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Abstract: Type-2 diabetes mellitus is one of the most prevalent metabolic diseases in the world, and
is characterized by hyperglycemia (i.e., high levels of glucose in the blood). Alpha-glucosidases are
enzymes in the digestive tract that hydrolyze carbohydrates into glucose. One strategy that has been
developed to treat type-2 diabetes is inhibition of the activity of alpha-glucosidases using synthetic
drugs. However, these inhibitors are usually associated with gastrointestinal side effects. Therefore,
the development of inhibitors from natural products offers an alternative option for the control of
hyperglycemia. In recent years, various studies have been conducted to identify alpha-glucosidases
inhibitors from natural sources such as plants, and many candidates have transpired to be secondary
metabolites including alkaloids, flavonoids, phenols, and terpenoids. In this review, we focus
on the alpha-glucosidases inhibitors found in common vegetable crops and the major classes of
phytochemicals responsible for the inhibitory activity, and also as potential/natural drug candidates
for the treatment of type-2 diabetes mellitus. In addition, possible breeding strategies for production
of improved vegetable crops with higher content of the inhibitors are also described.

Keywords: alpha-glucosidase; alpha-glucosidase inhibitor; breeding; diabetes; secondary metabolites;
vegetables

1. Introduction

Glycosidases catalyzing the hydrolysis of glycosidic bonds in polysaccharides and glycoconjugates,
play critical roles in various biological processes, including carbohydrate digestion, lysosomal
catabolism of glycoconjugates, and post-translational modifications of cellular glycoproteins [1,2].
In particular, mammalian α-glucosidase (AG) in the mucosal brush border of the small intestine
catalyzes the end step of digestion of starch and disaccharides that are abundant in the human
diet. Inhibitors of AG delay the breakdown of carbohydrates in the small intestine and diminish
the postprandial blood glucose excursion; thus, inhibition of glycosidases has a significant effect on
polysaccharide metabolism, glycoprotein processing, and cellular interaction, widening opportunities
for the discovery and development of new therapeutic agents against diseases such as diabetes, obesity,
metastatic cancer, and viral infection [3,4]. In particular, AG as a glucosidase located in the brush
border of the small intestine is able to selectively hydrolyze terminal (1→4)-linked α-glucose residues
(starch or disaccharides) to release a single α-glucose molecule [5,6]. Therefore, various types of
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potential α-glucosidase inhibitors (AGIs) have been extensively screened or studied and acarbose,
miglitol, voglibose, and 1-deoxynojirimycin (DNJ) are currently commercialized anti-glucosidase drugs
(Figure 1; [7]) against type-2 diabetes, a chronic condition in which the body becomes resistant to the
normal effects of insulin, resulting in ineffectiveness at managing the blood glucose levels.
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uncompetitive or mixed types of inhibition of AG activities from some flavonoid-based compounds 
have been reported (Figure 2; [9]). Thus, inhibition of enzymes involved in the digestion of 
carbohydrates is able to significantly decrease the postprandial increase of glucose level in the blood 
after a mixed carbohydrate diet, which has been shown to be essential in preventing the progress of 
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produced from carbohydrates by hydrolytic glucosidase activity of α-glucosidase (AG) in the small 
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activity by AGIs, respectively. 

Although the activity of AG in the mucous membrane of the small intestine can be inhibited by 
commercial AGIs, these pharmaceutical drugs formulated for the inhibition of the key enzymes 
frequently come with attendant side effects and expensive cost [5,11]. Thus, an economical alternative 
to managing the disease with few or no side effects is an attractive option. Recent studies on the 
beneficial health effects of vegetables have piqued the interest of researchers due to their possible 
protection against chronic diseases. In addition, continuous effort is being made in the research and 
discovery of new anti-glucosidase/anti-diabetic drugs with higher safety profiles for long-term 

Figure 1. Molecular structure of representative commercialized glucosidase inhibitor drugs.

