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Abstract

This paper describes and analyzes a dithering technique for accurately specifying small
values of opacity ( � ) that would normally not be possible because of the limited number of
bits available in the alpha channel of graphics hardware. This dithering technique addresses
problems related to compositing numerous low-opacity semitransparent polygons to create
volumetric effects with graphics hardware. The paper also describes the causes and a possible
solution to artifacts that arise from parallel or distributed volume rendering using bricking on
multiple GPU’s.

Keywords: Transparency, volume rendering, alpha compositing.

1 INTRODUCTION

This paper addresses problems related to compositing numerous low-opacity semitransparent poly-
gons to create volumetric effects with graphics hardware that uses limited precision arithmetic.
This includes the low-opacity fog problem and the bricking artifact problem, both of which are
described in detail in Section 2. The low-opacity fog problem has to do with rendering polygons
whose opacities are too low to register in 8 bit graphics hardware. The bricking artifact problem
occurs in parallel or distributed volume rendering using bricking on multiple GPU’s.

In Section 2, we discuss the background for our paper, give some of the assumptions regarding our
calculations, and describe the low-opacity fog problem and the bricking artifact problem. Then in
Section 3 we present the alpha dithering technique. In Section 4 we show results of applying this
dithering technique to different instances of the low-opacity fog problem and the bricking artifact
problem. In Section 5, we discuss dithering color. Then in Section 6 we discuss how we implement
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dithering in the transfer functions. In Section 8 we cover the effect of dithering on image quality
and rendering performance, discuss front to back dithering, present an unsolved problem in regard
to our dithering method, describe an alternative dithering technique using chunks, and some related
issues. Section 9 discusses some limitations of our method and gives our conclusions.

2 BACKGROUND

Semitransparent objects can be rendered by specifying an opacity ( � ) value in addition to a color.
This � value which ranges between 0.0 (totally transparent) and 1.0 ( totally opaque) is used to
blend the color of an incoming fragment with the color of a pixel stored in the frame buffer.
Assuming the objects are rendered from back to front in visibility order, the blending equation
normally used [18], is:

�������	��
���
�����
�������� ������� � �"!$# �%�&��' 
�()�	��
���
�����
����+* (1)

Where � and � are the opacity and color, respectively, of the incoming fragment.

Graphics hardware generally has an alpha channel which allows the specification and storage of
an opacity value as a fourth color component (in addition to ,.-0/ and 1 ). The hardware also
implements several methods that control how color values in the incoming fragment are combined
with those already stored in the frame buffer. One of these methods implements Equation 1. We
refer to this process as compositing. However, graphics hardware may offer a limited number 2 of
bits for the specification and storage of color and alpha values, thus limiting these values to integers
in the range 3546-87:9�;=<?> which maps to 7�9 different allowable colors and opacities in the range 3@4A- !B* 4:> ,
with a minimum possible value of <9�;=< which we refer to as the input threshold. Typically, 2 �DC
bits, then the input threshold is <EGFGF , and there are 256 allowable color and opacity values. This can
be a problem if we need to input an opacity value lower than the input threshold or a value that lies
between two consecutive allowable input values. This situation can arise in volume rendering or
in creating volumetric effects such as rendering fire and fog. We will focus on volume rendering
applications.

In volume rendering, each data value is mapped to a color and an opacity by transfer functions.
Volume rendering may be accomplished in a number of ways, such as: (a) by slicing the data
perpendicular the view direction to form slices, where each slice is composed of a set of polygons
formed by the intersection of the slice with the cells in the mesh, and then rendering the slices from
back to front using hardware compositing, as described in [24, 28], (b) by rendering in visibility
order the projection of each cell as a set of polygons, using hardware compositing, as described
in [20, 22], or (c) by resampling the data to a set of 2D textures or a 3D texture, as described in
[6, 10, 13, 19, 25], which can be rendered from back to front, using compositing, as 2D textures
or as one 3D texture. In the case of textures, each 2D texture can be thought of as a slice for the
purpose of this paper.

Until the release of the R300 based graphics card from ATI Technologies Inc, and the NV30 based
card from NVIDIA Corporation, both of which have 128 bit floating point frame buffers (32 bits
per channel), most graphics hardware offered limited precision, usually 32 bit frame buffers, with
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8 bits per channel. On some high-end SGI machines, the frame buffers have 48 bits, 12 bits per
channel. In this paper, we focus on dealing with the limitations presented by having only 8 bits
per channel. While the R300, NV30 and later cards have 128 bit floating point frame buffers,
our work dealing with graphics hardware with only 8 bits per channel is still relevant for at least
three reasons. First, there will be many legacy 32 bit graphics cards in use for a number of years.
Second, the R300 and NV30 generation chips have certain limitations on the use of floating point
compositing that may make the use of 8 bit compositing still relevant. For example, in the current
generation of cards, no blending operations are supported when targeting a floating point frame
buffer, instead the frame buffer must be copied to a texture where blending is accomplished by
a user provided fragment program. Third, images created using these new graphics cards, which
involve compositing for volumetric effects, may appear different than images created with 32 bit
frame buffers using the same data and viewing parameters — this paper explains why this may be
the case.

2.1 Preliminary Assumptions and Definitions

By n bit compositing, we mean that the opacity and color values are stored, and specified as input,
(as integers), using 2 bits. However, the blending equation, Equation 1, is assumed to be evalu-
ated using floating point arithmetic, with 2 bit integer inputs, and the result rounded to an 2 bit
integer. So if the equation to be evaluated is � ��� ��� -���� , where

� -���-0� are 8 bit integers, then we
would evaluate it as � � �:��� 2 (��	� �
� 
��������	� � - � 
 ������� � � � � . The results presented in this paper were
generated using a graphics hardware simulator based on these assumptions. We have compared
the output from our simulator with the output from an NVIDIA GeForce3 GPU, and found them
to be in general agreement. The GeForce3 has a 32 bit frame buffer with 8 bits per channel. In
this paper we focus on 8 bit compositing, and use 32 bit compositing as a high accuracy frame of
reference. In Section 4.1, we briefly discuss 12 bit compositing.

Normally 8 bit color and opacity values are specified either as (a discrete set of 256) floating point
values in the range 3@4 * 4A- !B* 4:> , or as integers in the range 3@4A-87�
�
�> . In this paper, we have chosen the
latter representation, but with the modification that values are expressed in floating point notation
in the range 354 * 4A-87�
�
 * 4:> . We made this choice for two reasons. We wish to be able to describe
opacity and color values that are below the input threshold or that lie between two consecutive
allowable input values. Second, this representation makes it obvious which are the allowable input
values. Thus an opacity given as 5 in this paper will be equivalent to an opacity of 5/255 on a
range of 3546- !B* 4:> , and an opacity of 1.25 will be equivalent to an opacity of 1.25/255 on a range
of 3@4 * 4A- !B* 4:> . Obviously, an opacity of 5 is an allowable input value, whereas 1.25 is not. We
emphasize again that unless otherwise specified, all opacity and color values � given in this paper
will be values in the range 3@4 * 46-87�
�
 * 4:> that correspond to ��� 7�
�
 in the range 3@4 * 46- !B* 4:> . Finally,
when we specify a color value, e.g. � � ! 7 C , we mean the value of any one of ,.-0/ - or 1 .
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2.2 Low-Opacity Fog Problem

For slice-based rendering, an image may be generated using progressive refinement: initially a few
slices are rendered, then as time permits the resolution of the image is improved by rendering it
with more slices. However, when the number of slices is increased, the opacity values need to be
decreased. To understand this, we need to look at what we mean by a slice and how opacity is
defined.

Although we speak of slices, conceptually the volume is partitioned into slabs perpendicular to the
viewing direction and each slab is represented by a slice, centered in the slab. See Figure 1. When
we render a slice, conceptually we are rendering a slab. It is often loosely said that a slice has an
opacity or that the opacity needs to be adjusted as the slice spacing or slice density changes. This
can be confusing; it is preferable to think in terms of rendering slabs rather than slices.

Figure 1: A volume partitioned into three slabs, showing the three slices that represent them, and a viewing
ray through the slabs.

Based on the optical model that is often used for volume rendering, the absorption plus emission
model described in [14, 22, 23], the opacity � is defined as:

� � ! # � ;�� � * (2)

where � is the optical density or extinction coefficient1 of the slab along the ray segment, and
(

is
the length of the ray segment in the slab, see Figure 1. For orthographic viewing,

(
is the width

of the slab. We will confine our discussion to the orthographic case. The perspective case is more
1The optical density or extinction coefficient � is considered to be a physical property of the volume that varies

with the scalar field. The values of � are inferred from the initial opacity settings selected by the user for the scalar
field values. For the model used here, � is considered to vary linearly along a ray segment through a slab, as does the
scalar field. Therefore, � in Equation 2 is the average value of � along the ray segment.
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complicated and is the topic of a paper in progress by our group. As explained below, Equation 2
is only used to calculate opacity values when the number of slices (slabs) is changed. Initially, the
user sets the colors and opacities ( � ’s) for the transfer function directly, empirically, by adjusting
them to give the desired image. However, when the number of slices (slabs) is changed, the slab
width

(
changes and so according to Equation 2, the opacity must be modified. To do this, we do

the following for each of the original opacities ��������� in the transfer function. We first calculate the
optical density � corresponding to ���	����� using Equation 2, giving:

�
� # 
 2 � ! # �
�	������� � ( �	�����

where
(
�	����� is the original slab width. Then using that value of � in Equation 2, we get the new

opacity � 9 ��
 corresponding to the new slab width
(
9 ��
 :

� 9 ��

� ! # ��� ��������� ���������� "! 9 � <G;$# �����%�& .

