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A possibility of a-cluster structure in nuclei around 20Ne is examined in terms of a model 

based on the assumption of weak coupling between an tit cluster and an 160 core. The model 

treats dynamically the coupling of a-160 relative motion with a particle (j.J)- and a hole (h)

motion in an average nuclear field of 160. The K'lt=o-l- rotational band of ZONe (a+160) is 

plausibly explained with an effective tit-160 potential having repulsive core and state-dependent 

attractive well. The low-lying anomalous-parity levels of HlF (a+160+h) and the ground 

rotational band of 21Ne (a+16Q +p) are reasonably understood in terms of an effective nucleon-a 

potential with the essential features of the potential in free space. The hole and particle 

are treated in th€ weak- and strong-coupling schemes, respectively. The K7(=2- rotational 

band of 20Ne* (a+160+p+h) is well interpreted in the strong-coupling scheme for the p-h 

pair. In conclusion, certain successes of the model seem to suggest an importance of a-like 

four-hody correlation or molecular aspect in light nuclei. 

§ I. Introduction 

Many attempts have been made to explain various properties of light nuclei 

in terms of the shell model descriptions, namely the standard shell-model calcula

tions,2> the SU3 model,3> the method of deformed orbitals4> and so on. These 

descriptions are essentially based on the average nuclear field and the two-body 

correlation. 

However, another type of correlations, the so-called nucleon-clustering,5> has 

also been considered to be an important concept in understanding the structure 

of some light nuclei. Several investigations based on the cluster model6> and 

the a-particle modeF> have been carried out for the j.J-shell nuclei and have dis

closed the existence of the a-clustering in nuclei. 

The most £table nucleon-clustering in nudei is expected to appear as an a

cluster, because of tightly bound internal structure of an a-particle and its weak 

interaction with a nucleon (N) or another a-particle. It is well established 

that the characteristic of the strong internal binding and the weak relative one 

is ascribed to the two-nucleon forces and to the Pauli principle.~>. 9 > This fact 

makes it possible to represent N-a and a-a interactions in terms of effective 

local potentials.10
),n) The introduction of such potentials enables utll to reconstruct 

*) The preliminary work has been reported in reference 1). 

**) Now at Department of Physics, Nagoya University, Nagoya. 

***) Now 1ilt Simulator Laboratory, Hokka_ido University, Sapporo, 
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556 J. Hiura, Y. Abe, S. Saito and 0. Endo 

the a-particle model by treating systems dynamically/) and gives a reasonable 

way for the description of a-cluster structure on the basis of the two-nucleon 

forces. 

Recent studies have brought about increasing recognitions for the importance 

of a-like four-body correlation or molecular structure in sd-shell nuclei. Arima, 

Horiuchi and Sebe have proposed a weak-coupling modeP2
l for the core excited 

states in light nuclei, in relating to the a-cluster model. Marumori and Suzuki 

have presented a microscopic theory13
) of a-like four-body modes, in order to 

describe the deformed excited states in light closed shell nuclei. A preliminary 

analysis 1
l has also been made for the nuclei around 20Ne in terms of an a-cluster 

plus 160-core model, by the present authors. Very recently, Eichler, Marumori 

and Takada have discussed14
) the basic assumption of the weak-coupling model 

in the framework of the theory of a-like four-body modes. Also, Horiuchi and 

Ikeda have suggested15
) a molecule-like structure (an a-particle plus a residual 

core nucleus) in light 4n-nuclei, on the basis of the study of the Kn: = 0± rotational 

bands. 

In order to clarify further the importance of a-like four-body correlations 

or molecular aspects in sd-shell nuclei, it is very desirable to investigate to what 

extent the picture of a-clustering is applicable to low-energy states of the nuclei. 

The main purpose of this paper is to examine a possibility of the a-cluster 

structure in 20Ne and neighboring nuclei such as 19F and 21Ne, on the basis of 

the a-clustering picture which is capable of dynamical treatments of the systems. 

A possible way of such approach is given by the a-particle model mentioned 

above. Then, the a-cluster plus 160-core model is proposed for the present pur

pose as follows. Let us put four nucleons (two neutrons and two protons) on 

a closed shell 160 core. It is assumed that they localize to form a stable a-cluters 

which interacts with the 160 core through an effective a-160 potential. This 

interaction is supposed to be weak, so that an average nuclear field produced 

by the 160 core may not be much disturbed by the existence of the a-cluster. 

Therefore, when particles or holes are added to this system and when particle

hole pairs are created from the 160 core, they move in the average nuclear field, 

interacting with the a-cluster through an effective N-a potential. 

The essential point of the present approach is to stand on the assumption 

of weak coupling between the a-cluster and the 160 core. The effective a-160 

(N-a) poten6al is introduced so as to include effects of the Pauli principle 

operating between the a-cluster and the 160 core (the nucleon and the a-cluster). 

It should be noted that the present model does not start from the picture of 

five closely packed a particles. 

In § 2, the formulation of the model Is given. The model Hamiltonian 

describes the motions of the coupled system of fermions and a boson. The model 

is, in many respects, analogous to the unified model,t6
l developed by Bohr and 

Mottelson
1 

which incorporates individual particl~ motion and collectiv~ motion, 
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AljJha-Cluster plus 160-Core Model for 20Ne 557 

The description of single-particle states is also given. In § 3, the effective N-a 

potential is chosen and its matrix elements are given in a suitable representa

tion. · In relation to the N-a partial waves of the single-particle wave function, 

effects of the Pauli principle operating between the nucleon and the a-cluster 

are discussed. This effects are suitably taken into account by the s-state N-a 

repulsion, in the adiabatic limit. In § 4, the motion of the a-cluster around the 
160 core is considered. The effective a-160 potential is determined from the 

study of the K" = O± rotational bands of 20Ne (a+ 160). In §§ 5 and 6, the mo

tions of a hole and a particle are investigated, respectively, in terms of the ef

fective N-a potential. The low-lying anomalous-parity states of 
19

F (a+ 16
0 +h) 

and the ground rotational band of 21Ne (a+ 160 + p) are described with weak- and 

strong-coupling schemes, respectively, where the hole takes spherical jJ orbitals 

and the particle moves deformed sd ones. In § 7, the motion of a particle-hole 

pair is analyzed. The K" = 2- rotational band of 20Ne (a+ 160 + p +h) is studied· 

with the strong-coupling scheme, where (p112)-
1d 5; 2 configurations are treated with 

p-h interactions. Finally, in § 8, the summary and conclusion of this paper are 

given. 

§ 2. Formulation of the model 

2. 1) Model Hamiltonian 

An a-cluster plus 160-core model is constructed on the basis of the following 

picture and is applied to the nuclei with mass numbers A= 19, 20 and 21. Some 

low-energy states of these nuclei are considered to be described by the coupling 

of the relative motion between an a-cluster and a closed-shell 160 core with the 

motions of particle and hole in an average nuclear field produced by the 160 

core. Therefore, this model deals with the coupled system of fermion and boson 

motions. 

It is assumed that four nucleons on the outside of the 160 core form a stable 

a-cluster. Then, we introduce effective a-160 and nucleon (N) -a potentials, 

together with the average nuclear field and residual forces for the remaining 

nucleons. 

The Hamiltonian H of the coupled system may be written as 

(2 ·1) 

where HN, I-Ia and HI denote the fermion, boson and coupling terms, respectively, 

U is the internal energy o:f the 160 core and Ea that of the a-cluster. 

The :fermion term I-IN describes the (A- 4) nucleon system and is assumed 

to be represented by the shell model with residual forces. A single-particle 

state is denoted by a set of quantum numbers a. Let us introduce the Fermi 

operator Ca + (ca) which creates (destroy) a nucleon in the state a. It is con

venient to express HN by means of the particle-hole representation. Choosing 

the 160 core as a vacuum ¢o, we can write I-IN' as 
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558 J. 1--Iiura, Y. Abe, S. Saito and 0. End() 

(2 ·2) 

where Sa and v denote the single-particle energy and the residual force, respec

tively. The notation N represents the normal products17
) of the particle and 

hole operators with respects to ¢0 • The matrix element for v is taken as 

(2. 3) 

where (/Ja denotes the single-particle wave function. 