Most AGIs can attach to the carbohydrate binding site of AG due to their similarity with
disaccharides or oligosaccharides in molecular structure. Moreover, the complexes have a stronger
affinity than the carbohydrate–glucosidase complexes (Figure 2; [8]). In addition, non-competitive,
uncompetitive or mixed types of inhibition of AG activities from some flavonoid-based compounds have
been reported (Figure 2; [9]). Thus, inhibition of enzymes involved in the digestion of carbohydrates
is able to significantly decrease the postprandial increase of glucose level in the blood after a mixed
carbohydrate diet, which has been shown to be essential in preventing the progress of impaired glucose
tolerance towards type-2 diabetes [10].
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Figure 2. Basic modes of action of α-glucosidase inhibitors (AGIs). (A) Absorption of glucose produced
from carbohydrates by hydrolytic glucosidase activity of α-glucosidase (AG) in the small intestine.
(B–D) Competitive, non-competitive (allosteric), and uncompetitive inhibition of the AG activity by
AGIs, respectively.

Although the activity of AG in the mucous membrane of the small intestine can be inhibited
by commercial AGIs, these pharmaceutical drugs formulated for the inhibition of the key enzymes
frequently come with attendant side effects and expensive cost [5,11]. Thus, an economical alternative
to managing the disease with few or no side effects is an attractive option. Recent studies on the
beneficial health effects of vegetables have piqued the interest of researchers due to their possible
protection against chronic diseases. In addition, continuous effort is being made in the research
and discovery of new anti-glucosidase/anti-diabetic drugs with higher safety profiles for long-term
therapy [12–14]. Thus, it is worth reviewing the effects of common vegetables for the purpose of
identifying novel/potential compounds that may be suitable for development as anti-diabetes agents.
In this review, we will summarize research results on the AGI activity in plants, with emphasis on
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common vegetables, and also briefly describe possible means of producing vegetables harboring higher
levels of AGI activity in the future.

2. Natural Compounds as Potential Candidates for AGIs

A range of chemical compounds identified from various plants shows inhibitory activities against
AG enzymes. Most AGIs are secondary metabolites such as alkaloids, phenolic acids, flavonoids,
terpenoids, anthocyanins, and their glycosides (Table 1). Alkaloids are mainly found in certain
flowering plants [15]. Species from the Berberidaceae family are outstanding alkaloid-yielding plants.
However, alkaloids can also be obtained from other sources such as animals, bacteria, and fungi.
Plant-derived alkaloids are known to be repellents that protect plants against insects and herbivores.
Phenolic compounds are secondary metabolites found most abundantly in plants. Phenolic acids are
polyphenols containing the C6 aromatic ring of hydroxybenzoic acids including gallic acid, caffeic
acid, and coumaric acid. The synthesis of phenolic compounds in plants is promoted by biotic and
abiotic stresses (i.e., herbivores, pathogens, saline stress, heavy metal stress, unfavorable temperature,
pH, and UV radiation) [16]. Flavonoids are also polyphenols which present in distinct tissues and
organs in various plant species. It has been reported that flavonoids help plants to protect against
adverse environmental constraints and also contribute to the growth and development of plants [17].
Terpenes are the most diverse natural products and are formed by a linear arrangement of a single
building block called isoprene, also known as 2-methylbuta-1, 3-diene (C5H8). Plants employ terpenoid
metabolites for a variety of fundamental functions in growth and development and also use the majority
of terpenoids for their protection in the abiotic and biotic environment [18]. From these classes of
compounds, a number of individual compounds are reported to show AGI activity because of the
special structure or functional groups they possess (Table 1). In addition to the use of secondary
metabolites, efforts to explore and develop peptide-based anti-diabetic agents against mammalian
intestinal AG are underway [19]. Although the natural substrates of glycosidase are polysaccharides,
peptide modulators of AG may have huge potential based on structural features of AGIs with the
characteristic sugar-mimetic structure [19,20]. Furthermore, their high affinity and specificity in
interactions with the protein targets, and reduced immunogenicity and low toxicity profiles, in general,
would be additional benefits of peptide-based AGIs [20]. Iminosugars are another class of compounds
that inhibit carbohydrate hydrolyzing enzymes [21,22]. These are sometimes called sugar-shaped
alkaloids, polyhydroxy alkaloids, azasugars, or aminosugars due to their structural similarity with
sugars [23]. Nojirimycin and fagomine were the first natural iminosugars to be discovered from
microbe (Streptomyces) and plant (Fagopyrum esculentum). Iminosugars play an important role in
chemotaxonomy and exhibit antimicrobial properties. Moreover, nojirimycin showed potent AG
inhibitory activity, which could be due to its structural resemblance to glucose.