Let '(������� be the number of slices (slabs) for which the user initially set the opacity, and ' 9 ��
 be the
new number of slices (slabs), then

(
9 ��
 �

(
�	�����

�
')�	�	��� �*' 9 ��
 . Therefore, each time the number of

slices is changed, the new opacity value is given by:

� 9 ��

� ! # � �,+ �����%��� + �����  -! 9 � <G;$# �����%�� * (3)

In most scientific visualization volume renderings, the majority of polygons which we refer to as
background polygons have a very low opacity in order to create sufficient transparency to give
a penetrating view of the object. This allows the field values of interest, which are mapped to
higher opacity values, to stand out. It is important that the background polygons not be mapped
to zero opacity as these background polygons create a diaphanous haze or fog-like appearance
that provides a spatial context in which to properly interpret the structure of the field values of
importance. See Figure 2. A problem arises however when the number of low-opacity polygons
(or slices) per pixel is large, a situation commonly encountered in large data sets or as might be
required to resolve high frequency spatial structures in data sets.

For cell projection volume rendering, the number of polygons is determined by the number of
cells in the data set. If the number of cells is large, the opacity required for the low-opacity
polygons may be smaller than the input threshold. For slice-based rendering, or texture-based
volume rendering, the number of slices is variable and may increase to a point where the opacity as
calculated by Equation 3 for the low-opacity portion of the slices may be reduced below the opacity
input threshold. For example, in the case of slice-based volume rendering, consider original alpha
values of 1 and 3, which are reduced so the new values become 1.5 and 0.5; converting them to
allowable input values (integers) will result in values of either 2 and 1, or 1 and 0. Neither of these
sets of values results in semitransparent images that are comparable with the original image. We
refer to the problem described in this paragraph as the low-opacity fog problem. What we need is
some way to preserve the precision of the new low-opacity values.

One approach to this problem, proposed by Kniss et al in [10], is to scale up input alpha values
while rendering, and then scale down the finished image. This is a good method, however, it
requires that the scaled-up values and their composited values remain in range — which is not
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always possible. In our paper, we present a method that involves dithering small opacity values,
thus effectively extending the range of allowable input values for opacity without the limitation of
the scaling method.

Briefly, our method works by dithering low opacity values, either randomly or using a regular
pattern, over a certain number of slices or polygons. So for example, if we desire to dither an
opacity of 0.75 over say 4 slices, then we set the opacity to 1 for three slices and to 0 for one slice.
Thus, over 4 slices, an effective opacity of 0.75 will be used. Our method is explained in detail in
Section 3.

Figure 3 shows six volume rendered images of a scientific data set that illustrate the low-opacity
fog problem. The images were generated using a 32 bit frame buffer, with 8 bits per channel. The
left images were generated using 128 slices, the middle pair using 275 slices, and right ones using
600 slices. The bottom set of images was created without alpha dithering, the top set with alpha
dithering using a regular pattern over a period of 16 slices. The image with 128 slices was chosen
as the reference image and the initial alpha values set to give it the desired transparency.

Figure 2: Two volume rendered images generated using a 32 bit frame buffer, with 8 bits per channel. The
right one has a yellow haze formed by compositing polygons with low opacity values. The left image has
no haze because the opacity of the low-opacity polygons is below the input threshold (1/255) for 8 bit alpha
values. The haze is important because it gives the image a spatial structure in which to interpret the field
values with higher opacity values.

2.2.1 Previous Work

Wittenbrink et al [26] describe an opacity-weighted color interpolation scheme that exactly re-
produces material based interpolation results for voxel-based volume rendering when performing
material classification, e.g. bone versus muscle. However, their method does not deal with the
problems related to low opacity values when using fixed precision graphics hardware, nor is it rel-

6



Figure 3: Volume rendered images of a scientific data set generated with, from left to right, 128 slices, 275
slices, and 600 slices. The images on the bottom were generated without alpha dithering, those on the top
with alpha dithering. As the number of slices increases, the alpha values decrease to the point where small
alpha values vanish unless dithering is used.
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evant to volumes with a continuous medium. Engel, Kraus and Ertl [9] describe a pre-integrated
volume rendering method applicable to cell projection techniques. Their method achieves very
high image quality, however, the blending equation, Equation 1, is still implemented in hardware
by the frame buffer. Therefore, the low-opacity fog problem described above is still relevant, and
their pre-integrated method can be improved by adding our dithering technique. Lacroute [11]
describes a slicing-based volume renderer however, it does not utilize graphics hardware. We have
found no references in the literature either to what we refer to as the low-opacity fog problem, nor
to any solutions to it.

2.3 The Bricking Artifact Problem

Another problem caused by limited precision compositing can occur when bricking is used. Brick-
ing means that the overall volume is partitioned, for example by an oct-tree decomposition, into
bricks. The bricks are then sliced and rendered in parallel, using multiple GPU’s. This process
results in several semitransparent images, one from each brick. These images are then gathered
and composited two at a time, in back to front order, in software, to form the final image. A slice
may be a texture [6, 10, 13, 19, 25], or consist of a set of polygons [24, 28]. When bricking is
used, it is necessary to accumulate opacity as well as color during rendering. The accumulated
opacity is needed so the image of a brick can be composited with the image of another brick. This
is why we call these semitransparent images — they have a color and an opacity at each pixel.
Most graphics hardware allows opacity values to be accumulated in the frame buffer in addition
to color. We assume the alpha channel has the same number of bits as each of the color channels.
The bricking artifact problem, which we will explain in detail, arises due to a combination of two
factors: the limited precision of the accumulated RGBA values in the frame buffer, and the for-
mation of a region of overlap created when the bricks are rotated. See Figure 4 which shows two
rotated bricks with a region of overlap. In this region, between pixels

� !
and

���
, the number of

slices accumulated in each brick varies. This can cause a noticeable artifact when the images of
the two bricks are composited. An orthographic projection is assumed in Figure 4; however, this
type of artifact can occur with perspective projection also. We have not seen any reference to this
problem, nor any solutions to it, in the literature. However, we have had conversations with other
researchers using graphics clusters who have experienced this problem. We now explain how the
artifacts in the final image arise.
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Figure 4: Two bricks sliced from upper right to lower left. Each brick is rendered separately to form images
1 and 2, and then the two images are composited. The rotated bricks form a region of overlap in the two
images across which the number of slices composited by each individual brick varies. In this particular
example, pixel � E of image 1 composites half the slices in brick 1. That same pixel location in image 2
composites half the slices in brick 2. Pixels ��� and � < composite all their slices from brick 1.

Equation 1 is used to composite color during rendering, and to composite the color values of two
semitransparent images. (In practice, a subtle modification is required for the latter which we
explain later). The following equation is used to composite opacity:

������� �
'
��� ��( ' � � � ����� � ��	 ��� 9�
 �

� ! # ��	 ��� 9�
 � � ��
������ (4)

When accumulating two images, ��
������ and ��	 ��� 9�
 are the pixel opacities of the images of the bricks
that are farthest and nearest from the viewer, respectively. When used for rendering, ��
������ is the
existing opacity at a pixel, and ��	 ��� 9�
 is the incoming � . The equation for compositing color is
intuitive. However the equation for opacity is easier to understand if we consider transmittance � ,
defined as

� ! # � � . When a polygon with transmittance � < is blended with another polygon whose
transmittance is � E , the combined transmittance ��� is:

� � � � < ��� E * (5)

This agrees with our intuition: if a polygon transmits <E of the light from behind it, and we com-
posite it with another polygon whose transmittance is also 50%, the combined transmittance will
be <� . Translating Equation 5 into terms of � , we get the blending equation for opacity shown above:
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� ! # ��� � � �"! # � < � �
�"! # � E � �D!$# � E # � < � � < ��� E ,
so

� � � � E � � <
# � < � � E

� � E � � ! # � E � � � < .
The OpenGL function glBlendFunc(), that selects how the graphics hardware blends the color
and opacity of an incoming fragment with the color and opacity of a pixel stored in the frame
buffer, has an option that implements Equation 1, and this option is what is normally used to
achieve transparency, when opacity is not accumulated. However, glBlendFunc() does not have an
option that implements both Equations 1 and 4 at the same time, unless the incoming color is first
premultiplied by the incoming opacity in software. The glBlendFunc()2 that correctly composites
opacity, implements the following equations:

� ��� ��� 
���
�����
������ � � � ! # �%� ��' 
�()����
����+* (6)

