regard to

CPU, memory, and energy. Since existing approaches suffer

from significant drawbacks related to functionality and effi-

ciency, we present in this paper ALPHA, an Adaptive and

Lightweight Protocol for Hop-by-hop Authentication. AL-

PHA establishes a verifiable notion of identity for network

traffic, based on computationally cheap hash functions, en-

abling end-to-end as well as hop-by-hop integrity protection

for unicast traffic. Our evaluation shows that ALPHA is a

generic security mechanism that makes full traffic authen-

tication and secure middlebox signaling viable in resource-

constrained multi-hop networks.
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1. INTRODUCTION

An ever-growing class of wireless devices constrained
in their CPU power, available memory, and energy re-
sources such as PDAs, smartphones, and pervasive wire-
less sensor nodes, enables the deployment of ubiquitous
mobile and multi-hop networks. These devices are typ-
ically rolled out in untrusted or hostile environments
with a wide range of attack vectors on packet commu-
nication. Thus, assuring its authenticity and integrity
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is of paramount importance on all network layers, e.g.,
for routing information, secure location updates of mo-
bile hosts, code distribution, and for streaming sensed
data or high-volume traffic.

In wireless multi-hop networks, a communication be-
tween end-hosts may involve a large number of forward-
ing nodes, making resource exhaustion attacks (e.g. tar-
geting energy, bandwidth, and CPU resources) on any
element of a communication path particularly effective.
To limit the impact of this attack, it is vital to efficiently
verify the authenticity of a message and its sender’s
identity to detect and drop forged or unauthorized mes-
sages early. Such a facility also allows on-path entities
to authenticate data, e.g., for control and signaling data
between end-hosts and forwarding nodes such as loca-
tion updates from mobile devices. Together, forgery
detection and data extraction form the basis for more
complex services, such as rate and resource allocation
within the network controlled by end-host but enforced
by intermediate nodes.

Conventionally, light-weight end-to-end integrity pro-
tection and encryption are based on shared secrets and
symmetric ciphers. However, these mechanisms cannot
enable integrity checking on a hop-by-hop basis because
forwarding nodes typically have no access to the shared
secrets. Therefore, they cannot use these mechanisms
to verify the authenticity of data and the identity of the
communicating peers. Simply sharing the symmetric
keys with forwarding nodes is not possible because ma-
licious relays could use these keys to manipulate data in
transit. Hence, packet manipulation and unauthorized
transmission are only detected by the destination host
and cannot be filtered by intermediate nodes. While
public-key cryptography does not suffer from this limi-
tation, it is computationally significantly more complex
than the symmetric approaches. This overhead and the
resulting impact on energy consumption and communi-
cation latency is prohibitive for per-packet verification
in the vast majority of multi-hop scenarios.

Hash chains represent a practical basis for solving
this problem as they are computationally efficient and
are successfully employed in different specialized pro-



tocols, such as TESLA [18], CSA [4], ZCK [20], the
Guy Fawkes Protocol [2], and WIMP [19]. However,
existing solutions either lack on-path data verification
or are too inefficient in wireless multi-hop networks for
both infrequent low-volume and high-volume transfers.
Moreover, they are designed for tightly restricted use-
cases, making it difficult to apply them in a broader
scope.

In this paper, we present and analyze ALPHA, an
adaptive, flexible, and lightweight scheme for integrity
protection and re-authentication based on hash chains.
ALPHA provides end-to-end as well as hop-by-hop in-
tegrity protection for multi-hop wireless networks like
mobile ad-hoc networks (MANETS), wireless mesh net-
works (WMNs), and wireless sensor networks (WSNs).
Hence, it can replace traditional shared-secret-based
end-to-end integrity protection, which cannot be au-
thenticated by relays. We combine concepts from inter-
active signatures [19, 2, 4, 21] and Merkle Trees [15] that
have been successfully applied in end-to-end-oriented
network security. Our main contribution is to tie these
techniques together into a single coherent and secure
system that provides generic and efficient end-to-end
and hop-by-hop integrity verification in unicast com-
munication. We extend the set of existing hash-chain-
based protocols by presenting three operational modes
for ALPHA, allowing adaptation to the bandwidth,
CPU, and memory capabilities of network nodes. Fi-
nally, we evaluate the efficiency and adaptiveness of the
proposed scheme to illustrate its practical applicabil-
ity in protecting three distinct scenarios and platforms:
WSNs, WMNs, and lightweight mobile devices.

2. BACKGROUND AND RELATED WORK

Hash chains [10] suit well the design of efficient proto-
cols as their computation is several orders of magnitude
faster than public key cryptography. Since then, hash
chains have been applied in a wide field of applications,
such as the authentication and integrity protection of
link-state routing updates [8, 5], integrity protection of
multicast data [18], wormhole detection in mobile ad-
hoc networks [9], and secure macro mobility and mul-
tihoming in IP networks [19]. In the remainder of this
section, we review key concepts of hash-chain-based au-
thentication and integrity protection and discuss related
work in the field of hop-by-hop authentication.

2.1 Hash-chain-based Signatures

The fundamental idea behind hash chains is the it-
erated application of a cryptographic hash function H

(e.g., SHA-1 or a block-cipher-based hash function) on
a random seed value s. The first result H(s) = h1 is
used as input for the next round, yielding H(H(s)) =
H(h1) = h2 until the hash chain has reached the desired
length n. The last element of the chain hn is called the

anchor. The elements of this one-way hash chain are
used in reverse order of creation, i.e., beginning with
the anchor hn and proceeding with hn−1.

In terms of a protocol, the owner of a hash chain
first exchanges the anchor with its peer. When re-
quired to authenticate itself, the owner reveals the next
undisclosed hash chain element, and thus enables the
receiver of the element to verify that it is in posses-
sion of the hash chain. Attaching a notion of iden-
tity to a hash chain, hosts can prove their identity
for re-authentication by disclosing previously undis-
closed elements of the chain as used by Hauser et
al. [8]. This re-authentication property is important
for mobile multi-hop networks as identities cannot be
tied to non-cryptographic node characteristics, such as
IP addresses, without security risks. Note that addi-
tional identity-providing techniques, such as public-key-
authenticated hash chain anchors, are required for a
strong assurance of identities.

There are three conceptually different approaches for
signing and verifying messages with hash chains: one-
time signatures, time-based, and interaction-based. In
the remainder of this section, we give a short overview of
time-based and interaction-based approaches and their
properties. One-time signature schemes (e.g., [14, 23]),
are not considered further because of their prohibitively
high computational costs and large signature sizes.