Table 1. Classes of natural α-glucosidase inhibitor compounds and their IC50 (Half-maximal inhibitory
concentration) values.

Classes of Compound Chemical Structure IC50 Value Reference

Alkaloids

Vasicine
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(131.2 µM) 

[33] 

Spicatanol  
 

 

34.1 µMΔ 
(23.8 µM) [34] 

Lupeol 

 

7.18 µg/mLΔ 
(9.68 µg/mL) [35] 

Phenols 

p-hydroxycinnamic acid 
 

90.8 µg/mLΔ 
(230.4 µg/mL) 

[36] 

Protocatechuic acid 

 

85.1 µg/mLΔ 
(230.4 µg/mL) 

Trans-N-(p-
Coumaroyl)tyramine 

 

4.47 µMΔ 
(168.95 µM) 

[37] 

2,4-dimethoxy-6,7-
dihydroxyphenanthrene 

 

0.40 mMΔ 
(3.52 mM) 

[38] 

Ferulic acid 

 

4.9 mMΔ 
(1.7 mM) 

[39] 

819.7 µM
(788.6 µM) [32]
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3. Plants with AG Inhibitory Activity

Plants are the major source of phytochemicals, and some of these compounds possess different
health promoting functions. Various types of these compounds are being isolated from different plant
species and studied for their potential to manage type-2 diabetes, and extracts of leaves, roots, barks,
and fruits from different medicinal plants, herbs, and other plants are reported to exhibit inhibitory
activity against AG [41,42]. A 13-membered ring thiocyclitol (13-MRT) compound isolated from the
medicinal tree, Salacia reticulate, used as an antidiabetic, was reported to show potential AGI activity
with IC50 values of 0.23 and 0.19 µM against maltase and sucrase enzymes, respectively [43]. Morus
alba is another plant species for which AG inhibitory activity has been well-studied [44], and its
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leaf extracts exhibited AG inhibition activity with an IC50 value of 91.63 µg/mL compared to that
of acarbose (IC50: 402.33 µg/mL) [45]. A range of bioactive compounds isolated from the leaves of
Mango (Mangifera indica L.) were screened for their inhibitory effect against AG and among them
arjunolic acid and actinidic acid exhibited inhibitory activity with IC50 values of 239.60 ± 25.00 and
297.37 ± 8.12 µM, respectively [46]. Similarly, extracts from the peel of fruits of Jackfruit (Artocarpus
heterophyllus) displayed the strongest inhibitory activity (IC50: 0.05 mg/mL) followed by its seed (IC50:
1.79 ± 0.15 mg/mL), pulp (IC50: 6.81 ± 0.52 mg/mL), and flake (IC50: 10.52 ± 0.73 mg/mL) extracts [47].
Grape seed and green tea extracts were also found to have strong inhibitory activity against AG with
an IC50 values of 1.2 ± 0.2 and 0.5 ± 0.1 µg/mL, respectively. These inhibition potencies were much
stronger than the inhibitory effect obtained from acarbose (IC50: 91.0 ± 10.8 µg/mL) [48].