�������	��
���
 ' � � � �	��� � � � � ! # �%�&��' 
�()��� 
���
 ' � � � �	��� (7)

Where � and � are the opacity and color, respectively, of the incoming fragment. Hence we see
the need for the premultiplication of color by opacity in order to make Equation 6 agree with
Equation 1. The premultiplication does not contribute to the problem under discussion, but we need
to be aware of it. We now return to the subtle difference, referred to above, in applying Equation 1
to blend two images, as opposed to perform compositing during rendering. In the process of
creating a semitransparent image of a brick, every incoming color value has been multiplied by the
incoming opacity. Therefore, when a semitransparent image is blended with another such image,
it is not necessary to multiply the color of the front image by the opacity of the front image. Hence
the blending equation for color for two semitransparent images is:

������� �
'
��� ��( ����
 �+��� � 	 ��� 9�
 �

� ! # ��	 ��� 9�
 � ��� 
������ (8)

2.3.1 An Example

Recall from Section 2.1 that by n bit compositing, we mean that the opacity and color values are
stored, and specified as input, as integers, using 2 bits, and that the blending equation, Equation 1,
is evaluated using floating point. The goal of most of our examples in this paper is to compare
the results of 8 bit compositing (with or without dithering) with ideal or exact compositing. For
the purpose of contemporary graphics, we consider 32 bit compositing to be exact. Please do not
confuse 32 bit compositing with the use of a 32 bit frame buffer. Think of 32 bit compositing as
ideal or exact compositing.

For this example, we are going to composite a single brick with 200 slices (or polygons) each of
which has a uniform color of 255.0 and opacity of 1.0 (both out of a total of 255.0). Equation 1
will be used to composite the colors of the slices. Figure 5 shows the composited color at a pixel
in the frame buffer as a function of the number of polygons (or slices) composited. Two cases are
shown: a) 32 bit compositing — the red line, and b) 8 bit compositing — the blue line. In this

2i.e. when �������	��

������� ����� and � �����	��

������� ����� �����! �" "$#�% &'�)(�*�& . See [15] for more
details. There is an extension to OpenGL, called EXT blend func separate that allows for separate opacity and color
blend function specification, however is not widely supported at this time.
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figure we see that after compositing 100 polygons using 8 bits, the pixel value is 100, whereas the
use of 32 bit compositing gives a value of

C 7 *�� . After accumulating all 200 polygons using 8 bits,
the composited color is

! 7 C , whereas using 32 bits, the color is
! �BC6* C

. The green line shows the
error due to 8 bit compositing. Note that when using 8 bits, the composited color reaches a plateau
at 128 slices. From 0 to 128 slices, we say the composited color is in its linear ramp stage. In
Section 3, we explain in detail why a plateau occurs when using 8 bit compositing.

Our goal in this work is to dither the input color and/or opacity in such a way that the composited
color tracks the 32 bit (red) curve as closely as possible. (Note that for this choice of polygon color
and opacity (255 and 1), the curve of accumulated color and the curve of accumulated opacity are
identical, since the color is premultiplied by opacity, i.e. � ��
���� � � � 7�
�
 � � ! �B7�
�
B� � ! � � .
Therefore we have not shown a separate plot of accumulated opacity. This is true for any value of
� when � ��
������ 7�
�
 .)
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Figure 5: The red and blue curves show the composited color at a pixel in the frame buffer as the number of
polygons composited increases. Each polygon has a uniform color of 255 and opacity of 1. The red curve is
for 32 bit compositing (our high accuracy standard), the blue for 8 bit compositing. The green curve shows
the magnitude of the difference between the two.

Now consider the case where two bricks, each with 200 slices, are rotated as shown in Figure 4.
Each brick is rendered separately to a different frame buffer resulting in images 1 and 2. Pixel

� E
in image 1 and pixel

� E in image 2 will each have accumulated 100 slices and so have a color and
opacity of 100 when 8 bit compositing is used — see Figure 5. Now we composite the two images
using Equation 8. When applied to pixel

� E of each image we get:

��� ��� �
'
�	� ��()���:
��+� � � E � � ! 4B4$� � ! # ! 4B4 �B7�
�
B�&� ! 4B4 �D!��A!

.
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However the nearby pixel
�
< (see Figure 4) will have accumulated all 200 slices from brick 1,

so its value in the final image is
! 7 C (see Figure 5). So while both pixels

�
< and

� E have com-
posited the same number of identical slices, their final values will be different: 128 vs. 161. Thus
an artifact is introduced into the image. We refer to this as the bricking artifact problem. This
problem can occur when numerous low-opacity polygons or texels project onto a pixel, it doesn’t
require the entire brick to have a low opacity. Figure 6 shows an example of an artifact due to this
problem in an actual image created by volume rendering two bricks positioned similarly to those
shown in Figure 4, but with less rotation.

Figure 6: The left image shows an artifact due to the bricking artifact problem. The two bricks are posi-
tioned similarly to those shown in Figure 4, but with less rotation. Each brick has 400 slices, and each slice
is composed of polygons, most of which have an opacity of 1. The right-hand image shows the same data
and viewing parameters, but the data is not bricked.

Figure 7 shows the composited pixel values across a scan line spanning the overlap region (i.e.
between

�
< and

���
in Figure 4) of two bricks oriented as shown in Figure 4. The distance across

the scan line is parameterized by the number of slices
�

in brick 1, starting from
�
< . The slices in

each brick have a color of 255 and opacity of 1. Each brick has 200 slices. The far left of the plot,� � 4 , corresponds to pixel
���

in Figure 4 where brick 1 has 0 slices and brick 2 has 200 slices.
The far right of the plot corresponds to

�
< where brick 1 has 200 slices and brick 2 has 0 slices.

Pixel
� E occurs in the middle of the plot where each brick contributes 100 composited slices to the

final image. The red line shows the results when 32 bit compositing is used to composite color and
opacity in each brick, the blue line when 8 bit is used. The composition of the two images to form
the final image is done in software using Equations 4 and 8 with floating point arithmetic. The
correct result as shown by the red line is flat across the image.3 However, when 8 bit compositing

3Referring to Figure 5, we see that the 32 bit composited value at 72 slices is ����� 	 , and at 128 slices is 
����
� 	 . Using
these values in Equation 8, we get:%�
���� 
 ��� ��� � %�
�� 

� � ����� 	�����
������ 	�� ��
�! ���
� 	#"$��%�%�& � 
('�	
� 	 .
Thus the compositing formula gives the correct answer when 32 bit compositing is used, regardless of brick size.
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is used, the intensity varies across the image resulting in an artifact — this is the bricking artifact
problem.

Given two bricks each of which has the same uniform color and opacity throughout. Let
�
< be

the composited color in the image of one of the bricks which accumulates all the slices in that
brick, e.g. the composited color between

� � and
�
< in Figure 4; and let

���
be the composited

color at any pixel
�

on a scan line in the final composited image of the two bricks. We define the
artifact amplitude percentage (AAP) error to be

��� � � � � ��� ����� # �
< � �

�
< � �

! 4B4 , the percentage
change in the image intensity due to the bricking artifact problem. The dashed line at the bottom
of Figure 7 shows this error metric, which has a maximum value of of 28% in this case. We can
better understand the reason for the shape of the blue 8 bit curve by looking at Figure 8 which
superimposes the composited color of brick two on top of that for brick one. Between

� � 4
and

� ��� 7 , brick one is in its linear ramp stage and brick two is at its plateau, therefore the
composited color of the two bricks shown in Figure 7 is increasing. From

� ��� �
to
� � ! 7 � ,

both bricks are in their linear ramp stages, therefore the combined value of the two bricks shown in
Figure 7 is nearly flat. The reason the curve in this region is not completely flat is due to the error
from 8 bit compositing as explained in the caption to Figure 8. If the color and opacity had been
accurately composited in each brick, the pixel values would be constant (flat) across the scan line
since the color and alpha values are the same in each brick. Figure 9 shows the bricking artifact
problem in the context of a scan line from

� � to
� � across the image formed by compositing images

1 and 2 in Figure 4, but rotated much less so as to correspond to the configuration of the two bricks
used to generate Figure 6. Note how the artifact shown in Figure 9 corresponds to the artifact in
Figure 6.

The bricking artifact problem becomes less significant as the opacity of the polygons increases.
This is because the 8 bit curves more closely track the accurate 32 bit composited values as the
input opacity increases. See Figures 10 and 11, which compare 8 bit and 32 bit compositing for
alpha values of 5 and 10 respectively. As can be seen in Figures 12 and 13, the maximum value
of the AAP error has fallen significantly (from 28% for an opacity of 1, to 8.6% for an opacity
of 5, and to 4.5% for an opacity of 10.) In general, the lower the plateau value reached by the
composited colors in each brick, the worse the bricking artifact. As we will see, dithering reduces
the AAP error.

