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Alpha-beta chimeric polypeptide molecular brushes
display potent activity against superbugs-methicillin
resistant Staphylococcus aureus
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Staphylococcus aureus (S. aureus) are frequently en-
countered for both nosocomial infections and community
acquired infections, with special concerns on the quick
emergence of methicillin resistant S. aureus (MRSA)
[1,2]. Antibiotics are used extensively to treat these in-
fections [2]. However, antimicrobial resistance has been a
tremendous challenge against current antibiotic and calls
for urgent actions to explore novel antimicrobial agents
that are active against MRSA and are less susceptible to
antimicrobial resistance than do conventional antibiotics
[3–13]. Encouraged by the low propensity for microbes to
develop antimicrobial resistance, host defense peptides
(HDPs) and their synthetic mimics were actively studied
[3,4,14–34]. Although peptidyl mimics of HDP have
variable structures, many of them involved multiple co-
pies of α-L-lysine to introduce into the molecules positive
charges that were critical for the antimicrobial activity
[35,36].
Polymer brushes have been explored not only for their

interesting morphology [37–49], but also for their unique
functions compared to linear polymers [50–64]. In this
study, we designed alpha-beta chimeric polypeptide mo-
lecular brush (α/β CPMB) with β-polypeptide or poly-β-
amino acid (PβAA) as the backbone and poly-α-L-lysine
(PαLL) grafting from the backbone for antimicrobial
studies. We chose β-polypeptide as the backbone for the
antimicrobial molecular brush because β-polypeptides are
biocompatible and can be easily prepared via anionic ring
opening polymerization to provide diverse structures and
functions [22–25,65–67]. In addition, the β-polypeptide
backbone can easily introduce amine groups as desired

activation sites for graft from polymerization of α-L-Lys-
NCA (α-L-lysine N-carboxyanhydride) to incorporate
multiple poly-α-L-lysine sidechains with adjustable den-
sity [68]. We hypothesized that above α/β CPMB have
highly packed poly-α-L-lysine sidechains to exert multi-
valent interactions with bacteria and achieve strong an-
timicrobial activity, which was supported by our recent
study on end tethered β-polypeptides [69]. This design
also implies that the α/β CPMBs may not be biodegrad-
able very easily due to the steric hindrance of sidechain
polylysine, a result we pursue to prolong the anti-
microbial activity of these polymer brushes. To the best of
our knowledge, this is the first demonstration of coupling
two ring-opening polymerization (ROP) systems, the β-
lactam ROP and the NCA ROP, in generating alpha-beta
chimeric polypeptide molecular brushes and evaluating
on their antimicrobial activities.
The backbone of the α/β CPMB, a β-polypeptide or

poly-β-amino acid (PβAA), was synthesized from a base
catalyzed anionic ROP of 1:1 mixture of two β-lactams by
following a previously reported method, with one β-lac-
tam having a hydrophobic sidechain and the other β-
lactam having an amine-containing sidechain [25,66].
The pendent amine groups of the β-polypeptide backbone
then serve as activation sites for the ROP of α-L-Lys-NCA
to provide the α/β CPMB as described in Fig. 1. The β-
polypeptide backbone was synthesized with narrow
polydispersity index (PDI) of 1.20 as summarized in
Table 1. The average degree of polymerization (DP) of
this β-polypeptide backbone was found to be 18 using gel
permeation chromatography (GPC) characterization. In
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order to further attach poly-α-L-lysine onto to the β-
polypeptide backbone and generate the α/β CPMBs, we
choose the extensively used NCA polymerization. By
using the backbone pendent amine groups as the initia-
tion points, the poly-α-L-lysine chains were grafted from
the backbone. Two α/β CPMBs, PβAA-g-PαLL10 and
PβAA-g-PαLL20, were synthesized to have different length
of sidechain poly-α-L-lysine, with DP designed to be 10
and 20 respectively. The GPC characterization clearly
indicated increase of Mn from the β-polypeptide back-
bone (PβAA) at 3.3 kDa to the final α/β CPMBs (PβAA-
g-PαLL10 and PβAA-g-PαLL20) at about 33.4 and 48.1 kDa
and a narrow PDI at 1.28 and 1.24, respectively. DP of the
β-polypeptide backbone and final α/β CPMBs were also

confirmed using nuclear magnetic resonance (NMR)
spectra and the results were comparable to those obtained
from GPC characterization. The diameters of α/β CPMBs
were measured by dynamic light scattering (DLS) to get
an average particle size of 8.35±2.02 nm for PβAA-g-
PαLL10 and 17.22±4.14 nm for PβAA-g-PαLL20 in a so-
lution of phosphate buffered saline (PBS) at 0.5 mg mL