The boson term Ha describes the motion of the a-cluster around the 160 

core: 

Ha=T+ Vaa, (2. 4) 

where T and Vaa are the relative kinetic energy operator and the effective a-160 

potential, respectively. 

The coupling term H 1 gives rise to an interplay between the motion of the 

a-cluster and those of particles and holes, and is expressed as 

(2·5) 

where V Na Is the effective N-a potential. The matrix element for V Na is de

fined by 

(2·6) 

which is a function of the dynamical variables for the a-160 relative motion. 

As mentioned before, the model is, in many respects, analogous to the unified 

nuclear model.16
) The coupling term (2 · 5) is treated in similar ways: for ins

tance, it is treated in weak-coupling approximation to the hole motion in the 

A= 19 system, while it is treated m strong-coupling approximation to the par

ticle motion in the A= 21 system. 

2. 2) RejJresentations of the single-jJarticle motion 

We denote the nucleon coordinate referring to the center of the average 

nuclear field by r. 

space (see Fig. 1). 

(/Ja is defined by 

The axis of quantization is chosen along a z axis fixed in 

In the jj-coupling scheme the single-particle wave function 

(/Ja= I nls; jmr) = Rn~ (r) [Yz (r) X xg (CJ) ]jn~ Xr' (2. 7)*) 

(2·8) [Yz (r) X Xs (CJ) ]jm = :L; (lsm~~m.~Jjm) Y~rnz (r) Xsrn
8 
(CJ), 

ml,mg 

where Y~ml' Xgmg (Xr) and Rn1• are the spherical harmonics, the spin (isospin) and 

radial wave functions, respectively, (abaf?lcr) is the Clebsch-Gordan coefficient. 

~') Hereafter, the isospin function and its quantum·numbers are omitted unless they are necessary. 
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AljJha-Cluster jJlus 160-Core JJ1odel for 20Ne 559 

The quantum numbers are shown with 

the usual notation: n is the number of 

the radial node including the one at in

finity, l the orbital angular momentum, j 

and m denote the total angular momentum 

and its projection on the z axis and r 

specifies the charge states. All the phase 

conventions in the angular momentum 

algebra follow those of Condon and 

Shortley.18
l 

hole 
0 

H'Q- core 

particle 

ct- cluster 

z' __ ., 

The Fermi operators (ca +, Ca) are 

transformed into the particle and hole 

ones, (aa +, aa) and (ba +, ba), as follows: 

Fig. 1. The schematic representation of the 
coordinate systems in the a-cluster plus 

160-core model. 

(2 · 9a) 

(2·9b) 

where a= (nlj, mr) = (a, mr), jJ = j- m + 1/2- r, Oa is 1 or 0, according as the 

state j is occupied or not, and the choice of the phase factor follows Brown's.19
l 

The single-particle states are so far described in the space-fixed frame. 

The a-cluster around the 160 core defines the body-fixed frame in which a z' 

axis is taken as the a-160 symmetry axis (see Fig. 1). We may also introduce 

the Fermi operators (rA, +, rA,) in the body-fixed frame and the corresponding 

particle and hole ones, (a A-+, a A.) and ((3A- +, (3>-.), where }, = (nlj, .Q) = (a, .Q) and .Q 

is now the projection of j on the z' axis. Then, these operators transform under 

rotations as 

Cc~m + = :E D1tSJ ( fi!Ji) r a,SJ + ' 
g 

Cam.= :E D1tt&* (fi!Ji)rnSJ, 
g 

(2 ·lOa) 

(2·10b) 

where D.~,SJ is the symmetric-top function 20
l and fi!Jj symbolizes the Eulerian angles 

specifying the orientation of the body axes in space. 

As long as only a hole is considered C°F or 19Ne), its motion can suitably 

be described by means of the jj-coupling single-particle wave functions 9a in the 

space-fixed frame (see § 5). In treating the motion of a particle e1Ne or 21Na), 

however, it becomes necessary to introduce another basic set (PP defined in the 

body-fixed frame (see § 6). This is given in the !A-representation of Nilsson :21
) 

¢P== I nls, Al:.Q) = ¢nlA (r') X8z (CJ'), 

¢nlA (r') = Rnl (r) YlA (r'), 

(2 ·11) 

(2 ·12) 

where .Q =A+ l:, A and .1: are the components of the orbital and spin angular 

momenta along the z' axis, respectively, and the primed nucleon coordinates 
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560 J. Hiura, Y. Abe, S. Saito and 0. Endo 

referr to the body-fixed frame. 

We will call the basic sets m the body-fixed frame the intrinsic states. In 

particular, the base ¢P plays important roles in the present model, since they 

enable us to take into account explicitly the effects of the coupling term Hr. as 

will be seen in the next section. 

In the single-particle wave functions, (2 · 7) and (2 ·12), the radial func

tions RnL are assumed to be approximately represented by the harmonic oscillator 

functions. 22
) The size parameter of the oscillator, b = (It/ MwY12 (M being the 

nucleon mass and fiw the oscillator energy quantum), is determined from the 

high-energy electron scattering data.23
) The value is taken as b = 1.76 fm for 160. 

The single-particle energies Sa are determined from the empirical values of 

energy spectra and binding energies around 160, under the assumption of the 

jj-coupling shell model.19
) 

§ 3. The effective Naa potential and its matrix elements 

3. 1) Choice of the effective N-a jJotential 

Interaction between a nucleon and an a-particle has state- and energy-depen

dent and non-local characters.8
) In the systems considered, the kinetic energy 

of the nucleons relative to the a-cluster is limited to low values, and only the 

states with low N-a relative angular momenta are available for the N-a interac

tion, as will be seen soon. Therefore, we introduce an effective N-a potential 

based on the phenomenological one10
) which is determined from the N-a elastic 

scattering process at low energies. 

Phenomenological N-a potentials are known to have state-dependence and 

strong spin-orbit coupling.10
a) The interaction is strongly repulsive in the s state 

but attractive in the p state.10
b) It becomes less attractive as a whole in the d 

state.8
a) These characteristic features originate mainly from the Pauli principle. 

Taking into account these features, we will choose the effective N-a poten

tial V Na in the coupling terms Hr of Eq. (2 · 5) as a sum of a zero-range delta 

spike, which acts on the s state only, and a p-state attractive Gaussian well with 

spin-orbit coupling: 

VNa=Ao(r) + Vo exp(-ar2
) {1+/i-s}, (3 ·1) 

-vvhere r denotes the N-a relative coordinate (see Fig. 1) and 1 the correspond

ing angular momentum operator. The strength A is determined so as to give 

a repulsive net contribution to the N-a relative s-state in the matrix elements 

(2 · 6) of V Na· The state-dependence of the attractive well is not yet taken 

into account in Eq. (3 ·1). This will be introduced for the matrix elements of 

V Na between the intrinsic states in an approximate manner (see a next subsec

tion and Eq. (3 · 6)). 

Jt should be 11oted that the delta spike m Eq. (3 ·1) is introduced as an 
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Alpha-Cluster plus 160-Core Model }or 20Ne 56i 

effective force, in order to represent the effects of the N-a short range correla

tions due to the strong s-state repulsion. Correspondingly, in this paper the 

model space for the nucleon is truncated in the 1s, 1jJ and 2s-1d shells. 