When the number of slices is increased, the maximum absolute value of the AAP error increases
when compositing low opacities ( �	� � ). Figure 14 shows the bricking artifact problem when
2 bricks each with 1000 slices are composited where the background color is 255 and opacity is
1. Figure 15 shows the superimposed composited values for the two bricks. The AAP error has
increased to 49%, whereas for 200 slices it was 28%. The AAP error changes only slightly with
increased slice density for an input opacity of 5, and not at all for an input opacity of 10.
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Figure 7: The red and blue curves show the pixel values across a scan line of the composited final image of
two bricks oriented as shown in Figure 4. The scan line spans the overlap region (i.e. between � � and � < .
The distance across the scan line is parameterized by the number of slices � in brick 1, starting from � � .
The slices in each brick have a color of 255 and opacity of 1. Each brick has 200 slices. Pixel � < corresponds
to the far right of the plot. Pixel � E occurs in the middle of the plot. There are two different compositing
operations going on here and we have to be careful not to confuse them. First, each brick is composited
in hardware to form a volume rendered image of each brick. Second, these two images are composited
in software using maximum precision to form the final image. The plotted red and blue curves show the
pixel values in the final image. The red line shows the results when 32 bit hardware compositing is used
to composite color and opacity in each brick, the blue line when 8 bit hardware compositing is used. The
dashed line shows the AAP error as defined in the text — note this error is not the difference between the
red and the blue curves. The reason the blue curve dips down in the middle and is not flat can be understood
by looking at Figure 8.
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Figure 8: The heavy lines show the composited color, using 8 bit compositing, for each brick oriented as
shown in Figure 4. The number of slices for brick 1 increases from left to right, whereas the number of
slices for brick 2 increases from right to left. The lighter lines show the results if 32 bit compositing had
been used. The slices in each brick have a uniform color of 255 and opacity of 1. There are 200 slices in
each brick. In order for the the composited color of the two bricks, shown by the blue line in Figure 7, to
be flat between ��� ��� and �������
	 , the composited color of each brick would have to follow the 32 bit
lighter curves. Since this is not the case, the blue line in Figure 7 is not flat.
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Figure 9: The bricking artifact problem in the context of a scan line from � � to � � across the image formed
by compositing images 1 and 2 in Figure 4. Note how this corresponds to the artifact in Figure 6.
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Figure 10: Accumulated pixel values for compositing polygons with opacity 5 and color 255.
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Figure 11: Accumulated pixel values for compositing polygons with opacity 10 and color 255.
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Figure 12: Bricking artifact problem for slices with opacity of 5 and color of 255. The AAP error, the
dashed line at the bottom, has decreased significantly, so its maximum is now less than 9%. Compare that
with Figure 7 where the slice opacity was 1 and the maximum error was 28%.
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Figure 13: Bricking artifact problem for slices with opacity of 10 and color of 255. The AAP error, the
dashed line at the bottom, has now decreased so the maximum is less than 5%.
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Figure 14: Bricking artifact problem for slices with opacity of 1 and color of 255, for 1000 slices. Note
that the AAP error has increased to 49%, whereas for 200 slices it was 28%.
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Figure 15: The heavy lines show the composited color, using 8 bit compositing, for each brick oriented as
shown in Figure 4. The lighter lines show the results if 32 bit compositing had been used. The slices have a
uniform color of 255 and opacity of 1. There are 1000 slices in each brick.

2.3.2 Previous Work

We have found no references in the literature either to what we refer to as the bricking artifact
problem, nor to any solutions to it. Lacroute [12] describes a parallel algorithm for slice-based
volume rendering, however it does not use graphics hardware. Porter and Duff [18] describe an
algebra of compositing and related arithmetic including premultiplication. Blinn [1, 2, 3] discusses
a number of interesting compositing applications and techniques using software. In [4], Blinn
discusses 8 bit arithmetic, and in [5] he describes how to use the Intel Pentium MMX to do 8
bit arithmetic. However, these reference do not address the problems we are dealing with. Of
course the basic concept of dithering [7, 8] is well known, and is applied extensively in the areas of
computer graphics, printing and image processing to extend the available range of colors or grey
scale values. However, it is primarily used spatially, i.e. from pixel to pixel across a scan line or
from one scan line to another. A technique called screen door transparency, that uses pixel masks
[21] or polygon stippling [15], is used to simulate transparency when the graphics hardware does
not have an alpha channel. However, we are not aware on any published application of dithering
that deals with compositing low opacity values.
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3 THE ALPHA DITHERING TECHNIQUE

In this section, we discuss a software technique for dithering low alpha values that helps overcome
the low-opacity fog problem and the bricking artifact problem. This results in improved volume
rendering results using progressive refinement, and helps reduce or eliminate artifacts caused by
the bricking artifact problem.

Recall from Section 2, that the problem is this: We need to be able to input small noninteger values
of opacity, e.g. 0.50, 1.37, etc., to avoid the low-opacity fog problem, however 8 bit graphics
hardware only allows integer opacity values to be input. So to accomplish this, we dither small
alpha values over a set of

�
slices. Our basic dithering method is that for every set of

�
slices,

we render
� � � !�# � � #�� ����� � slices with an integer alpha value of

� ��� and
� � � � #�� �����

slices with an integer alpha value of
� ��� � !

. We call
�

the period. So for example if we choose
a period of 16 slices, and the alpha to be dithered is 2.25, then for 12 slices we input an alpha of
2, and for 4 slices we input an alpha of 3. The alphas may be alternated in a regular pattern such
as � � -876-076-876- � -876-876-076- � -87 -876-87)- � -87)-876-87�� which we refer to as an ordered dither, or randomly. If
alpha had been 2.3, then there is no dither pattern with a period of 16 that will exactly simulate
it, so we round down to the closest dither pattern, in this case the pattern for alpha of 2.25. (For
maximum dithering accuracy, we attempt to set undithered alphas in the transfer function table to
rational numbers, � � 2 � � where 2 is an integer, since in the dithering process, alpha will get
rounded to such a value in any case.) We refer to the low integer in the above alternation,

� ��� ,
as the base, and the difference between the higher integer and the base, as the bump. So in this
example, the � � ' � � 7 and the � � ��� � !

. We call an instance of the dithered value which is equal
to � � ' � � � � ���

a 	 �	� , so over one period
�

there are on average
� � � � #
� ���+� hits.

Given an opacity value � � 
 that we wish to dither, we calculate the number of hits 2 � ��� �	� '
required as:

2 � ��� �	� ' � � �)
 � � �:��� 2 (�� � � � � � �)
 # � � ' � � ��� � ��� � � (9)

Later in this section we will discuss the use of bumps greater than one. The above formula is gen-
eral enough to deal with that possibility. Equation 9 is used by both the random and the ordered
dithering routines to determine whether to output a hit. The random dithering routine uses the
result of Equation 9 in the following logic:

if ((random()% P) >= numHits) return base;
else return base+bump;

Note that (random() % P) returns a value in the range 354A- � # ! > . For ordered dithering,
we basically set up a 2D table indexed by opacity � �)
 and slice number which returns the dithered
opacity in accordance with Equation 9. Then for each slice number, the pattern table for � �)
 is
accessed to see whether to output � � ' � or � � ' � � � � ���

. Further details on the implementation of
ordered dithering are given in Section 6. Dithering is not essential for large alpha values, therefore
we set an alpha value, called the dithering cutoff value, above which we do not dither.

Due to the unusual nature of the results of compositing using only 8 bits (discussed below), we have
found that one dithering method is not suitable for dealing with all low opacity values. However,
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with some creativity, the desired 32 bit behavior can be closely approximated. Note that we do not
yet know how to implement all the details necessary for certain of the techniques we will introduce,
such as exponential bumping and multiple slope modifiers. This is discussed further in Section 9.2.
To study the problem, we assume the slices have constant color and opacity throughout.

Figure 16 shows the effect of random and ordered dithering on 8 bit compositing where each slice
has a uniform opacity of 0.10 and color of 255. In this case � � ' � � 4 , � � ��� � !

, and the period is
32. Both random and ordered dithering give excellent results all the way out to 1000 slices when
compared to 32 bit compositing. Output for undithered 8 bit compositing is not shown because it
is zero. While it is possible to specify opacity as a floating point value with �


�����
������ � � � , when
the frame buffer has only 8 bits per channel, such input values get rounded to integers in the range
3@4A-87�
�
+> . So an opacity of 0.10 will get rounded to 0. (Recall again that opacities in this paper are
specified as values in the range 3@4 * 46-87�
�
 * 4:> .) Figure 17 shows the results of compositing the images
of two bricks, each of which was created using these same parameters. The AAP error is negative
in this case since the initial and final values (i.e. at 0 and 1000 slices) of both dithered curves are
above their values at most intermediate points. The maximum absolute value of the AAP error is
8.6%.
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Figure 16: Accumulated pixel values when using random and ordered dithering for slices with opacity 0.10
and color 255 over 1000 slices. The period is 32, �����	� ��
 and �
����� � � .
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Figure 17: Bricking artifact problem for slices with opacity of 0.10 and color of 255, using random and
ordered dithering, for 1000 slices. The period is 32, � � �	� � 
 and ������� � � . The AAP error shown at
bottom indicates a maximum error of -8.6%.