−1

of polymer (Fig. S1).
The prepared α/β CPMBs were compared with anti-

biotic vancomycin and a representative HDP magainin II,
and their antibacterial activities were evaluated against
five strains of MRSA as summarized in Table 2. The
antimicrobial activities of PβAA against S. aureus were
already reported in precedent literature, and this data was
not included here because PβAA was used as the back-
bone in the polymer brushes without showing anti-
microbial activities [70,71]. Both α/β CPMBs displayed
potent antibacterial activity against all tested strains of
MRSA. The sidechain poly-α-L-lysine grafted α/β CPMBs
are not only bacterial static but indeed bactericidal with
minimum bactericidal concentration (MBC) equal to
minimum inhibitory concentration (MIC) value at 0.38
and 0.26 µmol L

−1
respectively for PβAA-g-PαLL10 and

PβAA-g-PαLL20. Both α/β CPMBs performed even better
than the antibiotic vancomycin that displayed a MBC at

Figure 1 Synthesis of α/β CPMBs. (a) Synthetic route of α/β CPMBs; (b) sideview of α/β CPMBs carton; (c) 3D view of the α/β CPMBs carton; (d)
GPC traces of PβAA backbone and α/β CPMB at the amine protected stage.

Table 1 NMR and GPC characterizations of α/β CPMBs

Polymer
NMR GPC characterization

a

DP Mn (kDa) PDI DP

PβAA 19 3.3 1.20 18

PβAA-g-PαLL10 17 33.4 1.28 13

PβAA-g-PαLL20 25 48.1 1.24 20

PαLL20 22 8.9 1.24 35

a) GPC characterization on polypeptide at the amine protected stage
using DMF as the mobile phase at a flow rate of 1 mL min

−1
.
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0.52 µmol L
−1

against all strains of MRSA. We also
compared the polymer brushes with single chain poly-α-
L-lysine (PαLL20) and found the polymer brush PβAA-g-
PαLL20 was 5.5 fold more active than the PαLL20 and has
similar cytotoxicity compared to corresponding PαLL20

(Fig. S2). All these results imply that the potent anti-
bacterial activity of α/β CPMBs (PβAA-g-PαLL10 and

PβAA-g-PαLL20) derived from the molecular design of
multiple sidechain grafted poly-α-L-lysine that possess
multivalent interactions with bacteria. The representative
HDP magainin II, as another control within this study,
has no activity at all even at the highest concentration
(77.8 µmol L

−1
) within the test. We also did cytotoxicity

study on these polymers using four different mammalian

Table 2 Antibacterial activity of α/β CPMBs against multiple strains of MRSA

Antimicrobial compound
MIC (MBC)

a
µmol L

−1

USA300 USA300 Lac Newman Mu50 USA400

PβAA-g-PαLL10 0.38 (0.38) 0.38 (0.38) 0.38 (0.38) 0.38 (0.38) 0.38 (0.38)

PβAA-g-PαLL20 0.26 (0.26) 0.26 (0.26) 0.26 (0.26) 0.26 (0.26) 0.26 (0.26)

PαLL20 1.44(1.44) 1.44(1.44) 1.44(1.44) 1.44(1.44) 1.44(1.44)

Vancomycin 0.26 (0.52) 0.52 (0.52) 0.52 (0.52) 0.26 (0.52) 0.26 (0.52)

Magainin II ND
b

ND
b

ND
b

ND
b

ND
b

a) MIC (minimum inhibitory concentration) is the minimum compound concentration to inhibit bacteria growth; MBC (minimum bactericidal
concentration) is the minimum compound concentration to kill bacteria; b) ND means activity is not detected even under the highest compound
concentration at 77.8 µmol L

−1
.