2.1.1 Time-based Signatures

Cheung introduced time-based signatures for secur-
ing link-state routing [5]. Later, Perrig et al. pro-
posed to use time-based hash-chain signatures in the
Timed Efficient Stream Loss-tolerant Authentication
(TESLA) [18] protocol. TESLA requires loose time syn-
chronization to divide time into fixed-length time spans,
where each epoch is linked to a different hash chain ele-
ment. The ensuing data traffic is protected by a keyed-
Hash Message Authentication Code (HMAC)[3], where
the key is the element corresponding to the current
epoch. µTESLA [11] was developed in order to improve
the efficiency of TESLA for sensor networks by using
only symmetric cryptography and restricting the num-
ber of authenticated senders in the network. This re-
duces the resource requirements for storing hash chains.
However, time-based approaches provide only limited
applicability to and adaptability for on-path authenti-
cation: First, jitter may lead to packets being delivered
to a verifier after the corresponding hash-chain link was
disclosed. The verifier consequently discards such pack-
ets. Thus, the minimum size of the time frame is de-
termined by the maximum expected delay, drastically
increasing the application-to-application latency in high
variance networks, such as multi-hop wireless networks.
Although Perrig et al. extended TESLA to adapt to
different network latencies [17], this adaptation focuses



on latency differences between multiple receivers of a
multicast stream and does not apply to unicast com-
munication. Second, time-based approaches reveal hash
elements at a regular interval even when no payload is
transferred. Thus, they incur computational overhead
in networks with low or varying volume. Finally, exist-
ing time-based and end-to-end focused approaches do
not take into account on-path integrity verification, and
thus, are not applicable to this particular problem.

2.1.2 Interactive Signatures

Interactive hash chain-based signatures (IHC) exploit
the interaction between a signer and a verifier to guar-
antee temporal separation between the generation of
a signature, and the disclosure of the corresponding
hash-chain element. Anderson et al. proposed the
Guy Fawkes protocol [2] that uses interactive delayed
secret disclosure for integrity protection and authenti-
cation of unicast streams. Bergadano et al. [4] proposed
the Chained Stream Authentication (CSA) scheme, an
interactive scheme for authenticating unicast and mul-
ticast streams. Torvinen and Ylitalo have shown that
hash-chain-based signatures can be used for mobility
and multihoming signaling in future IPv6 networks [19].
Weimerskirch and Westhoff [20] use an interactive ap-
proach in the Zero Common Knowledge protocol for re-
recognition of communication partners. Yao et al. [21]
use an interactive protocol to secure broadcast messages
in sensor networks where a single source (the base sta-
tion) sends identical messages to all nodes. Although
the protocol achieves on-path authentication of mes-
sages, it does not provide efficient point-to-point com-
munication between arbitrary nodes. IHC signatures
in general do not require time synchronization and do
not introduce a fixed delay until the receiver can ver-
ify the packets. Thus, they adapt well to scenarios
with a widely varying network latency while their re-
source requirements are comparable to the requirements
of TESLA.

Neither the time-based nor the interactive approaches
lend themselves to securing point-to point communi-
cation in combination with on-path authentication of
packets to suppress unsolicited traffic within the net-
work. Moreover, the protocols lack adaptation capabil-
ities regarding varying latency, bandwidth, and reliabil-
ity requirements, and hence, each approach is restricted
a specific use-case.

2.2 Hop-by-hop Authentication

LHAP [26, 12] and HEAP [1] were specifically de-
signed for hop-by-hop authentication in MANETs.
LHAP uses TESLA for bootstrapping trust relation-
ships between nodes, and it uses authentication tokens
when forwarding data packets. Lu and Pooch [12] pro-
pose HEAP, a system that builds on LHAP but uses

a TESLA-like protocol for securing data transmission
between two adjacent routers. HEAP uses pair-wise
symmetric keys and a modified HMAC function to au-
thenticate packets hop-by-hop. Gouda et al. present
three protocols for hop integrity protection [6], in which
symmetric keys between adjacent routers are used to
identify injected and modified packets.

All of the aforementioned protocols aim at prevent-
ing outsider attacks by unauthorized senders. However,
they cannot mitigate insider attacks such as forged or
manipulated messages by otherwise trusted nodes. Pro-
tection against these attacks would require end-to-end
integrity protection that can be verified on every hop.

Zhu et al. [25] and Ye et al. [22] solve the problem
of efficient en-route verification with probabilistic ap-
proaches. However, both techniques are tightly cou-
pled to a large sensor-network scenario with multiple
cooperating sensors, sensing and sending the same in-
formation to a fixed sink (base station). Hence, the
employed methods are not suitable for point-to-point
communication between single hosts in networks of all
sizes. Zhang et al. [24] use polynomial-based cryptog-
raphy for authenticating packets in WSNs. Their ap-
proach assumes the presence of a central security server
that provides keying-material to all nodes before de-
ployment. Although this assumption is viable for many
WSN scenarios, it is inapplicable to many dynamic and
decentralized deployments.

3. DESIGN OF ALPHA

In this section, we present the design of the Adap-
tive and Lightweight Protocol for Hop-by-hop Authenti-
cation (ALPHA). ALPHA protects the communication
between two arbitrary nodes in multi-hop networks. As
depicted in Figure 1, it uses the notion of a protected
path between these nodes. Before sending potentially
large data packets, a small path reservation packet is
sent to the destination, enabling the receiver and all
intermediate nodes to efficiently check the integrity of
the data packet. ALPHA is adaptive in the sense that
it can be used for occasional signaling traffic as well as
for high-volume data streams. Moreover it provides in-
tegrated support for reliable and unreliable data trans-
mission. To this end, ALPHA provides two modes of
operation (c.f. Section 3.2) and three transport mech-
anisms (c.f. Section 3.1 and Section 3.3) that can be
combined to meet the requirements of different applica-
tion scenarios and network capabilities.

3.1 Basic ALPHA Protocol

For a better understanding, we first give an overview
of the basic ALPHA signature process before discussing
extensions that enable the adaptation of ALPHA. The
signature process takes place after an initial handshake
in which the anchors of the hash chains are exchanged.
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Figure 1: ALPHA dynamically establishes a pro-
tected path between a signer s and a verifier v

over several relays ri.