Now compare the plot for � � 4 * 
 4 , Figure 18, with the previous plot for � � 4 * ! 4 , Figure 16. The
undithered input opacity values of 0.5 are rounded by the hardware to 1, hence the blue curve in
Figure 18 increases with a higher slope than the other three curves. Also note that the undithered
as well as both the random and ordered dithered pixel values all reach a plateau at 128.

The reason for the plateau is as follows. When the blending equation (Equation 1) is used with an
8 bit buffer, certain pixel values occur that can not be increased unless the input opacity value is
greater than some minimum value. For example, if the current pixel value is 243, then the input
opacity must be at least 11 in order to increase the pixel value. These pixel plateau values, shown
in Table 1, can be calculated as a function of alpha ( � � 4 * 
 ), for �)2 � � � � 2 � ����
���� � 7�
�
 , from:

� 
 ��� � � � � � � ��� 7�
�
 * 4 # � ! 7 �6* 
�� � � � 2 (�� �%� ��� * (10)

For example, assume a current pixel value of 230, an input color of 255 and an input opacity of 5.
Plugging these values into Equation 1, using our 8 bit evaluation convention, we get:

� ��� ����
���� � � � � 2 (�� � 
��B7�
�
 ��7�
�
 � � � ! # 
��B7�
�
B� � 7 � 4 � � 7 � 4 .
Thus an input opacity of 5 does not increase a pixel whose current value is 230. For an incoming
color less than 255, even greater input opacity values are required to overcome the plateau. Given
an 8 bit pixel plateau value

� � , we call the minimum input opacity value necessary to overcome
that plateau

� 
 � 	 ��� � 2 � � �6� .
As the opacity increases, the plateaus increase the bricking artifact problem. See Figure 19 which
shows this problem for an input opacity of 0.50 and a color of 255 for 1000 slices. The max AAP
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error reaches 49% even with dithering. Figures 20 and 21 shows the results for input opacities of
0.75 and 1.5, where the max AAP error is 49% and 24% respectively.
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Figure 18: Accumulated pixel values when using random and ordered dithering for slices with opacity 0.50
and color 255 over 1000 slices. The dithering period is 32.
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Figure 19: Bricking artifact problem for slices with opacity of 0.50 and color of 255, using random and
ordered dithering, for 1000 slices. The period is 32, � � �	� � 
 and ��� ��� � � . The AAP error reaches a
maximum error of 49%.
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Pixel Minimum Input
Plateau Value Opacity To

Overcome Plateau

128 2
192 3
213 4
224 5
230 6
234 7
237 8
240 9
241 10
243 11
244 12
245 13
246 15
247 16
248 19
249 22
250 26
251 32
252 43
253 64
254 128

Table 1: This table shows the minimum input opacity values required to climb above the various 8 bit pixel
plateau values. The plateau values were calculated using Equation 10. The minimum input values were
determined using Equation 1 with an IncomingColor value of 255, setting ExistingColor to a pixel plateau
value. Note that for pixel values over 230-240, rather large input opacity values are required to change
the pixel value. For IncomingColor values less than 255, even greater input opacity values are required to
overcome the plateau.
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Figure 20: Bricking artifact problem for slices with opacity of 0.75 and color of 255, using random and
ordered dithering, for 1000 slices. The period is 32, � � �	� � 
 and ��� ��� � � . The AAP error reaches a
maximum error of 49%.
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Figure 21: Bricking artifact problem for slices with opacity of 1.5 and color of 255, using random and
ordered dithering, for 1000 slices. The period is 32, � � �	� � 
 and ��� ��� � � . The AAP error reaches a
maximum error of 24%.
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Once a plateau has been reached, it is necessary to increase the bump so
� � � ' � � � � ��� � �

� 
 � 	 ��� � 2 � � �A� . In Figure 22 we use exponential bumping, described below, to dither � � 4 * 
 4 .
As can be seen in this figure, exponential bumping causes the 8 bit composited values to better
track the ideal 32 bit composited values. In the next paragraph we indicate how to further improve
this tracking. Our exponential bumping method works by increasing the bump value whenever the
accumulated pixel value reaches a plateau for the current value of � � ' � � � � ���

. Note that Equa-
tion 9 takes into consideration the bump size so the number of hits is correctly adjusted. We discuss
the problem of determining when the accumulated pixel values reach a plateau in Section 9.2.
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Figure 22: Accumulated pixel values when using random and ordered dithering with exponential bumping.
Polygons have an opacity 0.50 and color 255. The dithering period is 32.

Returning to Figure 22, we see that the initial slopes of the curves for both dithering methods are
too steep, relative to the 32 bit ideal. For a constant input color and opacity, as is the case in
our examples presented here, the 32 bit composited color varies with the number of slices



as

� ��
 � � ! # � ; +�� , where ' is a function of the input opacity. Therefore the slope of the 32 bit
composited color is: (

(B
 35� ��
 �G> � '
� ; +�� (11)

Whereas, the slope of the dithered color up to the first plateau is just the input opacity value, for
example if the input opacity is 0.75 then the slope of the composited dithered color is 4 * � 
 
 . For
small input opacity values (less than about 1.0), prior to


�� ! 7 C , the first plateau value, the slope
of the dithered opacity is always higher than that of Equation 11. As the input values increase
above 1.0, this upward bias decreases rapidly. The dithered values have two distinct slopes in
Figure 22, one region is from slice 0 to about slice 250 (where the dithered value reaches the
undithered plateau value) and the other from slice 250 to slice 1000. Our solution is to use a slope
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modifier in each of these regions to correct these biases. The predithered alpha is multiplied by
the slope modifier, and then dithered. When the slope modifier is changed, a new dithering pattern
is computed. The value of the slope modifiers are determined empirically by inspection of the
simulator output. Figure 23 shows the results of dithering � � 4 * 
 4 , using exponential bumping
and two slope modifiers. The first slope modifier is 0.75 for the lower region, and the second is
1.0 for the higher region. The resulting curve is very close to the desired 32 bit (red) curve. After
introducing some new terminology in Section 4, we state the criteria for setting the slope modifiers.

4 RESULTS

Dithering results for opacity values of 0.03, 0.25, 0.75, 1.0, 1.10, 1.25, 1.5, 1.75 and 2.0 are shown
in Figures 24 through 32. Unless otherwise noted, the dithering period is 32 for all plotted results.
These plots show that the dithering methods give good results over this range of input opacity
values. The figure captions give details on the dithering parameters used, and comment on the
results. Note that dithering an opacity of 1.0 or 2.0 is problematic when alternating between a
base and a bump value since both the base and the bump must be integers. See Figure 33 where
the dithering uses exponential bumping but no slope modifiers. The use of slope modifiers nicely
solves this problem as can be seen in Figures 27 and 32.

Figure 34 shows that when exponential bumping and slope modifiers are not used, a knee occurs
when the composited value reaches plateau(base). After reaching the knee, � � ' � input values have
no effect, only the � � ' � � � � ���

input values increase the pixel value until plateau(base+bump)
is reached. This suggests that it should be possible to even further improve the plot shown in
Figure 31 by the use of three slope modifiers, one to the knee, one from the knee to the plateau,
and one for the remainder of the curve. We have not implemented this optimization. For our two
slope modifiers, we change from the first to the second as follows: (a) when undithered � � !

, we
change when the composited color is equal to

�=
���� � � � � ! � � ! 7 C ; (b) otherwise, we change when
the composited color is equal to plateau(base).