Figure 2 Cytotoxicity of α/β CPMBs toward (a) HUVEC (ATCC PCS-100-010), (b) NIH 3T3 fibroblast cells (ATCC CRL-1658), (c) HaCaT
(BNCC342026) and (d) MDCK (NBL-2, ATCC CCL-34). The concentrations of PβAA-g-PαLL10 and PβAA-g-PαLL20 used for cytotoxicity experi-
ments are related to their MIC value against S. aureus USA300 as shown in Table 2. The value of MIC is 0.38 µmol L

−1
for PβAA-g-PαLL10 and

0.26 µmol L
−1

for PβAA-g-PαLL20
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cells and found that these two polymer brushes have si-
milar toxicity for most of the cell types (Fig. 2). As is well
known, polylysine itself is generally toxic to mammalian
cells due to the high intensity of positive charges along the
polymer chain; therefore, the cytotoxicity of these poly-
mer brushes likely comes from the polylysine sidechains.
In order to understand how these α/β CPMBs interact

with bacteria, the polymer molecular brush was incubated
with MRSA cells for 20 min and then the bacteria cells
were characterized by scanning electron microscopy
(SEM). As shown in Fig. 3, bacteria from the polymer-
free control sample have intact and smooth cell mem-
brane. However, the bacteria after incubation with α/β
CPMBs have obviously irregular cell morphology and
defects of cell membrane. These results imply that the α/β
CPMB kill S. aureus quickly by disrupting bacteria cell
membrane using its multiple sidechain poly-α-L-lysine
that is generally considered as HDP mimics. Similar ob-
servations have been reported for HDP and their mimics
because these types of antimicrobial agents target cell
membrane to have antibacterial activity [72].
In conclusion, we demonstrated a perfect match of two

ROP systems, the β-lactam ROP and the NCA ROP, in
generating alpha-beta chimeric poly-peptide molecular
brushes (α/β CPMBs) using β-polypeptide as the back-
bone and grafted poly-α-L-lysine as the sidechains. These
α/β CPMBs demonstrated potent in vitro bactericidal
activities, even better than vancomycin, against multiple
strains of MRSA superbugs. The easily tunable poly-
merization of two ROP systems, the diversified structure
of both β-lactam and NCA, and the potent superbug
killing activity altogether imply great potential of the α/β
CPMBs in antimicrobial applications.
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具有高效抗MRSA活性的Alpha-Beta杂化多肽聚合物分子刷
张丹丰, 钱宇芯, 张思, 马鹏程, 张强, 邵宁, 齐凡, 谢佳洋, 代承志, 周睿毅, 乔忠乾, 张雯静, 陈胜, 刘润辉*

摘要 近年来, 以耐甲氧西林金黄色葡萄球菌(MRSA)为代表的“超级细菌”不断被发现和扩散, 已经严重威胁人类健康, 因此, 研制新型、
高效的抗菌剂迫在眉睫. 以宿主防御肽及其模拟物为代表的多肽和聚合物近年来得到广泛关注. 而分子刷作为一类独特的聚合物也显示
了很多特殊的性能. 我们结合前期研究, 首次将两种开环聚合体系即β-内酰胺开环聚合和N-羧基环内酸酐(NCA)开环聚合体系相结合, 以
β多肽为骨架结构进而通过其氨基功能基团进一步引发NCA开环聚合, 合成了侧链具有多个聚赖氨酸的α/β杂化多肽聚合物分子刷. 这种
新型分子刷对多种MRSA菌株均展现出高效的抗菌活性, 甚至优于万古霉素. 通过扫描电子显微镜(SEM)表征, 揭示了α/β杂化多肽聚合物
分子刷的抗菌机理与宿主防御肽类似, 是通过破坏细菌细胞膜的完整性杀菌. α/β杂化多肽聚合物分子刷高度可调的结构特点和高效的抗
菌活性, 显示了其在抗菌研究和应用中的潜力.
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	Alpha-beta chimeric polypeptide molecular brushes display potent activity against superbugs-methicillin resistant Staphylococcus aureus 