For the sake of clarity, we defer the handshake details
to Section 3.4.

The goal of the signature process is to transmit an
integrity-protected message m from a signer to a veri-
fier in a way that lets relays1 verify that m was (a) sent
by a legitimate sender, (b) the sender is authorized to
send m, and (c) m has not been altered by an attacker
on the path.

The basic ALPHA signature scheme consists of a
three-way packet exchange for each protected payload
message m. Figure 2 depicts the packet exchange for
the four-hop path in Figure 1. The ALPHA signature
scheme belongs to the class of interactive hash chain
signatures, hence, ALPHA uses deferred secret disclo-
sure in combination with an interlocking scheme. The
first packet announces a Message Authentication Code
(MAC) M of m keyed with a fresh hash-chain element
of the signer. In the second packet, the verifier acknowl-
edges the receipt of the MAC and in the third packet,
the signer sends m and discloses the hash chain element
that was used as the MAC key. In the following we dis-
cuss the three-way signature process in detail.

Typically, an end-host acts both as a signer and a
verifier on a bi-directional packet flow. Each host uses
separate hash chains for signing outgoing and acknowl-
edging incoming packets. Therefore, the shared security
context between two hosts A and B consists of the re-
spective anchors {hAs

n , hAa
n , hBs

n , hBa
n }. The two hash

chains with superscript A are owned by host A while
the other hash chains are owned by host B. Hosts use
the first hash chain for signing data (i.e., it provides
temporary keys for creating MACs) while they use the
second chain for acknowledging the receipt of a message.
Hence, the hash chains are denoted signature chain and
acknowledgment chain and are signified by the second
superscripts s and a. Each pair of a sender’s signature
chain and a receiver’s acknowledgment chain protects a
simplex channel. Hence, using the four-tuple protects a
duplex-channel between the hosts. Note that a different
set of hash chains is to be used for each path. In the re-
mainder of the paper, we discuss the protection of such
simplex channels between a signer S and a verifier V

with the respective anchors being hSs
n and hV a

n without
loss of generality. By using two hash chains per host,

1Relays are forwarding nodes in a WMN, WSN, or MANET
or other infrastructure elements, such as firewalls, that ben-
efit from authenticating bypassing traffic.
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Figure 2: Basic ALPHA signature scheme. Re-
lays can authenticate m before forwarding it.

ALPHA creates a full-duplex channel consisting of two
simplex channels.

Each signature packet exchange is initiated with an
S1 packet from the signer to the verifier. This packet
fulfills three objectives. First, a fresh hash chain ele-
ment of the signer’s signature chain hSs

i identifies the
signer. Second, a MAC keyed with the signer’s next
undisclosed signature chain element M(hSs

i−1, m) en-
sures the integrity of m. Since attackers are not in
possession of the undisclosed hash chain elements, they
cannot forge valid MACs. The verifier and relays buffer
the MAC until m and its key are disclosed through a
subsequent S2 packet. Third, the S1 packet triggers the
verifier to send an acknowledgment packet A1.

The A1 packet indicates that the verifier buffered the
MAC and it expresses the willingness of the verifier to
receive m. To authenticate the A1 packet, the verifier
attaches the next undisclosed hash chain element of its
acknowledgment chain hV a

i to the A1. Similar to S1
packets, attackers cannot forge A1 packets as they are
not in possession of hV a

i before the verifier has received
the S1 packet.

On receipt of a valid A1 packet, the signer discloses
the key of the MAC hSs

i−1 and the message m in the S2
data packet. With this key, the verifier and all relays
that buffered M(hSs

i−1, m) can check the integrity of m

by recomputing the MAC. Tampering with the message
m is ineffective because the verifier can check its validity
against the tamper-proof MAC from the S1 packet.

3.1.1 Efficient On-path Authentication

For efficiency, similar to the broadcast authentication
scheme in [21], ALPHA only transmits the MAC of a
message in the first packet and sends m in the S2 packet,
so the first packet only contains small hash values. The
message m is still protected by the MAC and the tem-
poral separation between the creation and delivery of
the signature and the disclosure of the MAC key is still
guaranteed. We refer to these signatures with delayed
message disclosure as pre-signatures. Pre-signatures
drastically reduce the amount of data buffered on veri-
fiers and relays. Although the benefit for today’s typi-
cal Internet end-hosts is marginal, this reduction makes
hash-chain-based signatures feasible on low-end devices,
such as sensor nodes. On forwarding devices in partic-
ular, pre-signatures offer significantly better scalability
with the number of flows than regularly signed mes-



sages. Additionally, the lower buffer requirements ren-
der memory exhaustion attacks more difficult.

In the spirit of the Guy Fawkes protocol, pre-
signatures in ALPHA do not reveal a message m until
it can be verified. Thus, an attacker’s window of oppor-
tunity to react to m and influence the verifier is reduced
by a full round-trip time.

The relaying nodes on a path can verify the integrity
and origin of a message if they have forwarded all previ-
ous signatures between the signer and the verifier. How-
ever, two colluding attackers2 can replay forged signa-
tures to a victim relay after diverting genuine signature
packets around the victim (bypass attack). While the
end-to-end integrity protection and the on-path filter-
ing function of unsolicited packets are not affected by
this attack (the second attacker must be located on the
path behind the victim and it must express interest in
receiving the replayed packets), the secure extraction of
signed data by forwarding nodes suffers. The solution
for preventing this attack is to keep the set of relaying
nodes static throughout the use of a hash chain3.

3.2 Acknowledgment Handling

To support a wide range of applications, ALPHA sup-
ports unreliable as well as reliable message transmission.
In this section we present the two modes and discuss
their properties.

3.2.1 Unreliable data transmission

For unreliable data transmission, ALPHA uses the
basic three-way signature process. Due to the unreliable
nature of the transmission, no explicit confirmation is
provided when the verifier receives the S2 packet. With-
out additional security measures, a reformatting attack
would be possible in which the hash chain element of
an intercepted S2 packet and the following S1 packet
could be used to generate a new S1 packet with a seem-
ingly valid pre-signature. To prevent such an attack,
ALPHA binds the elements of the signature chain to
the purpose of either authenticating an S1 or providing
the MAC key and authenticating the S2.