4. Common Vegetables with AG Inhibitory Activities

Major vegetables belonging to the Solanaceae family, such as pepper, tomato, eggplant, and potato,
have been studied for their inhibitory activity against AG enzymes. Water extracts from the fruits of
several pepper lines were examined for their effects on AG enzymes and the inhibitory percentages
from a red sweet pepper variety were found to be 57% and 48% against yeast and rat AG enzymes,
respectively [49]. Similarly, ethanol and water crude extracts from fruits of some pepper cultivars
consumed in Korea exhibited close to full inhibitory activity against yeast AGs, compared to acarbose
that showed 50% inhibition at 25 mM [50]. Luteolin-7-O-glucoside flavonoid isolated from pepper
leaves showed a similar level of inhibitory activity (IC50: 15 µM) compared to acarbose [51]. Recently,
methanolic extracts of several potato tubers exhibited AG inhibition with IC50 values ranging from
42.42 ± 0.94 to 78.65 ± 0.48 µg/mL, which is less potent than acarbose (IC50: 15.65 µg/mL) [52]. Fruit
extracts from two eggplant species S. macrocarpon and S. melongena exhibited a moderate inhibitory
effect with IC50 values of 71.77 ± 0.50 and 63.24 ± 0.30 µg/mL, respectively [53]. Tomato leaf extracts
were found to have much milder inhibitory activity (IC50: 1.14 to 6.48 mg/mL) against AGs than that
of acarbose (IC50: 356 ± 20.6 µg/mL) [54]. The inhibitory potential of onions together with different
vegetables against AGs was also investigated. The ethanol extract of onion powder displayed an
average of 74.0% inhibition compared to bitter melon (36.7%), yam (27.2%), and pumpkin (25.2%) [55].
Ethyl acetate extracts obtained from shallot (Allium cepa ascalonicum) peels, peeled bulbs, and bulbs
(the whole bulbs) exhibited strong AG inhibitory activity with an IC50 values of 0.012 ± 0.002, 0.035
± 0.01, and 0.052 ± 0.01 mg/mL, respectively. In the study, the inhibitory activity obtained from the
peel was found to be the highest compared to those from different parts of 25 different plant species,
including Rheum palmatum roots (IC50: 0.016 ± 0.0002 mg/mL), Cinnamomum zeylanicum bark (IC50:
0.018 ± 0.0006 mg/mL), Brassica juncea leaves (IC50: 0.21 ± 0.02 mg/mL), Capsicum frutescens fruits (IC50:
2.12 ± 0.4 mg/mL), Allium sativum bulbs (IC50: 2.51 ± 0.5 mg/mL), Actinidia deliciosa peels (IC50: 2.77 ±
2.4 mg/mL), and Glycine max beans (IC50: 12.83 ± 4.0 mg/mL) [56].

Natural acylated anthocyanins extracted from Ipomoea batatas showed strong maltase inhibitory
activity with an IC50 value of 0.36 mg/mL [57]. Similarly, red cabbage varieties exhibited increased
AGI activity, with total highest phenolic and diacylated anthocyanin activity obtained from the Koda
variety (with an IC50 value of 3.87 ± 0.12 mg/mL) [58]. Aqueous radish sprout extract was also reported
to cause 50% reduction of AG activity at the concentration of 60.7 ± 1.2 mg/mL [59]. Lactucaxanthin,
a carotenoid extracted from lettuce, showed AG inhibition with an IC50 value of 1.84 mg/mL, while
acarbose showed a value of 16.19 µg/mL [60]. Cucurbits are another major vegetable crops that
possess inhibitory activity against AG enzymes. Bitter melon has been proved for hypoglycemic
effects. Notably, protein extract from two genotypes of bitter melon (Momordica charantia var. charantia
and M. charantia var. muricata) displayed 68.8% and 69.2% inhibition on AG activity, respectively. In
the study, the IC50 values of M. charantia var. charantia (0.298 ± 0.034 mg/mL) and M. charantia var.
muricata (0.292 ± 0.022 mg/mL) were not significantly different from the IC50 value of acarbose (0.28 ±
0.019 mg/mL) [61]. Likewise, methanol extracts from bitter melon fruits exhibited 50% inhibition on
sucrase activity [62] and ethyl acetate extracts of M. charantia showed the highest AG inhibition activity
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(66.64% ± 2.94%) compared to Trichosanthes cucumerina (Snake gourd: 61.91% ± 1.96%), Lagenaria
siceraria (56.04% ± 1.72%), Sechium edule (51.49% ± 2.13%), Benincasa hispida (48.73% ± 0.98%), Luffa
acutangula (43.93% ± 1.28%), and Cucurbita maxima (22.11% ± 0.90%) [63]. Extracts from different parts
of yellow fleshed watermelon also reduced the activity of AG enzyme; the highest inhibitory activity
was obtained from 70% ethanol extract of the leaf (IC50: 26.26 ± 0.29 µg/mL), followed by the seed (IC50:
32.50 ± 0.36 µg/mL), the flesh (IC50: 41.38 ± 1.04 µg/mL), and the rind (IC50: 45.44 ± 0.18 µg/mL) [64].
The aqueous extracts from okra (Abelmoschus esculentus) peels and seeds demonstrated inhibitory
effect against glucosidase enzymes with an IC50 value of 142.69 ± 0.32 and 150.47 ± 0.28 µg/mL,
respectively [65].