3. 2) Roles of the N-a interaction 

Let us look at the N-a relative motions, where the nucleon is in the single

particle states of the 160 core. This can be simply done in the body-fixed frame, 

if we take an extreme version of the adiabatic approximation, by expanding the 

intrinsic orbit (2 ·12) into the angular-momentum eigenstates referring to the a

cluster. Here, we assume that the motion of the nucleon in the average nuclear 

field is much more rapid than that of the a-cluster around the 160 core, and also 

suppose that the latter two are well separated by an rms a-160 distance d (this 

being expected from the shape of an effective a-160 potential introduced in the 

next section). We then have 

(3·2) 

where the N-a partial waves ftl:,A are obtained by using the oscillator functions 

for Rnt in Eq. (2 ·12). As examples, f1ai:,A (A= 0, 1, 2) are plotted against r for 

various l in Fig. 2 with b = 1. 7 6 fm and d = 4 fm ( b being the size parameter 

of Rnt and d being determined from the rms radius of 20Ne in the next section). 

The expansion (3 · 2) and Fig. 2 indicate the following facts. (1) The 

intrinsic orbits ¢u (defined in the body-fixed frame) do not contain the N-a 

0.1 

-0.1 

-0.2 .__ _ __._ __ _j__ _ ____j 

0 2 4 6 
'-------'----L-_ __J -0.1 

6 0 2 4 

r (fm) r (fm)-

Fig. 2. The N-a partial waves f1a'l,A (r, d) of the intrinsic orbit ¢J1a,A (r1), 

plotted against the N-a relative distance r for various 7. The size pa

rameter b of the oscillator functions and the a-160 rms distance d are 

taken as b = 1.76 fm and d = 4.0 fm. 
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562 J. 1-liura, Y. Abe, S. Saito and 0. End a 

relative angular-momentum state with l smaller than IAI, since f~I:,A vanish 

identically for l <I A I· (2) For the adopted values of the parameters b and d, 

it is only for the low values of l that fli:,A have appreciable amplitudes within 

the range of the 1V-a interaction (r::54 fm). (3) In the A= 0 cases, flO, a (the 

s waves) have a large amplitude in the region of small r. (4) In the A=I=O 

cases, fa,A have comparable magnitudes in the same region, especially in the 

case A= l (e.g. f1v /:,1 with l = 1 and 2 .or fld7:, 2 with l = 2 and 3). 

These facts enable us to understand the roles of the N-a interaction in the 

adiabatic limit. From the facts (1) and (2) we can see that, in the intrinsic 

orbits ¢u considered, what parts of the N-a partial waves are important to the 

N-a interaction. 

The fact (3) suggests a relation between the N-a s-state repulsion and the 

Pauli principle. The behaviors of f~o,o at small r are not compatible with the 

existence of the s-state nucleons in the a-cluster. In the present approach, how

ever, this difficulty is solved by introducing the strong s-state N-a repulsive 

force.. Then, it mixes the s-waves f~o,o of the various ¢l0 and brings about the 

damping of the N-a relative s-state part at small r in the total wave function. *l 

This gives rise to also the polarization of the 160-core state, as well as the N-a 

short range correlations in the states of the nucleon. Actually, as mentioned 

before, these effects are represented with the effective forces acting on the 

unpolarized 160-core and on the uncorrelated particle and hole in the truncated 

space (i.e. the effective a-160 potential Vao in Eq. (2 ·4) and the delta spike 

of VNa in Eq. (3 ·1), respectively). 

The fact ( 4) tells us an approximate way of taking into account the state

dependence of the N-a attraction. Denoting the N-a p-state attractive well by 

Vv, we consider the matrix element (¢1d,I> Vv¢ 1d, 2), as an example. This element 

does not contain the contributions from the N-a relative s and jJ states. There

fore, we must multiply it by a reduction factor (the N-a d-state interation being 

less attractive than the p-state one). 

3. 3) Matrix elements for the effective N-a jJotential 

In order to represent explicitly the effects of the N-a s-state repulsion and 

to take into account properly the state-dependence of the N-a attractive well, 

we express the coupling term HI of Eq. (2 · 5) in terms of the intrinsic states. 

To do so, it is convenient to express VNa of Eq. (3 ·1) in terms of the nucleon 

coordinate r and the a-160 relative coordinate R (see Fig. 1). Then, we obtain 

*l This is also suggested from the same arguments as those in the N-ac and ac-ac systems.sJ,U) 

When the antisymmetrization is completely performed in the total system including the four nucleons 

in the a-cluster, it may be expected that the spurious part of the s-waves fro, o, which violates the 

Pauli principle, is excluded and that the remaining physical part behaves as if there were a repul

sive force. 
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Alpha-Cluster plus i
60-Core Model for 20Ne 563 

VNa =Ao (r- R) + exp {-a (r -RY} · [1 + (4c/5) { (l·s) 

+ ([pxR] ·s)} + (c/4) {(L·s)- ([rxP] ·s)} ], (3 · 3a)*> 

4 

=yes)+ :L; v(k), 

Tc~o 

(3·3b) 

where p and P are the canonical momenta for r and R, respectively, l and L 

being the corresponding orbital angular momenta. 

Under the adiabatic approximation we can put P or L equal to zero in the 

non-·central parts yck) of Eq. (3 · 3a). Then, by making use of the transformations 

(2 ·10), we can rewrite the coupling term (2 · 5) in the form 

1-Ir= ~CAl VNaiA')aN(r;-.+7>,,) (3 · 4) 
,w (PI ~«lp')b {Mev) 

with 

X (l'sA'.S'Ij'Q') (piVNaiP')a, 

(3· 5) 

(pI VNa I p')v = (1/2) f (A) 

X [(pi VNaiP')b+ (p'l VNaiP)a], 

(3. 6) 

where A= (nlj, !2), p = (nl, A.S) and the 

suffix b means that the matrix elements 

are defined in the body-fixed frame under 

the adiabatic limit, the symmetrization 

being required to preserve the Hermiti

city of 1-Ir. 

Foil owing the. argument in the pre

vious subsection, the state-dependent 

factor f (A) is introduced in Eq. (3 · 6). 

For the matrix elements involving the 

N-a s-state contributions we take f (A 

= 0) = 1. For the other elements we 

treat f (A=I=O) as free parameters not 

larger than unity. 

The expressions of (pI VNa I p')b are 

obtained with the aid of the tensor 

algebra.24
) It should be noted that 

0.5 (1,2);(5.?..~-~ 

...,..,...r.:::r.&"'..:::"..::-..::-..::-..:-..::-:.::::::: ==~ 8i 
r--.;;...._ 

......... .._ ...... 

-------- -(4,6) 
(8,8) 

.................. ___ 
-

0 

-1.0 

-2.0 
{9,9) {2,2) 

(3,3) 
-3.0 (4,5) 

-----------------------
-4.0 

(4,4) -
(6,6) 

-5.0 
(7,7) 

-6.0 

..:.7.0 (1,1) 

-8.0 
(5,5) 

0 0.1 0.2 0.3 c 

Fig. 3. The N-tx matrix elements (pi V NaiP') bs; 

(p, p1
) plotted against the spin-orbit coupling 

strength c for the lp and 2s-ld shells, where 

p=l, 2, ... , and 9 mean (lA.E)=(pO+), 

(pl-), (pl+), (sO+), (dO+), (dl-), 

(dl +), (d2-) and (d2+), respectively. 

The values of the potential parameters in

volved are taken as V 0 = -47.32Mev, a=O.l89 

fm- 2, A=O and HA) =1. The values of b 

and R=d are the same as those in Fig. 2. 

*l The non-central parts VUe) (k=l''-'4) are derived for the case of the A=20 (tx+lGQ) system 

by regarding the relevant momentum operators as classical quantities, and they are also applied to 

the A=l9 or 21 (tx+ 1GO+h. or p) system. 
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564 J. rliura, Y. Abe, S. Saito and 6. Endo 

(pI V Na: I p')o do not have non-diagonal elements with respect to Q (=A+ .1'), the 

projection of j on the z' axis. The delta spike in V Na: has non-vanishing elements 

only for the intrinsic states with A= 0. Furthermore, (pi V Na:l p') 11 are obtained 

as a function of R, the a-160 distance. 