To this end, hash chains in ALPHA are constructed
in the following way: Hi = H(S1|Hi−1) for odd occur-
rences of i and Hi = H(S2|Hi−1) for even occurrences
of i. The values S1 and S2 are strings that make two
sequential hash chain elements distinguishable. Hence,
hash chain elements that are supposed to be used for
MAC creation can be distinguished from hash chain ele-

2One situated on the path before, one behind a victim node.
3This can be achieved by additional local and lightweight se-
curity measures, such as interleaved message authentication
codes or interleaved hash-chain-based authorization tokens
between n-hop neighbors to detect and prevent the malicious
bypassing of relays. The set of relay nodes can be fixed in
the handshake and can be protected by either the receiver’s
hash chain signature or by public-key cryptography.
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Figure 3: Pre-(n)acks for reliable transmissions

ments that are used for authenticating S1 packets. This
enables a signer to send a new S1 packet immediately af-
ter receiving the A1 packet. A host that acts as signer
and verifier can combine the packet transmissions of
both directions and send A and S packets of indepen-
dent simplex channels in the same packet.

3.2.2 Reliable data transmission

Each signed message from a signer to a verifier re-
quires a three-way interactive signature process. Thus,
using the same technique to send signed acknowledge-
ments to allow for reliable data transmission would re-
sult in a total of six packets. We reduce this overhead to
four packets by introducing pre-acknowledgments (pre-
acks) and pre-negative acknowledgments (pre-nacks).
Both are provided in the A1 packet and made verifi-
able via information in an additional A2 packet.

Figure 3 depicts the signature process with pre-ack-
nowledgments. The verifier generates both the pre-ack
and pre-nack value after it receives the pre-signature in
the S1 packet. The pre-(n)ack values are hashes over
the concatenation of three pieces of information. The
first piece is the next undisclosed hash chain element of
the verifier’s acknowledgment chain hV a

i−1. It is included
to prevent attackers from forging the acknowledgments.
The second piece is a fixed string for the pre-ack and
a different fixed string for the pre-nack to make both
values distinguishable (e.g., 0 and 1). The third piece of
the pre-acknowledgment consists of two distinct secret
random numbers sack and snack. These secrets prevent
an attacker from computing a pre-nack from a pre-ack
or vice versa after the corresponding hash chain element
hV a

i−1 is disclosed.
If the signature of the message in S2 is valid, the ver-

ifier discloses the contents of the pre-ack, otherwise it
discloses the contents of the pre-nack. It transmits the
disclosed data in an A2 packet to the signer. The signer
can verify that the packet was sent by the verifier by
comparing the hashed result of hV a

i−1 to the hash chain
element previously disclosed by the verifier. The string
in the A2 packet (1 or 0 in the example) indicates an ac-
knowledgment or negative acknowledgment for the data
received by the verifier in the S2. The signer and relays
can verify the validity of the ack or nack by hashing
the concatenation of the hash chain element, the string,
and the disclosed secret sack or snack and comparing it



to the corresponding pre-(n)ack in the A1 packet.
To detect forgery attacks, temporal separation be-

tween the pre-(n)ack creation and the disclosure of the
corresponding hash chain element is achieved by letting
the signer discard pre-(n)acks in further A1 packets af-
ter it sent an S2 message. Also, using fresh random
or pseudo-random secrets for every pre-(n)ack on the
verifier thwarts replay attacks.

Depending on the transmitted payload, relays may
also need to verify that a message was successfully re-
ceived by the destination host. Examples for such pay-
load are signaling protocols that require the relays to
change their internal state (e.g. mobility management
protocols for macro mobility and secure QoS signal-
ing). To verify (n)acks on relays, the corresponding
pre-(n)acks need to be buffered first.

Using pre-acks and pre-nacks offers two advantages
in scenarios that require reliable data delivery. Firstly,
they reduce the communication overhead in terms of
required transmissions. Secondly, they reduce the la-
tency for receiving the acknowledgement from three to
two RTTs.

3.3 Bandwidth Adaptation

In its basic form, ALPHA signatures offer only lim-
ited support for transmitting large amounts of data
because the strictly sequential packet exchange limits
throughput. In this section, we present two modes for
ALPHA that allow better adaptation to the bandwidth,
memory, and computational resources of a multi-hop
network. In particular, we evaluate the use of these
modes for end-to-end and hop-by-hop authentication.

Taking relays into account, a solution for sending
higher volumes of data must not substantially increase
the memory requirements on relays. Moreover, due to
the higher packet loss and the possibility of out-of or-
der delivery in wireless networks, efficient verification of
individual data packets must be ensured even if other
data packets are lost or arrive out of sequence.

3.3.1 ALPHA-C: Cumulative transmission

Sending only a small pre-signature instead of the
actual message in the S1 packet offers the possibility
to send multiple pre-signatures in parallel. For high-
volume data transfers, pre-signatures of multiple mes-
sages based on the same undisclosed hash chain element
are transmitted to the verifier in a single S1 packet.
The verifier then acknowledges the receipt of cumula-
tive pre-signatures just as it would acknowledge an S1
with a single pre-signature. Thus, the signer can send
the S2 packets for all pre-signed messages in parallel or
in short succession without waiting for individual ack-
nowledgments. We refer to this mode as ALPHA-C,
standing for ALPHA with cumulative transmissions.

Although the sequence of S1 and A1 packets is strictly
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Figure 4: ALPHA-M: MT with 8 leaves.

sequential, the order of delivery of the S2 packets is
not of importance. As the hash chain element hSs

i−1 is
present in all S2 packets, they can be verified by the
verifier and relays independently. Packet loss of an S2
packet can either be handled by retransmitting the S2
packet or be ignored if retransmission is not required,
e.g. for time-critical data like multimedia streams.

When using ALPHA-C, the verifier and relays buffer
multiple pre-signatures. This requires additional buffer
space of the size of up to the maximum packet pay-
load per secured connection. The number of S2 packets
increases linearly with the available buffer space of the
relays and the verifier while the computational overhead
for verifying an S2 packet is constant.

3.3.2 ALPHA-M: Pre-signed Merkle Tree

ALPHA-C enables higher throughput at the cost of
increased buffer requirements but with constant compu-
tational overhead for verification. In the following, we
discuss a complementary approach for sending n indi-
vidually verifiable S2 packets with constant buffer size
and computational cost increasing with log2(n).