5. Analyses of AGI Activities in Plants

Generally, AGI analysis is an enzymatic assay that follows the same basic principles as most
enzymatic assays. Mostly, measurement of AG inhibitory activity is based on colorimetric methods.
p-nitrophenyl-α-d-glucopyranoside (pNPG) is a synthetic substrate that is hydrolyzed specifically
by AGs into a yellow colour product (4-nitrophenol) that is usually quantified at 405 nm. Hence,
measuring the amount of 4-nitrophenol produced from pNPG in the presence or absence of inhibitors
is used to measure the inhibitory activity of plant compounds against AGs (Figure 3A; [66]). Similarly,
several studies have used maltose or sucrose as a substrate to screen the inhibitory potential of plant
extracts against AG enzymes based on the amount of glucose produced in the presence or absence
of the inhibitors (Figure 3B; [67–69]). However, even though the measurement methods look similar,
there is inconsistency in the choice of enzyme sources, concentration of enzymes and substrates, and
sometimes incubation time, which result in variations in absolute values. Therefore, well-known AGI
compounds are usually used as controls for comparison of the inhibitory potency of other inhibitors
against AG enzymes. However, these inhibitors usually exhibit different inhibitory activities based on
the origin of glucosidase enzymes. The representative AG inhibitors such as acarbose and glucono-1,
5-lactone inhibited enzymes obtained from rat, rabbit, and pig intestine but had no inhibitory effects
on baker’s yeast AG enzyme. On the contrary, (+)-catechin exhibited good inhibition against yeast
AG without significant inhibitory effects on the mammalian enzymes [67]. Moreover, acarbose and
voglibose showed no inhibition against AG from yeast and Bacillus stearothermophilus, but they inhibited
porcine small intestinal AG with IC50 values of 35.00 and 0.035 µg/mL, respectively [66]. However,
acarbose has been used as a positive control for modest inhibition against the yeast AG enzyme activity
in several cases. Of note, there are independent reports demonstrating that acarbose exhibited 50%
inhibition of yeast enzyme activity at the concentration of 177.47 ± 6.28 µg/mL [70] and 200 µg/mL [71].
Therefore, apart from the inherent difference in inhibitor’s affinity toward different AG enzymes, other
conditions in assays could also cause inconsistency of inhibitors’ potency. For example, concentrations
of enzymes and substrates were reported to affect IC50 values of particular competitive inhibitors.
Thus, determination of an inhibition constant (Ki) as a measure of absolute binding affinity would
solve this matter as it is not affected either by substrate or enzyme concentrations [72]. In addition, the
concentration of substrates should be around their Km values toward an enzyme in order to screen all
types of inhibitors, such as competitive, non-competitive, and mixed type inhibitors [73].
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6. Production of Vegetables with Higher AGI Activity