For the 1p and 2s-1d shells (pi VNaiP') 11 are plotted against c, the spin-orbit 

strength of VNa' in Fig. 3, where b=1.76fm, R=d=4fm and thevaluesofthe 

potential parameters are taken as those of the p-state N-a potential :10
a) A= 0, 

~=1, V 0 = -47.32 Mev, a=0.189 fm- 2 (and c=0.248) in Eq. (3·1). 

§ 4. The I(= 0 rotational hands in 20Ne 

Motion of the a-cluster and the effective a-160 potential 

Many overlapping rotational bands have been confirmed experimentally in 
20Ne.25

) In this section we are interested in the ground K"' = o+ and the excited 

K"' = o- bands. The former band which has the sequence of the spin and parity 

L"' = o+, 2+, · · · has been investigated in many theoretical studies4
)'

26
) based on 

the (sd) 4 configuration. The latter band which has the sequence L"'=1-, 3-, ··· 

and starts from the 5.80 Mev excitation has been interpreted as the K"' = o- oc

tupole b-vibrational band25
) or the band on the (sdY (PfY configuration.27

) 

In the present model the two bands are interpreted as the states due to the 

orbital motions of the a-cluster. It may be assumed that the motions are deter

mined through an effective a-160 potential, phenomenologically. 

4. 1) Choice of the effective a-160 potential 

Interaction between a particles provides one of the typical examples for 

such potentials. It has been established that energy-independent but state-depen

dent local potentials with repulsive cores can well describe the a-a scattering 

at low energies.11
) Investigations9

) based on the two-nucleon forces have clarified 

that the features of the effective a-a potentials are attributed to the many-body 

structure of the whole system in the full overlap region of the a particles and 

to the non-local character of the interaction due to the antisymmetrization among 

the nucleons involved. 

Therefore, it may be expected that relative motions between an a-particle 

and other stable clusters can be also approximately described with effective local 

potentials having a repulsive core and a state-dependent outer attractive well. 

We denote the effective a-160 potential Vaa for the state with the relative 

angular momentum L by VL(R), where R is the a-160 relative coordinate. A 

square well potential with a hard core is adopted for VL(R), as the simplest 

one with the required features. The range Ro of the well is estimated from the 

one-pion-exchange range and rms radii23
) of 4l-Ie and 160: R 0 = 1.4 fm + <r 2)a:1

;
2 + 

<r 2
) 160

1
/

2 = 5.7 fm. The state-dependent well depth VL and the hard core radius Ra 

are determined so as to reproduce consistently the experimental values of the 
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Alt>ha-Cluster plus 160-Core Model for 20Ne 565 

binding energies, rms radius and electric quadrupole (E2) transitions within the 

bands. 

4. 2) Description of the rotational bands 

Each state of the K = 0 bands is described by means of the boson term Ha 

of Eq. (2·4): 

(4 ·1) 

where XL is the a-160 radial function and the eigenvalue EL is written as EL= 

E (L) + B.E. (4He) + B.E. (160) - B.E. e0Ne), E (L) being the excitation energy in 

zoNe. 

In solving Eq. (4 ·1) we treat effects of the a-160 Coulomb force as a per

turbation energy E 0 (a-160). This is estimated as Ea(a-160) =4.5 Mev, by as

suming the uniform charge densities for 4He, 160 and 20Ne. 

The rms radius of 20Ne can be written as 

(4·2) 

where d 2 =(R 2
) is the rms a-160 distance and dexp=4.0fm if(r 2

) 20Ne=(2·9fm)2 

is used which is calculated with the value 3.8 fm for the radius of the uniform 

charge distribution of 20Ne through the empirical formula 23
) for nuclear sizes. 

The E2 operator for the a-160 relative motion is given by 

(4·3) 

The reduced E2 transition probabilities within the same band are given by the 

well-known formula 2
J) 

B(E2; L->L') = (5/16rr)0 2 (L', L) (L200\L'OY, (4·4) 

where 

(4 ·5) 

The typical examples of the effective a-160 potentials VL (R) determined 

for the L = S, D, G states are plotted against R in Fig. 4. The corresponding 

values of B(E2) are listed in Table I and compared with the experimental 

data.23
) 

As is well known, in 20Ne the rotational spectrum and the E2 transition 

rates deviate considerably from the predictions of the rotational model. 20
) In 

the ground band we have RE=0.79 and RB=0.60, where RE and RB are the 

ratios of the experiments to the rotational model for E (G)/ E (D) and B (E2; 

G->D)/B(E2; D->S), respectively. 

We can see that the repulsive core and state-dependence of Vac give a 
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I{ (R} (Mev} 

0 

-5 

-10 

L=O 

-15 

2 

-20 
4 

-25 
I 2 3 4 5 6 

R (fm) 

Fig. 4. The nuclear parts of the effective 

a-160 potentials, V L (R), plotted against 

the a-160 relative distance R for the 

L"=O+, 2+ and 4+ states. They are 

determined from the binding energies, 

rms radius and E 2 transition rates of 

the corresponding states within the 

ground rotational band in 20Ne. 

Table I. The reduced E2 transition probabilities 

within the ground rotational band in 20Ne. 

The calculated values are obtained in terms 

of the radial functions 'XL (R) determined 

from the potentials V L (R) which are shown 

in Fig. 4. 

consistent understanding for the deviations 

of RE and RB from unity.*> As shown in 

Fig. 4, the well depths Vs and Vn are 

determined to be nearly equal. The ra

dial functions 'Xs and 'Xn have little differ

ence, because of the large hard core 

radius R 0 (2:2 fm). On the other hand, 

Va is determined as I Val> I Vsl and I VJJI, 

in order to make RE<l. As a consequence, 

'Xa is pushed into more inner region. This 

makes also RB<l, as shown in Table I. 

From the observed energy gap between the K7T: = o-l- and o- bands, it is ap

parent that the attractive parts of Vao for the L =odd states should be system

atically weakened as compared with those for the L =even states. A possible 

explanation may be given by the differences of the many-body structures and 

non-local interactions in the L =even and odd states. However, this problem 

has not yet been investigated, although the 1V-a interaction provides a typical 

example. 

In this connection, for the K" = Q± rotational bands in 
16
0* and 

20
Ne an ex

cellent interpretation has recently been proposed/
5
> in which the two bands are 

unified as a twin with the same molecule-like structure (an a-particle plus a 

residual core nucleus) and the energy gap of the two bands is explained as the 

splitting energy of a reflection doublet. 

*> In this respect, the following should be noted. As long as we stand on the picture of the 

structureless a-particle, the state-dependence of Vac is never obtained. That is, the vacuun1. expec

tation value for a simple sum of the effective N-a potential V Na' 

V~b(R) =(¢oi::E!S,e 1 (~1 V Na1W)cr/cf:l!¢o), (4·6) 

becomes essentially state-independent, although it has a repulsive core only due to the s-state repul

sion of VNa· 
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Alpha-Cluster plus 160-Core lvfodel for 20Ne 

§ 5. The low-lying anomalous-parity states in 19F 

Motion of a hole 

5.1) Weakening of the hole-a interaction 

567 

Several studies29
) have been made to explain the low-lying anomalous-parity 

levels in 19F. There is the famous 1/2- state at the 0.11 Mev excitation. Recently, 

a consideration for the binding energy of this level has led to the weak-coupling 

model, 12
) which is based on the assumption that the interaction between a p112 

hole and four particles in the sd shell is rather weak. Physical reason for the 

weakening of the effective lh-4jJ interaction has been clarified14
) in the framework 

of the microscopic theory/3
) where the weakening effects are essentially caused 

by the complex ground state correlations due to the a-like four-body modes. 