ALPHA-M leverages trees of hashes, so called Merkle
Trees (MTs) [15], to generate pre-signatures and pre-
acks. An MT is a binary tree with the jth leaf bj con-
taining the hash of the pre-image mj and each node
containing the hash of the concatenation of its two chil-
dren. The root r of the MT is dependent on the con-
tents of all leaves and, therefore, of all nodes in the tree.
Thus, the modification of a single leaf or node results
in a different root.

One application of MTs is to authenticate data: a
signer constructs an MT by splitting the data into
blocks mj and using these as pre-images for the leaves bj

of the tree4. To authenticate a block mj independently
of other blocks, a verifier requires r, mj and the set
{Bc} of complementary branches, which, for each level
of the tree, consists of the sibling node of the nodes on
the path from bj to r. The verifier calculates the tree
root r∗ by reconstructing the path from bj = H(mj) to

4Note that the leaf index j of the MT is given in a binary
representation to emphasize the tree structure.
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Figure 5: Signed bytes per S1 (20 B hash).

r from the nodes in {Bc}. A block mj is authentic only
if the known root r matches the computed value r∗.

As depicted in Figure 4, ALPHA-M applies MTs to
the ALPHA scheme as follows: A signer constructs an
MT with its buffered messages mj serving as pre-images
of the tree leaves. The root r of the MT serves as pre-
signature in the S1 packet. The signer includes in the S1
packet the root r = H(hSs

i−1|b0|b1) and a fresh element
of its signature hash chain as authenticity token. The
verifier authenticates S1, buffers r, and acknowledges
the reception with the next element from its acknowl-
edgment chain. Each message mj is transmitted in an
S2 packet along with the set {Bc}, such that mj can be
authenticated independently of other messages. With
this design, the verifiability of individual messages by
end hosts and on-path entities is preserved. Each S2
data packet can be verified individually. Compared to
ALPHA-C, ALPHA-M requires significantly less pre-
signature data to be buffered by relays and the verifier.
However, the set {Bc} that needs to be transmitted in
each S2 increases by log2(n) with n as the number of
data chunks n = |mj |.

Assuming a fixed amount of pre-signature data in an
S1 packet, the ALPHA-M approach provides a trade-off
between (a) the amount of verifiable payload which can
be transmitted in S2 packets en bloc per pre-signature
in an S1/A1 exchange, (b) additional signature data
transmitted along in the S2 payload packets, and (c)
the computational complexity of S2 verification by re-
lays or the verifier. To quantify this trade-off, we calcu-
late stotal, the amount of payload that can be transmit-
ted with a single pre-signature. We assume fixed-sized
packets providing spacket bytes of payload space to the
ALPHA mechanism, and MT nodes (i.e., a hash out-
put) of size sh bytes. With n as the total number of S2
packets, the following holds:

stotal = n · (spacket − sh(⌈log2(n)⌉ + 1)) (1)

The result for different packet sizes and tree sizes is
depicted in Figure 5. With an increasing number of
data chunks (S2 packets) per pre-signature, {Bc} grows
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Figure 6: Signature overhead with varying MT
size (20 B hash). See Fig. 5 for legend.

logarithmically, and thus, the signature size increases.
Hence, when the |{Bc}| · sh approaches the maximum
packet size spacket, the transferable payload drops with
every new level of the MT, leading to the see-saw pat-
terns in Figure 5.

Figure 6 depicts the ratio of sent bytes per pay-
load byte which is of particular interest on energy-
constrained devices. It illustrates that the overhead of
signature data is lower for larger packets. Thus, the
amount of total payload data covered by an S1 pre-
signature is practically limited by the ratio of payload
to signature data in each S2 packet, which depends
strongly on the size of S2 packets.

In comparison with ALPHA and ALPHA-C,
ALPHA-M introduces additional hash computations.
Constructing the MT on the signer adds an overhead of
n− 1 hash calculations for generating the tree nodes to
hashing the n messages as in the original pre-signature
scheme. Using ALPHA-M requires the verifier and re-
lays to compute ⌈log2(n)⌉−1 additional hash computa-
tions for reconstructing the path to the root node of the
MT. Note that all these additional hash computations
are performed on the fixed-length concatenation of two
hash outputs. Section 4 gives a detailed comparison of
the computational cost of the three modes.

Covering a set {M} of n = |{M}| packets mj ∈ {M}
with a single pre-signature establishes a temporal de-
pendency between the packets. Thus, the signer needs
to buffer a complete set of n packets before creating
the pre-signed root of the MT. Hence, the transmis-
sion of any given mj is delayed until all mj ∈ {M}
are available at the signer, the MT is constructed, and
the S1/A1 exchange has completed. Consequently, the
stronger the latency requirements of a transmission, the
smaller n needs to be chosen. However, the vast ma-
jority of communication in sensor-, mesh-, and ad-hoc
networks does not have such strict requirements and
can thus benefit from the efficiency gains of ALPHA-M.
In fact, ALPHA-M and ALPHA-C signatures are well
suited for wireless multi-hop networks because varying
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latency, out-of-order delivery, and high loss rates can be
tolerated due to the individual verifiability of each S2
packet. ALPHA-C and ALPHA-M can be used in com-
bination. Delivering multiple MT roots per S1 packet
makes possible a reduction of the computational cost
for verifying {Bc} or enables the sender to send a larger
number of S2 packets with constant cost. However, it
requires larger buffering capabilities from relays.

3.3.3 Reliable data transmission with ALPHA-M

Using Merkle Trees obsoletes the pre-
acknowledgment optimization presented in Section 3.2
because the required number of pre-(n)acks per S1
grows exponentially with an increasing MT depth.
To still be able to selectively acknowledge every mj ,
ALPHA-M uses an MT construct for generating
pre-acks. As illustrated in Figure 7, pre-acks and
pre-nacks are placed in the leaves of an Acknowledg-
ment Merkle Tree (AMT), requiring a tree with 2n

leaves for acknowledging n messages. Each leaf of
the AMT contains a secret si and an index xi, which
identifies the packet mj . The secret must be distinct
for each leaf of the tree. Values from the left AMT
branch are interpreted as acks and those from the right
branch as nacks. The undisclosed hash chain element
hV a

i−1 authenticates the root and prevents forgery. A2
messages contain the index xi, the secret si, and the
set of MT nodes {Bc} necessary to compute the root
from the leaf. The signer and each relay can verify
each acknowledgment individually. Moreover, an AMT
can enable retransmission schemes as selective repeat
and go-back-n for ALPHA-M.