Figure 35 shows the the bricking artifact problem for an input opacity of 1.0 and a color of 255
for 1000 slices, using dithering with exponential bumping and slope modifiers as in Figure 27.
The maximum absolute value of the AAP error is now 3.9% for random dithering and 0.66% for
ordered dithering.
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Figure 23: Accumulated pixel values when using random and ordered dithering with exponential bumping.
Polygons have an opacity 0.50 and color 255. The first slope modifier has a value of 0.75 and the second a
value of 1.0.
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Figure 24: Accumulated pixel values when using random and ordered dithering with exponential bumping.
Polygons have an opacity 0.03 and color 255. The first slope modifier is 0.75 and the second 1.0. Since the
slope here is small, the curve is not sensitive to slope modifiers, and setting both to 1 gives equally good
results.
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Figure 25: Accumulated pixel values when using random and ordered dithering with exponential bumping.
Polygons have an opacity 0.25 and color 255. The first slope modifier has a value of 0.8 and the second a
value of 0.9.
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Figure 26: Accumulated pixel values when using random and ordered dithering with exponential bumping.
Polygons have an opacity 0.75 and color 255. The first slope modifier has a value of 0.75 and the second a
value of 1.0.
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Figure 27: Accumulated pixel values when using random and ordered dithering with exponential bumping.
Polygons have an opacity 1.0 and color 255. The first slope modifier has a value of 0.85 and the second a
value of 0.9.
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Figure 28: Accumulated pixel values when using random and ordered dithering with exponential bumping.
Polygons have an opacity 1.10 and color 255. The first slope modifier has a value of 0.85 and the second a
value of 0.9.
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Figure 29: Accumulated pixel values when using random and ordered dithering with exponential bumping.
Polygons have an opacity 1.25 and color 255. The first slope modifier has a value of 0.8 and the second a
value of 1.5. Note the need for a slope modifier which is greater than one for this case.
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Figure 30: Accumulated pixel values when using random and ordered dithering with exponential bumping.
Polygons have an opacity 1.5 and color 255. The first slope modifier has a value of 1.0 and the second a
value of 1.3.
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Figure 31: Accumulated pixel values when using random and ordered dithering with exponential bumping.
Polygons have an opacity 1.75 and color 255. The first slope modifier has a value of 1.0 and the second a
value of 1.686. The second slope modifier is carefully chosen so that it will not cause the input alpha value
to increase to 3 or above, since the dithering cutoff value, defined in Section 3, is 3.
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Figure 32: Accumulated pixel values when using random and ordered dithering with exponential bumping.
Polygons have an opacity 2.0 and color 255. The first slope modifier has a value of 0.9 and the second a
value of 1.4.
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Figure 33: Accumulated pixel values when using random and ordered dithering with exponential bumping
and no slope modifiers. Polygons have an opacity 1.0 and color 255. Note in comparison to Figure 27,
which is also for an opacity of 1.0, how important the use of slope modifiers are in enabling dithering for an
integer input opacity value.
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Figure 34: Accumulated pixel values when using random and ordered dithering but with no exponential
bumping and no slope modifiers, i.e. � ��� � � � and � ��� ��� ��� ��� � � throughout. Polygons have an
opacity 1.25 and color 255. A knee occurs when the composited color reaches ��� ��� � ����� �����	�	� � ����
 . The
� � �	��� �
����� input values continue to increase the pixel value until �
� ��� � � ��� � � �	��� ��� ����� � ���
� .
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Figure 35: Bricking artifact problem for slices with an opacity of 1.0 and a color of 255, using random
and ordered dithering, with exponential bumping and slope modifiers as in Figure 27. The maximum ab-
solute value of the AAP error is now 3.9% for random dithering and 0.66% for ordered dithering, a big
improvement over the undithered case where the AAP maximum error was 49%.

4.1 48 Bit Frame Buffers

Certain graphics hardware has 48 bit frame buffers, 12 bits per channel. Those additional four bits
per channel make a big difference in the accuracy of compositing as can be seen in Figures 36
through 38 which show the results of 12 bit compositing, without dithering, to composite slices
with opacities of 1/4095, 0.1/255 and 1/255 respectively.
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Figure 36: Compositing slices with � � ����� 
 ��� and color = 4095 using 12 bit compositing and no
dithering.
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Figure 37: Compositing slices with � � 
�� ��������� and color = 4095 using 12 bit compositing and no
dithering.
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Figure 38: Compositing slices with � � ��������� and color = 4095 using 12 bit compositing and no dithering.

5 DITHERING COLOR

In the work presented so far, only opacity has been dithered. Let � and � be the current color
and opacity to be dithered and let � � � ()��� 	 ��� ��(�� �%� , then, for premultiplied color, we submit
� � 9

� �	� � � and �
� 9
� � � . When not using premultiplied color, that is when opacity is not being

accumulated, we submit � � 9
� � and � � 9

� � � . We do not dither color and opacity separately
because this can cause the accumulated color to oscillate significantly, causing artifacts. This is
the case because the color and opacity inputs can have different dither patterns. When color is 255,
this is a special case when there is no difference between dithering both color and opacity and just
dithering opacity, since 7�
�
 � ( �	� 	 ���:��(�� � � � ()��� 	 ��� ��(�� 7�
�
 �.� � . Let us take a case where opacity
and premultiplied color are being submitted, and the color is not 255. If we dither color and also
dither opacity, �
� 9

� ( ��� 	 ���:��(�� �%� and
� � ��� ��� 9

� ( �	� 	 ���:��(�� � ��� � . Consider the case when slices
have a color of 200 and an opacity of 0.75. Take an instance when the current pixel color is 157,
and:

� � ' � #�� �
� � � ' � #

� 4A- � � ���
#�� �

� � - � � ���
#
� �

.

Suppose dithering results in a hit for opacity and not a hit for color. Then input � � 9
���

and
input � � 9

� � � � � � 4 , so from Equation 1, ��� � � � ! � ! 
 � � �"!�# � � �B7�
�
 � � 4 � ! 
B7 *�� � . The
accumulated color has just gone from 157 down to 153! And this drop could be repeated several
times in a row, hence we get the wide swings seen in Figure 39 where separate dithering is used
for color and opacity. This same phenomena can occur if exponential bumping is not used, and it
can occur when color is not premultiplied.
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If only color is being used, i.e. opacity is not used, there is no reason to dither color since there
is no compositing. In the case where the input color � � 9 is very small and opacity is not, if we are
accumulating only � � 9 , then, as the blending equation shows, the final accumulated color can never
exceed � � 9 . Therefore there is no point in dithering color in this case. In general, we recommend
setting the fog or haze color for low-opacity polygons to fully or near fully saturated values (color
values close to 255). Then when color is premultiplied by opacity we get the most accuracy and
sensitivity.
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Figure 39: Here opacity and (opacity � color) are dithered separately for slices with � � 
�� � � and color
= 200. To avoid the oscillation in composited color shown here (and the artifacts that result), we do not
recommend dithering both color and opacity. The same phenomena can occur when using ordered dithering.

6 TRANSFER FUNCTIONS AND TEXTURE MAPS

In volume rendering, typically color and opacity are calculated from user-defined transfer functions
which map scalar field values into , /�1 � values. We keep our primary transfer functions, the ones
specified by the user, in floating point tables. This allows the user to specify opacities and colors
with high precision, and has two benefits. These values can be stored for future use, perhaps with
a high accuracy software volume rendering system. And, we can use these accurate opacity values
to calculate the dither pattern and the texture maps, as explained below.

In a preprocessing step, the scalar field values are normalized to floating point values in the range

37



3@4A- 2 #�! > , where 2 is the size of the texture table, described next. We implement the transfer
functions as a one dimensional texture table, which maps scalar field values to RGBA values.
Typically the size of the texture table is 256. When a polygon is rendered, the normalized scalar
value at each polygonal vertex is entered as a texture coordinate. Keeping the transfer functions
in texture has a number of advantages. First, the transfer functions can be changed on the fly
merely by creating and downloading a new texture map, rather than modifying all the scalar field
values. Second, since the texture hardware interpolates the scalar value across the polygon, and
then applies the transfer functions, this results in a more accurate image. If texture was not used,
then the color and opacity would be interpolated across the polygon which might miss fluctuations
in the transfer functions. Third, having the transfer functions in texture makes dithering easy to
implement.

The basic opacity dither patterns are calculated once, as described in Sec 3, for a given period
and a given transfer function and then stored as a set of textures. The colors, premultiplied by the
appropriate dithered opacity values if necessary, are also stored in these texture tables. Table 3
shows an example set of dithered transfer functions in a 2D table, (how the transfer functions are
calculated is discussed below). Each vertical column, 0 through 7, in Table 3, is a transfer func-
tion represented as a texture map. Before slice ' is rendered, texture map number ( '

� �
) is

downloaded into texture memory, (where
�

is the dithering period). To avoid the overhead of
downloading a new texture map between every slice, it is possible to bind each transfer function to
a texture object. If there is enough texture memory, these objects will all remain in texture mem-
ory. Then between each each slice, the appropriate texture map is selected as the current texture by:

glBindTexture(GL TEXTURE 1D, texNames[slice % P]);

thus avoiding the overhead of downloading a new texture with each slice. Of course, the tex-
tures will have to be modified downloaded again when the bump values or slope modifiers are
changed. Another alternative, which may prove faster (we did not test it) is to create a 2D texture
table, where the second texture component is

�
'

�� � � � � � . Table 2 gives timings for two of these

methods. Binding the transfer functions to texture objects was significantly faster than download-
ing a new texture between each slice. For our 256 slot transfer functions with a dither period of 32,
we observed that all 32 bound texture objects remained resident in texture memory at all times.

A histogram of the scalar field values being rendered is very useful in setting preliminary transfer
functions. See Figure 40. Each bin of the histogram has an equal range of data values. Let ' ����� 9
and ' ����� � be the maximum and minimum scalar values in the data set, and 2 be the number of
bins in the histogram. (Generally we make the number of bins in the histogram the same as the
number of entries in the transfer functions.) Then the value in bin

�
is the number of scalar field

values between
� � �

' ����� � # ' ��� � 9 � �:2 and
� � � ! � � ' ����� � # ' ����� 9 � ��2 . We say those scalar field

values are in bin
�
. The data in the three bins with very high values, which we call peak data, will

be mapped to a low opacity value to form the background haze or fog. Generally a histogram of
the data will show one of more such peaks.