In the present model this weak-coupling phenomenon can be understood as 

a result of the characteristic features of the N-a interaction. In fact, in the j Q 

representation the matrix elements (3 · 5) of the effective N-a potential VNa 

become small, if we choose the strength A and the state-dependent factor :; 

suitably in Eq. (3 · 6). To show this, for the p-shell proton the elements CAl V Na/A 1
) 0 

are plotted against the spin-orbit strength c in Fig. 5. Here, the solid lines are 

obtained in terms of A/(v'nb)3 =l00 Mev and !;(A=l) =0.7, and the dotted 

lines correspond to the cases A= 0 and :; = 1. The values of other parameters 

involved are the same as those in Fig. 3, the contributions from the proton-a 

Coulomb force V 0 being calculated as (1jJ0/V0 /1pO)b=0.75Mev and (1p1/Vc/ 

1pl)b = 0.60 Mev. 

As seen .from the A-dependence m Fig. 5, the weakening of the h-a interac

tion originates .from the characteristic of the J.V-a interaction, that is the s-state 

repulsion, and also from the behavior of the N-a partial waves o£ the intrinsic 

orbits, which is discussed in § 3. A hole in the jj-coupling single-particle states 

can interact with the a-cluster through the relative s and other states simulta

neously. Hence, the contributions from the s-state repulsion and the attractions 

in the other states cancel each other. 

The present model apparently suggests an alte1·native understanding of the 

mechanism for the weakening of the effective lh-4p interaction. 

5. 2) Basic vectors and energy matrices 

Since the coupling term 1-!1 given by Eq. (3 · 4) becomes weak, the motions 

of the hole and the a-cluster are approximately independent and the hole moves 

on the spherical orbitals of the jj-coupling shell model. Then, the states of the 

a+ 160 + h system are described with the basic vectors of the weak-coupling scheme: 

where J denotes the total spin of the system, a= (nlj, m) =(a, m), the hole opera

tors (ba -I-, ba) are defined in Eqs. (2 · 9) and the radial function XL is the solution 

of Eq. (4·1). 
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(il.I~ 01 IA.')b (Mev) 

0.5 

(1,2) 
0 

(2 2) 

( 1,1) 
-1.0 

(3,3) 

----------------------------2.0 (3,3) 

(1,2) 
-3.0 --------------------------

r------------------------{I, I) 
-4.0 

r---------~-----i~~.?~------
-5.00 

0.1 0.2 0.3 c 

Fig. 5. The lv-rx matrix elements CAl VNal J-') b 

== (.1, J- 1
), plotted against the spin-orbit 

coupling strength c for the lp-shell proton, 
where J-=1, 2 and 3 mean (lj!2) = CP11z, 
1/2), (p3;z, 1/2) and (p3;z, 3/2), respecti
vely. The solid lines are calculated with 
A/(vib) 3=100 Mev and ~(A=1) =0.7. 
The dotted lines are obtained with A=O 
and ~ = 1. The contributions from the 
proton-a Coulomb force V c are included 
as (lpOIVcllpO) =0.75 Mev and (lp11Vcl 
1p1) =0.60 Mev. The values of the other 
parameters involved are the same as those 
in Fig. 3. 

Mev 

512-
8 3/2-

1/2- (3/2-) 

3/2- (1/2-) 

6 
6.07 

512-

7/2-,9/2-
3/2-

4 

2 3/2-,5/2-
1.46 3/2-

!.35 5/2-

0 

112- 0.11 
1/2-

(a) (b) 

Fig. 6. Negative parity levels of 19F, given 
relative to the observed binding energy 
of the 1/2+ ground state. (a) Calculated 
spectrum, based on the Puz and Ps;z hole 
configurations. The N-a matrix elements 
shown in Fig. 5 are used with c=0.25. 
(b) Experimental spectrum.31l 

The matrix elements of the total Hamiltonian (2 ·1) between the weak-cou
pling bases (5 ·1) are given by 

<S; JM\HiS'; JJ:'If) = {- B.E. (2°Ne) -ej+ E(L) }o(Lj, L'j')- <S; Jl VhaiS'; J), 

(5·2) 

with o(ab···, a'b'···) =Oaa'iJw .. ·· Here, the last term denotes the h-a matrix 
element which is related to the p-a one in the usual way :30

> 

<S; Jj Vha\S'; J) = ~ (2J' + 1) W (Lj'jL'; J' J) (j' L; J' I VNaiJL''; J'), (5· 3) 
J' 

where vV (abed; ef) is the Racah coefficient. The jJ-a matrix elements of Eq. 
(5 · 3) can be expressed in terms of the matrix elements (3 · 5) under the adia
batic approximation. We then have 

<S; Jj VhaiS'; J) =- ~ (jJ- QQjLO) (j' J- Q' Q'jL'O) (A\ V NaiA')o,R=d, (5·4) 
!J,!J' 

where the overlap integral with respect to XL and XL' is approximated by the 
values of CJ~ IV Na I l')o (a function of R) at the rms a-16

0 distance d. 
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5. 3) Energy spectra 

The energies of the negative parity states m 19F are calculated in terms of 

the N-a matrix elements shown in Fig. 5, the values being taken at c = 0.25 

(which is equal to that of the free N-a potentiaP0a>). We use the experimental 

values for the single-particle and rotational excitation energies, s1 and E(L). 

Effects due to the non-diagonal elements of H 1 are small and so the mixing of 

the basic configurations (5 ·1) is ignored. 

The energy spectra originating from p 112 and p 312 hole configurations are 

shown in Fig. 6 and is compared with the experimental data. 31
> The energies 

are given relative to the observed binding energy of the 1/2+ ground state. 

Under the adiabatic approximation, the perturbation energies for the /.>t;2 

hole configuration become independent of J and are commonly given by (p1121/2 

IV Na IP1;21j2)b. The resulting levels are essentially the same as those of the weak

coupling model. 12
> 

The experimental information from the 20Ne (t, 4He) 19F reaction has indicated 

evidences 32
> of the P-shell proton hole state in the region of about 5rv7 Mev 

excitations. These levels may be considered to be formed by the coupling of 

the Ps;2-hole with the 20Ne (a+ 160) core. As seen from Fig. 6, agreements are 

not very good. Further analyses free from the adiabatic approximation should 

be performed. 

§ 6. The ground rotational band in 21Ne 

Motion of a particle 

6. 1) Basic vectors and energy matrices 

The low-lying positive parity states in 21Ne have been known to exhibit the 

rotational character, and have been investigated in terms of the collective models33
) 

and the method of deformed orbitals.4
> 

In the present model, also, a particle is considered to move on deformed 

intrinsic orbitals compatible with the Pauli principle operating between the par

ticle and the a-cluster, and is described with the strong-coupling scheme in the 

body-fixed frame. Then, the states of the a+ 160 + p system are represented by 

the following molecular-type wave functions as the basic vectors: 

I B; JJYI)= I p, JMK = Q, II= ±) = v(2 J+ 1) /16n2 x (R) 

X {D~K(@i)a/ ± ( -/+~D~-K(@i)a_/} l¢o) (6 ·1) 

with p = (nl, AZ) and !2 =A+};, where J denotes the total spin of the system, 

M and K are its projections on the space z axis and the body z' one (the 

symmetry axis of the 20Ne (a+ 160) core), respectively, and II the parity. The 

basic function (6 ·1) is separated into three parts: the rotational part, indicated 

by the D function (@i being the Eulerian angles of the body axes); the vibra

tional part, denoted by x, which represents the radial dependence of the a-160 
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570 J. Hiura, Y. Abe, S. Saito and 0. Endo 

relative motion; the nucleonic part, specified by aP +I ¢0), which describes the 

particle motion in the intrinsic state (2 ·11) ((a/, aP) being the corresponding 

particle operators). Furthermore, in Eq. (6 ·1), K =Q implies the axial sym

metry of the system and the second term arises from the parity projection. 

The basic vector (6 ·1) can be expressed in the space-fixed frame in terms 

of the following transformation: 

I B; JM)= ~ CsBIS; JM), (6 ·2) 
I,} 

where 

and the vector IS; JM) = I L, a; Jl\11) is defined by an expression similar to Eq. 

(5 ·1) with aa+ instead of ba +. 

The matrix elements of the total Hamiltonian (2 ·1) between the strong 

coupling bases (6 ·1) are calculated with the aid of the transformation (6 · 2). 