3.4 ALPHA Bootstrapping

Bootstrapping is the process of making hash chain
anchors known to verifiers and relays on a path. Due
to the wide applicability of ALPHA, we do not define
a specific bootstrapping process but discuss the options
of static vs. dynamic bootstrapping and unprotected
vs. protected bootstrapping.

In the beginning of a communication association, the
signer and the verifier need to exchange their hash chain
elements for the signature and acknowledgment chains.
This process can either be performed before deploying

a network (e.g. WSNs) or when the network is already
operational (e.g. for MANETs and WMNs). For pre-
configured scenarios, such as static wireless sensor net-
works, base stations can provide nodes with pair-wise
anchors. For dynamic scenarios, senders directly ex-
change their anchors in a handshake procedure on de-
mand. If required, additional security measures against
bypassing of relays (cf. Section 3.1.1) should also be
bootstrapped during the handshake or when sending
the first S1 packet.

An unprotected handshake provides each peer of a se-
curity association with an ephemeral anonymous iden-
tity that is only of use in the corresponding association.
Even with an anonymous identity, hosts can use AL-
PHA to securely signal changes concerning an associ-
ation (e.g. signaling new IP addresses, throttling the
transmission rate, closing an association, etc.) to their
peers. Relays learn the hash chain elements or anchors
by observing a handshake.

A protected handshake binds hash chains to strong
cryptographic identities (e.g., public-key-based certifi-
cates) and vice versa, which allows for identifying hosts
(e.g., insiders and outsiders) or certain roles (e.g., co-
ordinator, server, client). To protect bootstrapping,
the anchor of a hash chain is signed with signatures
based on asymmetric cryptography, such as RSA, DSA,
and Elliptic Curve Cryptography (ECC). Because of the
high resource requirements of asymmetric cryptogra-
phy, ALPHA explicitly limits its use to this bootstrap-
ping process. For strong hop-by-hop authentication
towards relays, the public-key signature of the sender
needs to be verified by each relay for bootstrapping and
re-validated each time the set of relays changes. Due to
the CPU complexity and energy consumption imposed
by such cryptographic operations, such a strong hop-by-
hop authentication can be assumed to be prohibitively
resource intensive for MANETs with their frequently
changing routes. However, it may be feasible for WSNs
and WMNs in which routes fluctuate only occasionally.

3.5 ALPHA Strengths and Limitations

ALPHA provides adaptive end-to-end as well as hop-
by hop integrity protection. Hence, it can replace tradi-
tional shared-secret-based end-to-end integrity protec-
tion mechanisms, which relays cannot verify. Moreover,
relays can filter forged data and securely extract au-
thentic information from the S2 packets, enabling them
to react to the content of protected control messages.
Therefore, ALPHA can also be used as a building block
for secure signaling between end-hosts and relays.

ALPHA helps to mitigate flooding attacks since re-
ceivers can explicitly state whether or not they are will-
ing to receive data from a sender by providing or deny-
ing an A1 packet. When the first relay on the com-
munication path enforces this decision, unsolicited data



Table 1: Hash computations for processing one message. ALPHA-C and -M send n messages per S1.
ALPHA ALPHA-C ALPHA-M

Signer Verifier Relay Signer Verifier Relay Signer Verifier Relay

Signature 1∗ 1∗ 1∗ 1∗ 1∗ 1∗ 1∗ + 2 − 1

n
1∗ + log2(n) 1∗ + log2(n)

HC create 2+ 2+ 0 2

n

+ 2

n

+
0 2

n

+ 2

n

+
0

HC verify 1 1 1 1

n
1

n
1

n
1

n
1

n
1

n

Ack / Nack 1 2 1 1 2 1 2 + log2(n) 4+ − 1

n
2 + log2(n)

cannot propagate far beyond its source in the network.
The only data forwarded unconditionally is S1 packets,
which are typically small. Although ALPHA cannot
prevent flooding with these path reservation packets,
hosts that send large amounts of S1 packets without
receiving A1 responses can easily be identified and iso-
lated from the network. As ALPHA-C permits senders
to fill S1 packets to their maximum size with pre-
signatures, large S1 packets can also be used to waste
network resources. Hence, relays should initially limit
and later increase the maximum size of S1 packets per
sender to combat floods of large unsolicited S1 packets.

For incremental deployment, end hosts using ALPHA
do not require all or any relays to use it, too. Moreover,
even isolated ALPHA-enabled relays can perform per-
packet authentication in the network. This eases the de-
ployment in networks with long-lived hardware because
ALPHA-capable devices can be added incrementally.

The ALPHA base protocol does not require relays to
interact beyond the forwarding packets (e.g., for sharing
symmetric keys, synchronizing clocks, etc.). Therefore,
it does not introduce new vulnerabilities from malicious
relays because it does not rely on the distinction be-
tween outsiders and insiders. This makes ALPHA par-
ticularly suited for scenarios with dynamic membership
in which no pre-shared secrets or distinct roles can be
assumed. ALPHA can secure communication between
arbitrary nodes in WSN and is not restricted to commu-
nication towards a fixed sink or base station. Hence, it
can protect WSN applications that require end-to end
and on-path integrity-protection for any pair of nodes.

Compared to traditional symmetric and asymmetric
signatures, ALPHA signatures exhibit a larger delay in
communication due to the additional RTT for deliver-
ing the S1 and A1 packet. Thus, their applicability de-
pends on the end-to-end latency of the network and the
maximum acceptable delay at the application layer. For
scenarios in which the maximum acceptable latency is
below 1.5 RTTs, ALPHA signatures are not applicable.
ALPHA depends on the stability of the routing path
for a minimum of 2 RTTs plus the time for an optional
handshake protocol for bootstrapping. With this stabil-
ity, the minimum amount of packets necessary to trans-

Table 2: Memory requirements for n messages
sent in parallel. (message size: m, hash size: h)

Signer Verifier Relay
ALPHA n(m + h) n · h n · h
ALPHA-C n(m + h) n · h n · h
ALPHA-M n · m + (2n − 1)h h h

fer payload (S1&2 and A1&2) can traverse the same
path. In ALPHA-C and ALPHA-M, the necessary pe-
riod of stability extends to all packets belonging to the
same signature process. In particular, the number of
parallel transmissions and the size of the MT should be
adapted to the network dynamics for best performance.
Additional latency for payload transmission can be in-
troduced by packet loss. Especially S1 and A1 packets
require robust and fast retransmission.