Very few vegetables have been released/commercialized with approval of ingredients to help
in managing type-2 diabetes. “Dangjo” and “Wongi No. 1” are two well-known Korean pepper
varieties that have been specifically developed for higher AGI activity [51,74]. Since a range of bioactive
compounds have been reported to possess AG inhibitory activity, as described above, increasing the
amount of such inhibitors in vegetables can be a critical step for the production of vegetables with
higher AGI activity. Most AGI activities are associated with the genetic architecture of quantitative
traits (secondary metabolites; [75]). Thus, conventional breeding methods based on selection or
hybridization with the aid of chemical analytical tools can also be used to produce vegetables with
increased amounts of AGIs. It has been reported that various vegetables contain bioactive metabolic
compounds (Table 2) and varieties/cultivars with higher content of AG inhibitory compounds from
each species can be also generated through molecular breeding and/or biotechnological approaches.
Genetic analyses of gene interactions and heritability for these compounds are necessary to establish
appropriate breeding programs. However, few studies have reported the genetic parameters linked
to the quantitative analyses of secondary metabolites including phenolic acids, flavonoids, alkaloids,
and terpenes. A recent report of moderate to high heritability values for chlorogenic acid content
in eggplants indicates that selection for these traits is likely to be a stepping stone for launching
efficient breeding programs targeting production of vegetables with improved content of bioactive
compounds [76].



Plants 2020, 9, 2 11 of 17

Table 2. Variability of total phenolic acid and total flavonoid content in several major vegetables.

Vegetables Phenolic Acids
(g·kg−1)

Flavonoids
(g·kg−1)

Reference

Tomato 1.3–3.2 1.1–2.4 [77]
Pepper 7.95–26.15 4.64–12.84 [78]
Onion 3.43–22.19 0.0012–0.98 [79,80]
Garlic 3.4–10.8 0.1–0.22 [81,82]

Eggplant
(Solanum melongena) 7.4–14.3 0.03–0.26 (fw) [83,84]

Recent advances in molecular biology and genomics have given new insight into the biosynthesis
pathways of secondary metabolites, including phenolic acids and flavonoids, and allowed the
identification of quantitative trait loci (QTLs) involved in the pathways. A number of metabolic
quantitative trait loci (mQTLs) and candidate genes responsible for the synthesis of phenolic acids
were identified in a population generated from an interspecific cross between S. lycopersicum and S.
Chmielowski [85]. Based on the knowledge gained by genetic/genomic approaches, vegetables with an
increased amount of such compounds via enhanced biosynthesis can be produced through genetic
transformation. For instance, co-introduction of the PRODUCTION OF ANTHOCYANIN PIGMENT1
(PAP1), a regulatory gene from Arabidopsis, and the CHALCONE ISOMERASE (CHI) gene, from Allium
cepa, into tomato caused 130- and 30-times higher levels of rutin (a bioactive flavonol) and total
anthocyanin content, respectively, than those found in wild tomato skin [86].

7. Future Perspectives

Diverse groups of secondary metabolites exist in plants and the current technologies in analytical
chemistry as well as biochemistry provide opportunities to develop efficient high-throughput screening
methods for compounds with AGI activity. Considerable effort has also been put into producing
common vegetables containing higher amounts of AG inhibitory compounds. In addition, the content
of AGIs in vegetables can be increased by controlling environmental factors for plant growth and
development, such as temperature, light (i.e., period and quality), nutrients, water availability, and
so on. A generation of new varieties with higher AG inhibitory compound content is also attainable
through breeding with the aid of molecular genetic technologies. Current advances in molecular
genetic/genomic technologies, followed by the availability of plant genomic and/or metabolomic
information, has made it possible to acquire precise profiles of AGI candidates and even to identify the
genes responsible for their biosynthesis. Genome editing (GE) technologies including CRISPR/Cas9
systems are also likely to be utilized for enhanced production of AG inhibitory compounds in common
vegetables (Figure 4). We believe that production of vegetables with higher AGI activity would be of
great help in treatment/management of type-2 diabetes, since vegetables are rich in fiber and/or are
high in nitrates, and will generally support improved levels of healthy cholesterol and lower blood
pressure. Additionally, adverse effects of AGIs, such as flatulence, abdominal discomfort, and diarrhea,
can be reduced since they are generally dependent on AGIs dosage and duration of therapy/treatment.
However, the goal—production of common vegetables with desirable AG inhibitory compound
content—should be achieved without compromising crop yield, quality, and customers’ preference.
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