Then, we wet 

(B;JMIHIB~; JM)= -B.E.C0Ne)o(p, p~) 

+ ~ (lsA..E JjQ) (lsA~ x~ ljQ) CJ 0 (nlQ, n'l~ Q~) 
.i 

(6·4) 

where the N-a matr1x elements are taken in the same way as that treated in Eq. 

(5 · 5). In deriving the last term which involves the rotational excitation energy 

E (L) of the 20Ne core, we have assumed that the vibrational function X in Eq. (6 ·1) 

satisfies Eq. (4 ·1) for the boson term Ha. This is approximately valid, when the 

a-160 relative motion is described by the effective a-160 potential Vaa with the 

repulsive core, as seen in § 4. 

In the matrix elements (6 · 4), the terms involving the N-a matrix elements 

and the single-particle energy cy- determine a deformed intrinsic orbital <jJ (Q) of 

the particle with the spin projection Q on the z' axis, while the terms involving 

the rotational energy E (L) give, for Q = Q~, the rotational band belonging to <jJ (Q) 

and, for Q::::j=Q~, the rotation-particle coupling which mixes different bands. 

6. 2) 1Vave functions and ene~gy spectrunt 

In the sd shell space w~ have six intrinsic states (2 ·11) specified by 

(nl, A..E). The states with A= 0 are expected to appear with relatively higher 

energies than the other, because of the s-state N-a repulsion. When we take 

the strength A as A/(vnbY=100 Mev*> in VNa of Eq. (3·1a), theN-a repulsive 

*l This value gives a qualitatively consistent explanation for the binding energy of the d-shell 

hole state (the 3/2+ level at 0.15 Mev) in 43Sc, as well as that of the p-shell hole state (the 1/2-

level at 0.11 Mev) in 19F. 
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Alj)ha-Cluster jJlus 160-Core Afodel for 20Ne 571 

contributions are estimated as about 5 and 20 Mev for the states with (nl, A) 

= (2s, 0) and (1d, O), respectively, R = d = 4 fm being used. These contributions 

must be added to the corresponding elements shown in Fig. 3. The (2s, 0) 

state does not have a sufficiently high energy, as compared with the (1d, 0) one, 

and so the former state may play important roles in the excited band with Q = 1/2. 

However, we are mainly interested in the ground band with Q = 3/2. In this 

case the (2s, 0) state have only minor effects, since it cannot couple with the 

ground band by the rotation-particle coupling (see Eq. (6 · 4)). Hence, the 

basic vectors (6 ·1) with A= 0 can be excluded in a first approximation. Then, 

the state vectors are given by 

I JM) = >:.= aJ(1dAJ:Q) l1dAl/, JMQ). (6. 5) 
A=l,2,.S=± 

In diagonalizing the energy matrix (6 · 4) with respect to the state vector 

(6 · 5), we use the experimental velues for C.j and E (L). The N-a matrix elements 

are calculated with b = 1. 76 fm and d = 4 fm. The values of the parameters in 

VNa are taken as V 0 = -50 Mev, a=0.195 fm- 2 and c=0.2, which are very close 

to those of the phenomenological p-state N-a potential_loa) The state-dependent 

factor ~ in Eq. (3 · 6) is chosen as ~(A= 1) = 1 and ~(A= 2) = 0. 

The resulting eigenvalues and eigenvectors are listed in Table II for the 

positive parity states with the various total spin J. The corresponding energy 

spectrum is shown in Fig. 7 and is compared with the experimental data34
) for 

21Ne. The energies are given relative to the observed energy of the 3/2+ ground 

state. To show the effects of the band mixing we present also the rotational 

spectra for the lowest bands with Q= 1/2, 3/2 and 5/2 in Fig. 7. The lowest 

band with Q = 3/2 is described b:r: the deformed intrinsic orbital 

¢ (Q = 3/2) = 0,973¢ (1d, 1 +) + 0.233¢ (1d, 2-) 

= 0.97 4c;o (1d5/2' 3/2) + 0.227 c;o (ld3/2' 3/2) (6 ·6) 

for the adopted values of the parameters. The present model explains quite 

satisfactorily the observed energy spectrum of the ground band which consists 

of the states with Jrr = 3/2+, 5/2+, 7 /2+ and 9/2+ below 3 Mev excitations. For 

these states the mixing ratios of ¢ (!2 = 3/2) are estimated as a bout 83%. 

Table II. The eigenvalues and eigenvectors for the ground band of 21Ne. The energies are given 

relative to the observed binding energy of the 3/2+ ground state. The values of the various 

parameters, used in the calculations, are the same as those in Fig. 7. 

3/2+ 

5/2+ 

7/2+ 

9/2+ 

11/2+ 

0.04 

0.38 

1.63 

2.96 

4.40 

0.120 

0.212 

0.244 

0.261 

0.225 

0.968 

0.903 

0.874 

0.833 

0.833 

0.219 

0.229 

0.235 

0.247 

0.262 

0 

0.294 

0.348 

0.420 

0.432 
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Mev 

8 9/2 11/2 

9/2 

6 
7/2 

7/2 

5/2 
9/2 11/2+ 

4 ~ 5/2+ 

3/2 
3/2+ 

--1/2 
(c) 1/2+ 2.870 9/2+ 

2.797 1/2+ 
(a) ..2f.1..... 9/2+ 

2.790 3/2+ 

2 
7/2+ 

1.750 
7/2+ 

5/2 

0 
3/2 5/2+ 0.350 

5/2+ 
3/2+ 0 3/2+ 

( b l (d) (e) 

Fig. 7. Positive parity levels of 21Ne, given relative to the observed binding energy 

of the 3/2+ ground state. (a), (b) and (c) indicate the rotational bands with .Q = 1/2, 

3/2 and 5/2, respectively, based on the (1d, A;rfO) particle configurations. (d) Calculated 

spectrum mixed by the rotation-particle coupling. (e) Experimental spectrum. In all 

calculations, V 0 = -50 Mev, a=0.195 fm- 2, c=0.2, ~(A=1) =1, ~(A=2) =0, b=l.76 fm 

and d=4fm. 

There exist the closely spaced doublet at-2.80 Mev excitations in 
21

Ne. One 

state at 2.797 Mev is known to have Jrt = 1/2+ from the (d, jJ) reaction. 34
b) 

The other state at 2.791 Mev is suggested to be Jrt = 3j2+ from the r-r and 

n-r angular correlations.34
c) As seen from Fig. 7, the energies of this doublet 

are not reproduced sufficiently well in the present analysis without the intrinsic 

(2s, 0) and (1d, 0) configurations. The stripping pattern34
b) from 2.80 Mev ex

citations shows that the reaction takes place by a capture of a nucleon with 

zero angular momentum (l = 0). Thus, in order to clarify the character of this 

doublet, it is necessary to describe completely the excited band with !2 = 1/2 in 

terms of the full configurations. 

It has been found that reasonable agreement with the observed spectrum 

of the ground band can always be obtained when the potential parameters are 

taken to close to that of the phenomenological jJ-state N-a potentiaP0
) and the 

state-dependent factor ~ is properly taken into account. 

6. 3) Ground state moments and electromagnetic transitions 

We can easily obtain the electromagnetic operators for the a+ 160 + neutron 

system, by treating the former two particles as the structureless charged boson. 
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AljJ!ut-Cluster plus 160-Core Model for 20Ne 573 

The magnetic dipole (M1) operator is given by 

MC1, q) = J3747r /f.q, (6 ·7) 

where /f.q IS the spherical component of the magnetic moment operator 

p = /f.o { (1/2)J + (gn -1/2) s} , (6 ·8) 

J being the total spin of 21Ne, gn the gyrornagnetic ratio of a neutron and /f.o = 

(ehj2Mc). The electric quadrupole (E2) operator is given by Eq. (4 · 5), when 

we ignore the small corrections arising from the cranking effects of the centre

of-mass. 