Figure 41 zooms in on the first 25 bins of the histogram in Figure 40 to show more detail as we
discuss the use of the histogram to create a preliminary transfer function. We assign an opacity
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Method Total Rendering Time Texture Change Time

Texture Unchanged 0
Between Slices 0.849 0
Bound Textures 0.855 0.006

Download Texture
Between Slices 0.882 0.033

Table 2: Timings for volume rendering 450 slices using an NVIDIA GeForce3 graphics card to a � 
 
 
 �

� 
 
 
 window. A total of 658,660 polygons were rendered. The first method bound the tranfer functions to a
texture once only at the beginning, therefore no dithering was used. The second method downloaded a new
texture between each slice, thus implementing dithering — we used a dither period of 32. The final method
bound all 32 transfer functions to 32 texture objects which remained resident in texture memory throughout.
Dithering was accomplished as described in the text by changing the binding between each slice. The times
shown are averages over 30 renderings each.

value to each bin in an inverse relationship to the value of the bin. Here we use a simple formula:

� � � � � � ! � 
 2 � � � 2 � � � � � ���%- (12)

where � is a scale factor that depends on the data set. We used � � ! 4 4 to bring the opacities
into the range 3@4 * 4A-87B7 * 4:> . We only use this formula for non-peak bins since, when using dithering,
it is preferable that all the data in a peak bin be mapped to a single low opacity value. (Here we
assume only peak data will be dithered.) This avoids problems that may arise due to interpolation
between values in the transfer function texture map. Since our dithering patterns are set for a
specific opacity value and occupy a specific entry in the texture map (see Table 3), interpolating
between entries would not be meaningful in the context of a single dithering pattern. So we map
all the data in a peak bin to a single opacity by assigning the opacity so it straddles the bin. See
Figure 41, where we have assigned both peak bins an opacity of 0.25. Note that for the first peak,
bin 2, the corresponding low opacity 0.25 has also been assigned to bins 1 and 3, in addition to bin
2. This ensures that all peak data values in bin 2 are mapped to the same opacity. In order that the
data in bins 1 and 3 is not neglected, we use the average value of bins 0 and 1 to set the opacity
for bin 0, similarly, the opacity of bin 4 is based on the average value of bins 3 and 4. From bin
5 through bin 8, and after bin 13 the opacity of bin

�
depends only on the value of bin

�
using the

above formula. The transfer functions for this portion of the data is shown in Table 3. Note that the
dither patterns have been permuted to provide spatial dithering. This transfer function, with minor
modifications, was in fact used to create the images shown in Figures 2, 3, and 6.

The above strategy implies the use of the texture filter option /�� � � ��� � , . An alternative to
assigning opacity to straddle peak bins is to set the option to /�� ��� � , � ��� , which has the effect
of snapping all values in a bin to the marked points on the blue curve in Figure 41. Therefore
Equation 12 could be used for all bins. There is another advantage to using /�� ��� � , � ��� .
When using /�� � � ��� � , , certain graphics cards do the texture look-up for each vertex, followed
by interpolation, which may cause a color artifact. Other cards do the interpolation first, and then
the look-up, which may be more appropriate.

It is preferable that all peak bins be mapped to the same low opacity or at least to a limited number
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of low opacities. Peaks can be mapped to different colors, but as discussed before, preferably to
saturated color values, i.e. values close to 255.0. In this way, specific dither patterns can be created
for each low alpha value that do not interfere with each other.
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Figure 40: Histogram of scalar field values in a typical scientific data set. Each bin has an equal range of
data values. The histogram has 256 bins since our transfer function table has 256 entries. The data in the
three bins with very high values will typically be mapped to a low opacity haze value.
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Figure 41: Enlarged portion of the histogram shown in Figure 40. The blue line shows the transfer function.
The methodology for calculating the transfer function using the histogram is described in the text. There are
two peak data bins.
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Texture map numbers 1 to 8
holding dithered transfer functions

texture
index 0 1 2 3 4 5 6 7 comment

0 23 23 23 23 23 23 23 23 � � 7 �
1 0 1 0 0 0 1 0 0 � � 4 * 7�

2 1 0 0 0 1 0 0 0 � � 4 * 7�

3 0 0 0 1 0 0 0 1 � � 4 * 7�

4 28 28 28 28 28 28 28 28 � � 7 C
5 27 27 27 27 27 27 27 27 � � 7 �
6 26 26 26 26 26 26 26 26 � � 7 �
7 27 27 27 27 27 27 27 27 � � 7 �
8 23 23 23 23 23 23 23 23 � � 7 �
9 27 27 27 27 27 27 27 27 � � 7 �

10 0 1 0 0 0 1 0 0 � � 4 * 7�

11 0 0 1 0 0 0 1 0 � � 4 * 7�

12 0 0 0 1 0 0 0 1 � � 4 * 7�

13 28 28 28 28 28 28 28 28 � � 7 C
14 34 34 34 34 34 34 34 34 � � � �
15 25 25 25 25 25 25 25 25 � � 7�

16 42 42 42 42 42 42 42 42 � � � 7
17 28 28 28 28 28 28 28 28 � � 7 C
18 25 25 25 25 25 25 25 25 � � 7�

19 24 24 24 24 24 24 24 24 � � 7 �
20 27 27 27 27 27 27 27 27 � � 7 �
21 25 25 25 25 25 25 25 25 � � 7�

22 28 28 28 28 28 28 28 28 � � 7 C
23 31 31 31 31 31 31 31 31 � � �A!
23 33 33 33 33 33 33 33 33 � � � �

254
255

Table 3: Example set of transfer function texture maps for the transfer function shown in Figure 41. These
tables implement ordered dithering with a period of 8 and a dithering cutoff value of 3.0. (Only alpha values
are shown here. In a real texture map, the colors, R, G, and B, premultiplied by dithered opacity values if
necessary, would also be included.) Note that the dither pattern is permuted to give spatial dithering.
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7 Simple Dithering Using Chunking

Since, as discussed in the Conclusion, it is not yet known how to fully implement our dithering
technique, we here discuss a method that can be implemented. Dithering with a single slope
modifier and no exponential bumping, a process what we call simple dithering, does an adequate
job of correcting the low-opacity fog problem for very low opacities, i.e. for � � !

. The dithered
images in Figure 3 were created using simple dithering with a period of 16; the fog had an opacity
of 0.5. However, the AAP error for the bricking artifact problem increases dramatically when the
number of slices in a brick increases to the point where the composited color reaches a plateau
value. The only way to overcome the plateau is to increase the bump value. Since the bump value
does not change in simple dithering, the bricking artifact problem is not addressed. For example,
see Figure 19 where the AAP error is very large when using only simple dithering. (One alternative
approach that we have not yet tried is to use an initial bump value large enough to overcome the
necessary plateaus.) Since simple dithering uses one slope modifier, integer opacity values can be
dithered (until the plateau in reached).

Another approach is to render several subsets of the slices, chunks, and composite the images
of each chunk, a process we call chunking. One way this can be done is by rendering a chunk,
doing a frame buffer readback of the image of the chunk, clearing the frame buffer, and then
rendering the next chunk. The chunks can be composited by the CPU while the GPU is ren-
dering the next chunk. A more efficient method, is to render each chunk to a texture (using
GLX ARB render texture) and then composite the resulting textures using the� , 1 � ��
 �"�	� � 
 � � �:�

extension, or register combiners. Another alternative is to render each chunk
to a pixel buffer pbuffer [16] (GLX ARB pbuffer) which might be practical since the chunks
are being rendered off-screen on the nodes of a cluster. Even another alternative is to write out
the frame buffer periodically to texture memory using glCopyTexImage2D() however this
involves an extra pixel copy over rendering directly to texture.