Finally, ALPHA is not a complete security solution
but must be supplemented with additional components,
such as a handshake procedure (cf. Section 3.4) and
bypass protection (cf. Section 3.1.1). Specifying these
mechanisms is out of scope for ALPHA because they
need to meet the particular demands and capabilities
of each specific application scenario.

4. EVALUATION

The multi-hop networks for which we propose AL-
PHA signatures are MANETs, WMNs, and WSNs,
where CPU, memory, and energy resources are typi-
cally scarce. Thus, in this section, we examine the per-
formance and applicability of our approach with a focus
on those three application areas.

Table 1 analyzes the computational costs of the the
three ALPHA modes. Asterisks (∗) indicate MAC com-
putations on the (variable) sizes of protected messages.
All other hash operations are performed on fixed-length
input data of the size of one or two hash outputs. En-
tries marked with a cross (+) are not directly tied to
packet handling and can be computed off-line, e.g.,
in phases of low CPU load, to reduce response time
and level CPU load peaks. Tables 2 and 3 compare
the buffering-related memory requirements of ALPHA,
ALPHA-C, and ALPHA-M. The tables show that only
little data needs to be stored on relaying nodes, mak-
ing resource exhaustion attacks on the path nodes more
difficult. Functionally, the integrated support for ack-
nowledgments in ALPHA signatures avoids an addi-
tional three-way signature process that interactive hash
chain signatures would require for the same function-
ality. Also, the option for parallelizing transfers via

Table 3: Additional memory requirements for n

parallel acknowledgedements. (hash size: h)
Signer Verifier Relay

ALPHA 2n · h 2n · h 2n · h
ALPHA-C 2n · h 2n · h 2n · h
ALPHA-M h n · s + (4n − 1)h h



multiple outstanding packets with the ALPHA-C and
ALPHA-M variants significantly increases the band-
width available to applications. Cumulative transmis-
sions and signed MTs in particular permit a dynamically
tunable tradeoff between memory and CPU require-
ments, latency, and throughput. With this flexibility,
ALPHA signatures can adapt to both infrequent low-
volume signaling traffic and high-volume data transfers,
including changes of a data flow between different traf-
fic patterns. Thus, forged and modified packets can be
detected early and flooding-based DoS attacks can be
mitigated effectively.

4.1 Application Scenario-specific Evaluation

In the following, we evaluate the feasibility of AL-
PHA and its variants for three different application
scenarios and platforms. Firstly, we evaluate the per-
formance on lightweight mobile devices and worksta-
tions. Secondly, we consider the use of ALPHA in less
ressource-constrained wireless multi-hop scenarios, such
as WMNs that require high throughput. Finally, we
evaluate the use of ALPHA in a sensor network scenario
with tightly resource-constrained sensor nodes with a
characteristically small packet payload.

4.1.1 Performance on Lightweight Mobile Devices

We implemented the ALPHA signature scheme as
a lightweight integrity protection scheme for securely
signaling association-relevant information to end-hosts
and middleboxes. We integrated ALPHA as lightweight
security layer for signaling traffic into the Host Identity
Protocol (HIP) [16] to show the feasibility of extend-
ing existing protocols with ALPHA. In this context, we
measured the performance of ALPHA signatures be-
tween a Nokia 770 Internet Tablet with a 220 MHz
ARM-926 CPU and a server with an Intel Xeon 3.2
GHz CPU. Table 4 lists the performance of the ALPHA
signature steps as the mean results of 300 signatures.

The values include the time for packet creation and
packet handling (e.g. context switches for user-space
processing, de-multiplexing, packet parsing, extraction
of packet parameters, etc.), and thus, reflect the actual
performance of ALPHA-enabled HIP on the evaluated
systems. We also provide the results for RSA and DSA

Table 4: ALPHA, RSA and DSA delay
Nokia 770 Xeon 3.2GHz

Send S1 0.33 ms 0.03 ms
Process S1, send A1 1.47 ms 0.05 ms
Process A1, send S2 1.52 ms 0.05 ms
Verify S2, send A2 1.60 ms 0.05 ms
Process A2 0.49 ms 0.05 ms
Sender(total) 2.34 ms 0.13 ms
Receiver (total) 3.07 ms 0.10 ms

SHA-1 Hash 0.02 ms 0.01 ms
RSA 1024 sign 181.32 ms 9.09 ms
RSA 1024 verify 10.53 ms 0.15 ms
DSA 1024 sign 96.71 ms 1.34 ms
DSA 1024 verify 118.73 ms 1.61 ms

Table 5: SHA-1 delay on wireless routers
AR2315 Broadcom 5365 Geode LX

20 Byte digest 0.059 ms 0.046 ms 0.011 ms
1024 Byte digest 0.360 ms 0.361 ms 0.062 ms

signatures, as used by HIP, although we cannot stress
enough that the security properties of ALPHA are not
directly comparable to the security properties of PK
signatures. We also provide the computation time for a
single hash SHA-1 hash function to show the influence
of the hash computation on the total processing time.

The measurements show that the overall overhead for
processing the ALPHA signature is 2.34 ms if the N770
acts as sender and 3.07 ms if it acts as verifier. Hence,
ALPHA signatures significantly reduce the computa-
tional cost of signaling with HIP.

4.1.2 Performance Estimation for WMNs

Besides the latency and computational cost on end-
hosts, the computational cost for forwarding nodes is
of particular importance because it limits the verifiable
throughput in multi-hop scenarios and introduces ad-
ditional end-to-end latency. In this section, we eval-
uate ALPHA in a WMN scenario and show the im-
pact of the cryptographic operations on wireless mesh
routers. The performance estimates in this section base
on two pieces of commodity hardware and one custom-
built mesh router: The “La Fonera” wireless router
with a 180 MHz Atheros AR2315 32-bit MIPS CPU
and the Netgear WGT634U with a 200 MHz Broadcom
5365 MIPS-32 based CPU are widely used in private
and unmanaged WMNs. Additionally we consider a
customized mesh router with a 32-bit 500 MHz AMD
Geode LX800 x86 processor as hardware platform for
managed WMNs. Note that the following approxima-
tions assume the CPU to be available exclusively for
cryptography operations and do not reflect complete
packet processing costs as it largely depends on the spe-
cific use-case and environment.