The magnetic dipole and electric quadrupole moments, /f. and 0 for a state 

with the spin J are written as 

fJ. = /f.o { (J/2) + (gn -1/2) (2J + 1)-1
/

2 (J1JOIJJ) <Jf[sCl)[[ J)}, 

0 =Qo(2J + 1)-112 (J2JOIJJ) <JI[EC2)[[J), 

(6·9) 

(6 ·10) 

where the reduced matrix elements are defined in the Wigner-Eckart theorem24
) 

and 0 0 is the intrinsic 0-moment for the 20Ne (a+ 160) core, i.e. 

Qo = (16/5) e (xi R2
1 X) = (16/5) ed

2
• (6 ·11) 

The reduced transition probabilities for the M1 and E2 radiations, B(M1; 

J~J') and B (E2; J~J'), from an initial state with the spin J to a final one 

with J' are given by 

B(M1; J~.F) = (3/4n) /f.o2 (gn -1/2Y (2J + 1)-1 [<J'ils(l)iiJ)[\ 

B (E2 ;J~J') = (5/16n) Qo2 (2J + 1)-1I<J'[[EC2)[[J)I 2
• 

(6 ·12) 

(6 ·13) 

For the states represented by Eq. (6 · 5) the reduced matrix elements are calculated 

with the standard method of the rotational model. 20
) 

Table III. The ground state p. and Q moments and the reduced M1 and E2 transition probabilities 

within the ground band in 21Ne. The calculated values are obtained in terms of the wave func· 

tions listed in Table II. 

(a) The ground state p. and Q moments. 

p.(n. m.) 

Q(efm2) 

Cal 

-0.748 

9.94 

-~ Exp 35) 

1 

--
-0.66 

9.3 

(b) The reduced M1 transition probabilities. 
~ . . -·· .... 

B(M1, J -">J1
) (p.o2) 

J J' 
Cal Exp 35) 

5/2+ 3/2+ 0.168 0.020:1=8:6n 

7/2+ 5/2+ 0.125 0.12:1=8:6;\ 

9/2+ 7/2+ 0.139 0.26:.t:8: iZ 
--

(c) The reduced E2 transition probabilities. 
---. --- -----·- ~-- ·- -'" 

B(E2; J -">J1
) (e2 fm4) 

J J' 
Cal Exp 35) 

5/2+ 3/2+ 78.1 150 

7/2+ 5/2+ 55.3 19±~g 

7/2+ 3/2+ 32.8 20±y5 

9/2+ 7/2+ 38.3 

I 

41±§~ 

9/2+ 5/2+ 52.6 22±r~ 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

2
/3

/5
5
5
/1

9
4
3
0
4
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



574 J. Hiura, Y. Abe, S. Saito and 0. Endo 

The ground state fJ. and 0 moments and the various Ml and E2 transition 

rates within the ground band are calculated in terms of the corresponding wave 

functions listed in Table II. The results are summarized in Table III and com

pared with the experimental data 34
a,b),S

5
) in 21Ne. Agreements are rather satis

factory. 

The transitions from the doublet at the 2.80 Mev excitations to the members 

of the ground band have been observed experimentally. 34
c,a) These transitions 

are not investigated in this paper, because the excited bands with ,Q = 1/2 are 

described incompletely in the present analysis, as mentioned in the previous 

subsection. 

§ 7. The excited IC" = 2- rotational band in 20N e 

lvf otion of a jJarticle-hole pair 

7. 1) State vectors and energy matrices 

In the two previous sections we have treated the three-body problems, i.e. 

the a+ 160 + h or p system, and have seen how the particle or hole motions are 

described. The next problem is to analyze the four-body one, i.e. the a+ 160 

+ p + h system. As an application, \Ve will pick out the second Litherland band25
> 

in 20Ne, which starts from the 4.97 Mev excitation with J"=2-, 3-, ···. This 

band has been interpreted as the 1{7!' = 2- octupole g-vibrational band.25
> Experi

mental studies36
> has suggested the p- 1 (sd)5 configuration for this band. Theore

tical works27
>'

37
> have been done in terms of the method of deformed orbitals and 

the SU3 model, on the basis of this configuration. 

In the present model it is assumed that this band originates from the coupled 

motion of the a-cluster and a particle-hole pair. In the most energetically 

favourable configuration, a hole and a particle move on the spherical jJ1; 2-shell 

orbital and the deformed intrinsic one \vith ,QP = 3/2 in the sd shell, respectively. 

In the relevant states the h-a interaction is weak as compared with the t-a and 

jJ-h ones (e. g. - (Vha)~l Mev and (Vpa)~- (Vph)~- 3 Mev). Therefore it 

may be expected that the motion of the hole correlates with that of the particle 

so as to make ,Q a good quantum number approximately, where ,Q ( = QP + Qh) 

is the projection of the total angular momentum j ( = j P + jh) on the symmetry 

axis of the 20Ne (a+ 160) core. Then, the states of the a+ 160 + h + jJ system can 

be described in terms of the strong-coupling bases in which the particle is spe

cified with the (ZA) representation while the hole with the (jQ) one. However, 

for simplicity, we will assume that the deformed intrinsic orbital of the particle 

with QP = 3/2 can be approximated by means of the intrinsic state with (jQ)P 

= (ld5/2> 3/2). 

In this case the state vector with the definite total spin J, parity II and 

isospin T is approximately represented as 
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Alpha-Cluster jJlus 160-Core Model for 20Ne 575 

IB; JM>=Ip, h- 1
; JTMK=Q, II= ~t:>=v(2J+-I)/1.6rr 2 xCR) 

X {D'f.:rK(@i) [aP +X f1~t+J1•± (- )"'D~-K(@i) [CLp+ X f1-1/J1.} l¢o), (7 ·1) 

vvith jJ (h) = },P (l,h), J.. = (nlj, .Qr) and (J) = l:P + lh + jp + jh + J. Here, the meaning 

of each part and the notation involved are almost the same as those of the basic 

vector (6 ·1). The difference is the appearance of the hole operator t1>c +, together 

with the particle one aA- +. They are specified by the intrinsic states with (jQ)P 

= (ld512 , ± 3/2) and (j.Q)h = (1p112 , ± 1/2), respectively. Note that the former 

state does not contain the orbit with AP = 0 which is strongly influenced by the 

s-state N-a repulsion. Furthermore, in the (p112)-
1d5; 2 configuration we are en

tirely free from the troublesome problem of the spurious excitation for the centre

of-mass mo6on of the 160 core.38
l 

The state vector (7 ·1) can be expressed in the space-fixed frame in terms 

of various transformations. We give here one of them -,;vhich becomes nec

essary later: 

IB; JM)= 2::: CsBJS; JM) (7. 2) 
LJl 

with the definitions 

CsB=C~Jl (jpjh.Qp.Qh, II= ±) = [1 ± (- lp+~h+L]/ v2 
X ( - )J + L+ Q ( J jh.Q- Qh I J1.Q p) ( J1j p.Q p - Q pI LO) ' ( 7 . 3) 

IS; JM)=I (LJJ)Jh h- 1
; JTM)=x(R) 

(7 ·4) 

The matrix elements of the total Hamiltonian (2 ·1) between the state vectors 

(7 ·1) \vith T=O can be written as 

(B; JMJI-IIB'; JM) =- :E (- )w(Q) (Jjh.Q-Qh1J1.Qp) 
Jl 

X (Jjh.Q'- f2/ I J1.!2/) (B; J1M11111 B'; J1~l\;f1) AvO (jh, jh') 

- (1/2) [ (- )w(~) + (- )w(j)J (hI V Nal h')IJ, R=il,AVO (jJ, j/) 

- sh,Avo (ph, j/ h') - ~ (jpjh.Qp.Qhll.Q) (j/ }t.' 2 2/ Qh'II.Q) 
I 

(7. 5) 

where w U) = J..h -},h' and the suffix A V denotes an average over the change 

states. The first term in Eq. (7 · 5) is derived by means of the transformation 

(7·2), where the state vector IB;JIM1)=Ip;J1MIQpii1 =(-Y1·II) is referred to 

the a+ 160 + p system and is defined in a way similar to that in the case of the 

basic vector (6 ·1). 