We now present some results that help determine an optimal chunk size. Figures 42 through 54
show how chunking impacts the bricking artifact problem. These figures show the use of chunks
with 100, 200, and 300 slices for input opacities of 0.50. 0.75, 1.0, and 1.5, using only simple
dithering. The image of each brick is created by compositing the images of each of the chunks.
The final image is the composition of the images of each brick. For input opacities up to 1.0, we
composited the chunks until we reached a total of 1000 slices, so for example when using 100-slice
chunks, 10 chunks are composited to form the image of each brick. For an input opacity of 1.5,
the composited color saturates when using 1000 slices, so in order to more clearly see the effect of
chunking, we show the results for a total of 500 slices. In all cases, the dithering period is 32. It
is important that the number of slices in a chunk be such that the composited value of the chunk
remains under the plateau. As can be seen in Figure 55 for an input opacity of 1.0 and in Figure 56
for an input opacity of 1.5, the ordered dither plateau value occurs around 150 slices and 230 slices
respectively, therefore the chunk size should be less than that.
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Figure 42: Bricking artifact problem where the image of each brick is created using 10 100-slice chunks
with simple dithering with a single slope modifier of 0.75. Slices have an opacity of 0.5 and color of 255.
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Figure 43: Bricking artifact problem where the image of each brick is created using 5 200-slice chunks
with simple dithering with a single slope modifier of 0.75. Slices have an opacity of 0.5 and color of 255.
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Figure 44: Bricking artifact problem where the image of each brick is created using 3 300-slice chunks (as
well as a partial chunk of 100 slices) with simple dithering with a single slope modifier of 0.75. Slices have
an opacity of 0.5 and color of 255.
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Figure 45: Bricking artifact problem where the image of each brick is created using 400-slice chunks
dithering with a single slope modifier of 0.75. Slices have an opacity of 0.5 and color of 255.
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Figure 46: Bricking artifact problem where the image of each brick is created using 10 100-slice chunks
with simple dithering with a single slope modifier of 0.75. Slices have an opacity of 0.75 and color of 255.
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Figure 47: Bricking artifact problem where the image of each brick is created using 5 200-slice chunks
with simple dithering with a single slope modifier of 0.75. Slices have an opacity of 0.75 and color of 255.
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Figure 48: Bricking artifact problem where the image of each brick is created using 300-slice chunks with
simple dithering with a single slope modifier of 0.75. Slices have an opacity of 0.75 and color of 255.
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Figure 49: Bricking artifact problem where the image of each brick is created using 10 100-slice chunks
with simple dithering with a single slope modifier of 0.85. Slices have an opacity of 1.0 and color of 255.
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Figure 50: Bricking artifact problem where the image of each brick is created using 5 200-slice chunks
with simple dithering with a single slope modifier of 0.85. Slices have an opacity of 1.0 and color of 255.
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Figure 51: Bricking artifact problem where the image of each brick is created using 300-slice chunks with
simple dithering with a single slope modifier of 0.85. Slices have an opacity of 1.0 and color of 255.
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Figure 52: Bricking artifact problem where the image of each brick is created using 5 100-slice chunks
with simple dithering with a single slope modifier of 1.0. Slices have an opacity of 1.5 and color of 255.
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Figure 53: Bricking artifact problem where the image of each brick is created using 200-slice chunks with
simple dithering with a single slope modifier of 1.0. Slices have an opacity of 1.5 and color of 255.
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Figure 54: Bricking artifact problem where the image of each brick is created using 300 slice chunks with
simple dithering with a single slope modifier of 1.0. Slices have an opacity of 1.5 and color of 255.
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Figure 55: Accumulated pixel values using simple dithering with a single slope modifier (0.85) for an input
of opacity 1.0 and color 255. The slope modifier results in a nice improvement over the undithered result.
Since the input opacity is an integer, unless a slope modifier is used, our dither technique would not work.
Note the plateau occurs around 150 slices for the dithered case. Therefore a chunk should have fewer than
150 slices.
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Figure 56: Accumulated pixel values using simple dithering with a single slope modifier (1.0) for an input
of opacity 1.5 and color 255. The plateau occurs around 225 slices for the dithered case. Therefore chunks
for this opacity should have 200 slices.

8 OTHER CONSIDERATIONS

8.1 Effect of Dithering on Image Quality & Rendering Performance

To reveal more details of the internal structure of the volume data, the number of slices can be
increased. However, this means that the opacity of the slices must be decreased. If the opacity of
low-opacity polygons is reduced to the point that � � !

, then the dither pattern for � will have
� � ' ��� 4 . Then some low-opacity polygons will make no contribution to the image. For example,
if � � 4 * 
 , 50% of the low opacity vertices will be completely transparent and not contribute to
the image. So on the one hand, increasing the number of slices increases the detail in the image,
but after a certain point, this may be mitigated by the creation of transparent polygons.

This phenomena also leads to a trade off in performance when rendering. Adding more slices, adds
more polygons to the graphics pipe, however, if opacity testing is enabled, transparent polygons
will be discarded by the pipe and not rasterized. It would be interesting to investigate the question
of optimality in this regard. In addition, in the case of textured slices, texture downloads would
have to be balanced.
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8.2 Front-to-Back Compositing

Front-to-back compositing can be accomplished in hardware if the following rules are implemented
in the graphics hardware. Let

� � be the pixel’s color buffer and
� � the pixel’s opacity buffer. Ini-

tially
� � � 4 and

� � � !
. The rules are:

� ��� � ��� � 9 � � 9 �
� �� ��� � � � ! # � � 9 �
� � � � � 9

For each slice, the color input is: � � 9 � � 9 , and the opacity input is:
� !&# � � 9 �

� � � 9 . The buffers
� �

and
� � hold accumulated transmittance and color. Assuming the indices in the following increase

from front to back, applying the rules to the first three slices we get:

� � � � < � < � 4� � � � <
� � � � < � E � E � � < � <� � � � < � E
� � � � < � E �

� � � � � < � E � E � � < � <� � � � < � E �
�

These rules can be implemented in hardware using the OpenGL separate blending function exten-
sion, EXT blend func separate. It remains to be seen whether front-to-back compositing will lead
to improved compositing accuracy and exactly how dithering will help.

8.3 OpenGL’s GL DITHER

When GL DITHER is enabled, the OpenGL specification allows dithering to occur in the graphics
pipeline between the blending operation and the logic operation. This means a graphics card
vendor can dither higher precision (post-blended) fragments to a lower precision frame buffer.
What we have observed with our NVIDIA GeForce3 card and SGI cards is that when the frame
buffer has less than 8 bits per channel, spatial dithering is used. For example, when running in
� � - � - � - � � mode (as described in Section 2.3), colors that can not be realized exactly in 4 bits,
are spatially dithered over alternating scan lines. Enabling GL DITHER for � C - C - C - C � mode and
specifying colors using floating point values does not cause spatial dithering, rather the colors are
rounded and clamped to 8 bit integer values. We ran our tests with graphics hardware for this paper
with GL DITHER disabled. We have not seen any evidence of spatial dithering from higher order
fragment resolution to 8 bits.
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9 CONCLUSION

Hardware 8-bit compositing is really suited to accumulate a few semitransparent surfaces, not
1000’s of semitransparent polygons as in volume rendering. Dithering is one way to extend the
range of opacity accumulation. In this paper we have shown several techniques for accomplishing
this. These techniques include simple dithering, simple dithering with chunking, and dithering
with exponential bumping.

Based on our research, ordered dithering introduces less artifacts into the image than random
dithering However, random dithering is easier to implement since ordered dither requires a pre-
computed table of all possible dither patterns for a given dithering period.

In our work, we apply these dithering techniques to volume rendering slices of a 3D data set of
(unstructured) meshed polyhedra — so each slice consists of a set of polygons. However, our
dithering procedure is applicable to any hardware compositing technique, such as texture-based
volume rendering (e.g. using static or paletted textures, or pixel programs.)

9.1 Spatial Dithering

It is possible to dither spatially in three dimensions. In the work we have presented, we dither in
depth ( � ) only. One criticism of this is artifacts in the image may be created. For example, as
the bump value increases, the number of zeros in the dither pattern increase and it is possible that
these zeros may cluster spatially, resulting in an artifact. Imagine a continuous layer of blue fog
covering an opaque red surface, clusters of zeros in the blue fog could result in red patches within
the fog. If spatial dithering in



and

�
was also used this would be less of a problem. As noted in

Section 6 we permute the dither pattern when applicable, however, this only applies if the two or
more adjacent entries in the transfer function are the same.

It is possible to dither in



and
�

and render to larger image using a environment texture map and
possibly a pixel program. An area averaging scheme would be used to reduce the image to the
desired resolution. The drawback to this approach is that there could be a significant performance
hit in rendering due to the increase in the number of pixels, as well as problems dithering at the
boundary of the window.

Another approach that is more promising is to jitter, over



and
�
, the start of the dither pattern in �

using multitexturing. This avoid the need for increasing the image resolution. It will be worthwhile
to investigate this approach further.

9.2 Some Open Questions

Is there a software formula for compositing two images, where each image is created from a brick
using 8 bit compositing, that will yield a result that will be close to what would be the case if all
the slices were 8 bit composited in one brick? In other words, can we find a way to composite in
software the images from bricks 1 and 2 in Figure 7 so the result is a flat curve whose value is the
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value at
� 4 , i.e. 128?

Let � be the opacity of the incoming fragment. Is there a function
�

such if � � � � � � � is used
instead as the incoming opacity, the compositing result will be closer to exact compositing?

Can pre-integration be introduced into volume renderering using slices? And will this help the
problem under discussion?

In order to determine when to increase the bump and when to change the slope modifiers, i.e. when
the knee and plateau occurs, it is necessary to know or be able to estimate the accumulated pixel
values for regions of low opacity (regions which are accumulating the background haze). However,
the pixel values are not available when using graphics hardware unless one does a series of frame
buffer read backs while rendering, and this will slow down the rendering process. Further, the
accumulation of fog in the frame buffer may not be uniform. A naive approach is to estimate the
current pixel values based on the number of slices rendered assuming every slice has low opacity
values, or that the majority of slices contribute some low opacity values to at least a subset of the
pixels. However there are two problems with this approach: (a) The volume being rendered may
be such that each slice does not project to all pixels; see Figure 57. (b) The regions of low-opacity
may not be uniformly distributed; see Figure 58. Is there a way to implement exponential bumping
and multiple slope modifiers, possibly using current output � values?

Screen

P1

P2

Figure 57: Why estimating pixel values based on number of slices rendered is not a good approach. Note
pixel � � has composited 13 slices whereas pixel � � has composited only 1 slices.
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Figure 58: Another reason why estimating pixel values based on number of slices rendered is not a good
approach. Note pixel � � composites only 7 slices, while � 
 composites 14 slices.
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