The measured computational cost of creating SHA-1
digests for the three devices is given in Table 5. For
evaluating ALPHA-C performance, we chose a payload
size of 1024 B per packet and cumulative transmissions
with 20 pre-signatures per S1 packet, which results in an
upper bound for payload throughput of about 20 Mbit
per second for both commodity hardware devices. The
upper bound for the AMD Geode mesh node is approx-

Table 6: Estimates for ALPHA-M

Leaves Processing Payload Throughput Data per S1
(µs) (byte) (Mbit/s) (Mbit)

AR Geode AR Geode
16 599 258 924 11.8 27.3 0.1
32 660 320 904 10.4 21.5 0.2
64 718 382 884 9.4 17.7 0.4
128 778 444 864 8.5 14.8 0.8
256 837 505 844 7.7 12.7 1.6
512 897 567 824 7.0 11.1 3.2
1024 956 629 804 6.4 9.8 6.3



imately 120 Mbit/s. In these results, the computation
of the SHA-1 MAC is responsible for 99% of the total
computational cost, dwarfing the cost of verifying the
hash chain element in the S1 packet, i.e., the effective
overhead introduced by the ALPHA signatures.

Table 6 provides estimates for the computational
overhead of ALPHA-M. The throughput refers to the
upper bound of data verifiable by the AR2315 and the
AMD Geode CPU. The increasing number of S2 pack-
ets per S1 results in an increased number of MT leaves,
and thus, in less payload due to the larger signature con-
sisting of more MT nodes. Processing time per packet
also increases with the number of MT nodes in each
packet. However, the exponential growth of the num-
ber of parallel S2 transmissions per S1 helps the signer
to achieve a better adaptation to its available band-
width, albeit at an increased computational cost. The
larger number of parallel S2 transmission results in a
larger amount of signed data per S1, permitting to send
fewer S1s or more data in a given time span. Therefore,
ALPHA-M in combination with ALPHA-C enables a
fine-grained adaptation to network bandwidth, buffer-
space, and computational capabilities.

4.1.3 Performance Estimation for WSNs

Key factors influencing hop-by-hop authentication
performance in WSNs are the limited CPU and memory
resources of relaying sensor nodes and the small packet
payload. We focus on ALPHA-C because ALPHA-M
suffers in throughput from the small packet sizes preva-
lent in WSNs (cf. Figure 5). As in the previous section,
only cryptographic CPU load is taken into account.

We used the Matyas-Meyer-Oseas (MMO) hash func-
tion [13] and measured its performance on the Aquis-
Grain 2.0, a node with 8 KBs of RAM and a 16 MHz
CC2430 system-on-chip. For computing the MMO hash
function, we utilize the built-in AES-128 hardware sup-
port of the CC2430. Applying the hash function to a
16 byte input string consumes 0.78 ms and 2.01 ms for
a 84 byte input. These measurements include the time
necessary for transferring the data between the node’s
memory and the network chip. We base our estimations
on these measurements, the values from Table 1, and an
assumed packet payload of 100 B5. Additionally, we use
ALPHA-C with 5 pre-signed messages per S1. Based on
these assumptions, we provide an example computation
but, depending on the target scenario, smaller packets
or hashes can be used due to the resource-constraints
of WSNs. The signature overhead per packet is 16 B
for the hash chain element of the signer, 16 B for the
MAC, and 16

5 B for the pre-signature in the S1 packet.
In this scenario, relays are estimated to verify up to 244
Kbit/s signed payload in 460 S2 packets, being close to

5For IEEE 802.15.4, the packet payload ranges from 80 to
116 B, depending on the applied security measures.

the maximum theoretical IEEE 802.15.4 throughput of
250 Kbit/s and well above the practically achievable
throughput in real IEEE 802.15.4 networks. The use
of pre-acks reduces the maximum amount of verifiable
payload data to 156.56 Kbit/s in a total of 334 packets.
By utilizing the same algorithms and hardware accel-
eration features as traditional symmetric-key point-to-
point integrity protection approaches, ALPHA achieves
a similar performance. However, symmetric cryptogra-
phy does not allow relays to verify the authenticity of
packets, and hence, cannot prevent forged packets from
being forwarded.

In comparison, public key cryptography in WSNs,
even efficient ECC implementations, perform poorly
when compared to ALPHA. According to Gura [7] an
160-ECC point multiplication takes 0.81 seconds on an 8
MHz Atmega 128 CPU. Thus, purely ECC-based mech-
anisms for signature and verification would cause unac-
ceptably high delays for on-path verification. However,
ECC signatures present a viable solution for securely
exchanging the anchors of hash chains in the beginning
of an association (cf. Section 3.4).

5. SUMMARY

Our Adaptive and Lightweight Protocol for Hop-by-
hop Authentication (ALPHA) enables efficient end-to-
end and hop-by-hop authentication in multi-hop net-
works. Forwarding nodes can efficiently verify ALPHA-
protected data on a per-packet basis, enabling early de-
tection of unsolicited or forged packets. Hence, it can
efficiently mitigate flooding attacks and provides a basis
for secure signaling to middleboxes.

ALPHA comprises three different modes of opera-
tion, namely the base protocol, ALPHA-C with cu-
mulative transmissions, and ALPHA-M combined with
MTs. These modes complement each other and allow
for a fine-grained and dynamic adaptation to different
communication scenarios ranging from transmission of
infrequent control traffic to sending large amounts of
data. Moreover, the three modes can be combined to
fine-tune the performance of ALPHA, and thus, meet
the networking, buffering, and computing capabilities
of a wide range of device classes. ALPHA natively sup-
ports acknowledged as well as unacknowledged packet
delivery in all of its modes, making ALPHA suitable for
many applications.

6. CONCLUSION

Our performance analysis shows that ALPHA scales
and integrates well with different multi-hop networks
and application scenarios. The adaptive nature and
distinctive resource efficiency enables on-path verifica-
tion of all data traffic, and thus a much higher level
of security in resource-constrained wireless networks.
With ALPHA as the foundation, wireless networks can



support efficient and secure signaling paths to all net-
work nodes and they become considerably more robust
against flooding attacks from outsider as well as from
insiders. Being incrementally deployable, ALPHA can
improve the security even in heterogeneous networks
consisting of ALPHA-aware and unaware relays. Thus,
we believe that ALPHA is a valuable authentication
scheme for protocol development in wireless and wired
multi-hop networks. It provides an elegant, flexible,
and efficient alternative to public-key based and sym-
metric integrity protection, enriching the set of security
mechanisms for ubiquitous mobile communication.
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