In evaluating the matrix elements (7 · 5), we assume that the state vectors 

IB; J1M1) with (j.Q)P = (1d512 , 3/2) can be regarded approximately as the eigen

vectors for the members of the ground band in 21Ne and 21Na; 
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576 J. Hiura, Y. Abe, S. Saito and 0. Endo 

(7 ·6) 

where E 1 (J1) denotes the corresponding excitation energy. The validity of this 

approximation has been shown in § 6. The last term 111 Eq. (7 · 5) contains the 

p-h matrix elements which can be expressed in terms of the P-P ones, following 

to the standard manner.39
) 

7. 2) Energy spectra and electric transitions 

For the (1p112 , ± 1/2)-1 (1d512 , 3/2) configuration we have two rotational bands 

with K = S2= 1 and 2 from the diagonal elements of Eq. (7 · 5). The energy 

spectra without the K band mixing are obtained only in the first order approxima

tion, because of the simplified treatments for the state vector (7 ·1). In the 

calculations we use the experimental values for the excitation energies E 1 (J1) and 

the h-a interaction energy (1ih;2, 1/21 V Nai1p 112 , 1/2)b. As the residual force 

Mev 

14 I 

5 

4 

12 - -

3 

5 

K=l 
2 ...... 

r- - -
I 

4 
10 

~ 
(a) 8.46 5-

3 
-

2 -
K=2 7.02 4- 7.19 3 

8 

(b) 

-- 5.80 I - 5.62 3 -6 

4.97 2-

( c} 
4 I 

-40 -80 

v0 (Mev) 

Fig. 8. Negative parity levels of 20Ne, given relative to the observed binding energy 

of the o+ ground state. (a) and (b) indicate the rotational bands with K,. = 1- and 

2-, respectively, based on the (p112, .Q = 1/2) -t (d512, .Q =3/2) configuration. (c) Ex

perimental spectra. The particle-hole interaction energies are calculated in terms of 

the Yukawa force with the range r 0 =1.37 fm and the Rosnfeld mixture and of the 

oscillator functions with the size parameter b= 1.64 fm. On the left-hand of the 

figure, the band-head energies are plotted against v 0, the strength of the force. 
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AljYha-Cluster jJlus 160-Core Model for 20Ne 577 

between the nucleons we choose 

the Yukawa type with the Rosenfeld 

mixture and the range r 0 = 1.37 fm. 

The P-fJ matrix elements for this 

force is obtained in the usual way22> 

in 'terms of the value b = 1.64 fm, the 

size parameter of the harmonic oscil

lator functions. The calculated ener

gy spectra are shown as a function 

Table IV. The reduced E2 transition probabili
ties within the Krr=2- rotational band in ZONe. 

The calculated values are based on the in
trinsic Q moment determined with the a:-160 

rms distance d=4 fm. 

B(E2; J~J') (e2 fm4) 

J J' 
Cal Exp40) 

4- 3- 69,6 115 

4- 2- 31.0 35.6 

of the strength v 0 of the residual force m Fig. 8, together with the experimental 

data. 25> The energies are given relative to the observed energy of the o+ 

ground state in 20Ne. 

For the system treated the E 2 operator is also given by Eq. ( 4 · 5), the 

effects of the single-particle transitions being ignored. Then, the reduced E2 

transition probabilities within a K band are given by the well-known formula20> 

B(E2; JK~J' K) = (5/16rc)00
2 (J2KOIJ' KY, (7. 7) 

where Q0 is defined in Eq. (6 ·11). The calculated values for the K = 2 band 

are shown in Table IV in comparison with the experimental data, 40> where Q0 is 

estimated with the value d = 4 fm. 

As seen from Fig. 8 and Table IV, the energy spectrum and E2 transitions 

are well accounted for in the K.,. = 2- band. However, the present model also 

predicts the K.,. = 1- band which is not observed experimentally at low excitaion 

energies. 

The enhanced E3 transition has been observed between the 3- level at 5.63 

Mev and the o+ ground state in 20Ne. The reduced E 3 transition probability 

is estimated as B (E3; 3- ~o+)exp ~ 1.8 X 102e2 fm 6 from the observed enhancement 

factor 41 > 7 over the single-particle estimate. However, the state (7 ·1) with 

J.,. = 3-, K = 2 representing the 3- level at 5.63 Mev, because of its 1p-1h 

character, is connected with the o+ ground state (the Op-Oh state) only by 

single-particle E3 transitions. A possible explanation for the enhanced E3 transi

tion is given by taking into account the effect of the mixing between the 3-

level at 5.63 Mev and the other 3- level at 7.17 Mev. The latter level is con

sidered as the state based on the a-160 relative motion with L = 3, as discussed 

in § 4. This 3-, K = 0 state indicates a collective E3 transition*> to the o+ 

ground state and can mix with the 3-, K = 2 state (7 ·1) by the coupling term 

H 1 of Eq. (2 · 5). Evidences of this mixing have been suggested experimentally. 

In the inelastic scattering of a particles on 20Ne, both the 3- states at 5.63 and 

7.17Mev are equally excited. 42> In the 160CLi,t) 20Ne reaction the excitation 

of the two 3- states are also observed.36
a) 

*> In this case the E3 operator is given by E(3, q) = (24/25) eR3Y 3q cib. An estimate gives 

B(E3; 3-~o+) =1.2Xl03 e2 fm6 with 3y(R_3)=5 fm. 
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§ 8. Summary and conclusion 

The mm of this paper was to examine a possibility of a-cluster structure 

in the low-energy states of the nuclei around 20Ne. For this purpose an attempt 

has been made to describe their properties dynamically jn terms of an a-cluster 

plus 
16

0-core model with effective a-160 and N-a potentials. The model has 

been developed in such a manner as treating the coupled system of the a-160 

relative motion with the particle and hole ones in an average field of 160. 

The main results are summarized as follows. 

(I) The !<.."' = o+ rotational band in 20Ne (a+ 160) can be described by effective 

a-160 potentials having a repulsive core and a state-dependent well. Such poten

tials can give a plausible explanation for the deviations of the energy spectrum 

and E2 transitions from the rotational model. The energy gap between the 

K"' = o+ and o- bands in 20Ne is attributed to the systematic differences assumed 

for these potentials between the even and odd parity states. 

(II) Both the low-lying anomalous-parity levels of 19F (a+ 16 0 +h) and the 

ground rotational band in 21Ne (a+ 160 + jJ) are reasonably understood in terms 

of an effective N-a potential which has the essential character of the N-a interac

tion in free space. Its s-statc repulsion plays important roles in both systems: 

it brings on the appearance of the anomalous-parity states with low excitations 

in 19F and also guarantees the consideration of the effects of the Pauli principle for 

the states of the ground band in 21N e. The motions of the hole and the particle 

are described with the weak-coupling scheme and the strong-coupling one, res

pectively, where the hole takes spherical p orbitals and the particle moves on 

deformed sd ones compatible with the Pauli principle. 

(III) The excited K" = 2- rotational band in 20Ne (a+ 160 + p +h) is also well 

interpreted as originating from the coupled motion of the a-cluster and particle

hole pair around the 160 core. The motions of both the particle and hole are 

described in terms of the strong-coupling scheme, because of the relatively 

strong particle-hole interactions. The hole (particle) orbital in this band is 

determined to be consistent with the corresponding one in 19F e1Ne). 

The model stands on the picture o£ the weak coupling between the a-cluster 

and the 160 core. 0£ course, the model exhibits several defects because o£ this 

drastic and limiting assumption. Nevertheless, the model succeeds in explaining 

the various nuclear properties reasonably, as summarized above. 

The successes of this model lead to the conclusion that a-like four-body 

correlations seem to be very important in the nuclei around 20Ne. 
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