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Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it

promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial

resolution. Among vendors and researchers, however, there is no consensus of how to best achieve

these aims. The general approach is to incorporate a priori knowledge into iterative image recon-

struction, for example, by adding additional constraints to the cost function, which penalize variations

between neighboring voxels. However, this approach to regularization in general poses a resolution

noise trade-off because the stronger the regularization, and thus the noise reduction, the stronger the

loss of spatial resolution and thus loss of anatomical detail. The authors propose a method which tries

to improve this trade-off. The proposed reconstruction algorithm is called alpha image reconstruction

(AIR). One starts with generating basis images, which emphasize certain desired image properties,

like high resolution or low noise. The AIR algorithm reconstructs voxel-specific weighting coeffi-

cients that are applied to combine the basis images. By combining the desired properties of each

basis image, one can generate an image with lower noise and maintained high contrast resolution

thus improving the resolution noise trade-off.

Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water

phantom with resolution bar patterns and low contrast disks is simulated. A filtered backprojection

(FBP) reconstruction with a Ram-Lak kernel is used as a reference reconstruction. The results of

AIR are compared against the FBP results and against a penalized weighted least squares reconstruc-

tion which uses total variation as regularization. The simulations are based on the geometry of the

Siemens Somatom Definition Flash scanner. To quantitatively assess image quality, the authors ana-

lyze line profiles through resolution patterns to define a contrast factor for contrast-resolution plots.

Furthermore, the authors calculate the contrast-to-noise ratio with the low contrast disks and the

authors compare the agreement of the reconstructions with the ground truth by calculating the nor-

malized cross-correlation and the root-mean-square deviation. To evaluate the clinical performance of

the proposed method, the authors reconstruct patient data acquired with a Somatom Definition Flash

dual source CT scanner (Siemens Healthcare, Forchheim, Germany).

Results: The results of the simulation study show that among the compared algorithms AIR achieves

the highest resolution and the highest agreement with the ground truth. Compared to the reference

FBP reconstruction AIR is able to reduce the relative pixel noise by up to 50% and at the same time

achieve a higher resolution by maintaining the edge information from the basis images. These results

can be confirmed with the patient data.

Conclusions: To evaluate the AIR algorithm simulated and measured patient data of a state-of-the-art

clinical CT system were processed. It is shown, that generating CT images through the reconstruc-

tion of weighting coefficients has the potential to improve the resolution noise trade-off and thus

to improve the dose usage in clinical CT. © 2014 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.4875975]
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1. INTRODUCTION

In the recent years, significant efforts have been done to de-

velop new iterative image reconstruction algorithms, which

outperform standard filtered backprojection (FBP) methods

with the aim to lower the noise and improve spatial resolu-

tion properties. The underlying motivation is to further reduce

patient dose1 and to reduce artifacts, for example, blooming

artifacts in cardiac CT, which arise from high contrast cal-

cification structures due to the limited spatial resolution.2–5
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Today, all CT vendors offer iterative reconstruction ap-

proaches in their products. However, these methods are still

in the phase of clinical evaluation, but results are very

promising.6–10 There are several recent review papers which

compare the vendor implementations of iterative reconstruc-

tions in clinical CT among each other.11–13 It turns out,

that among these approaches rawdata-based iterative recon-

struction methods have shown most promising results.7, 9

Iterative reconstruction algorithms offer the possibility to in-

corporate nonidealities in the problem description: Statistical

algorithms are based on a noise model and thus consider the

photon statistics.14, 15 Prior knowledge such as positivity or

smoothness can be considered in an iterative algorithm by reg-

ularization approaches.16–19 Vendors and researchers incorpo-

rate this a priori knowledge into the reconstruction process

by adding additional constraints to the objective function of

the iterative reconstruction algorithm, which penalize varia-

tions between neighboring voxels. Many penalty terms have

been proposed like q-generalized Gaussian Markov random

fields,20 total variation (TV), and Huber penalty,16, 19, 21–23 or

other anisotropic filters.18, 24 In general, these regularization

approaches pose a resolution noise trade-off. Regularized iter-

ative reconstruction often fails at the resolution limit or when

the contrast of details is in the range of the noise level. It can

be a challenging task to find robust parameter settings. The

higher the dimensionality of the parameter space, the more

complicated is it to find parameter settings suitable to gener-

ate stable and predictable results without altering anatomical

information. Driven by the desire to combine the favored im-

age properties of regularization results with various parameter

settings to overcome this trade-off, we propose a new empir-

ical method to incorporate regularization in iterative recon-

struction. The proposed algorithm is called alpha image re-

construction (AIR). It is based on our recent work presented in

Ref. 25. The idea is to generate basis images which emphasize

certain image properties like high resolution, high low con-

trast detectability, or low noise. These images could be regu-

larized reconstructions, postreconstruction filtered images, or

reference reconstructions like FBP, for instance. Regulariza-

tion is incorporated into the reconstruction by the basis im-

ages. The AIR algorithm reconstructs voxel-specific weight-

ing coefficients that are applied to combine the basis images.

By combining the desired properties of each basis image, one

can generate an image with lower noise and maintain high

contrast resolution, thus improving the resolution noise trade-

off.

The paper is arranged as follows: In Secs. 2.A and 2.B,

we derive the proposed iterative reconstruction algorithm.

Sections 2.C–2.F summarize details about the simulation and

the quantitative analysis. In Sec. 3.A, we present results for

the simulated phantom and in Sec. 3.B we present clinical

data.

2. MATERIALS AND METHODS

2.A. Statistical image reconstruction

Before introducing the AIR algorithm, we want to give a

short recapitulation of iterative statistical reconstruction based

on the maximum a posteriori (MAP) approach, as we want

to compare the proposed method against a state of the art

iterative reconstruction algorithm. The statistical reconstruc-

tion algorithms used throughout this paper are based on the

Poisson model for photon intensities. The conditional like-

lihood P ( p| f ) can be derived for the acquired projection

data p and the unknown image f, which is to be calculated.

The rule of Bayes’ gives an expression for the conditional

likelihood

P ( f | p) =
P ( p| f )P ( f )

P ( p)
. (1)

With the Bayesian framework the reconstruction problem

may be formulated as MAP estimate

f = arg max
f

logP ( p| f ) + logP ( f ), (2)

after dropping the term independent of f and taking the

logarithm in Eq. (1). The first term on the right-hand side

in Eq. (2) is called the log-likelihood. A good approxi-

mation to logP ( p| f ) can be achieved by a second-order

Taylor expansion.26 Applying this approximation to Eq. (2)

yields

f = arg min
f

(X · f − p)T · W · (X · f − p) + ηU ( f )

(3)

= arg min
f

‖X · f − p‖2
W + ηU ( f ), (4)

where X is the forward projection (x-ray transform). W is a

diagonal matrix with statistical weights, U ( f ) is a regular-

ization term which is equal to log P ( f ) except for an addi-

tive constant, and η is a trade-off parameter. For transmis-

sion tomography, the diagonal elements of W are proportional

to the detector counts.20 They represent the credibility of the

data. This means, that the more quanta that are measured, the

smaller the signal variance and consequently the stronger the

data are weighted as reliable within the optimization. For-

ward and backprojection are performed in the native fan-

beam geometry. As forward projection operation we use the

Joseph forward projector27 and as backprojection operation

we use a destination-driven backprojection algorithm, i.e., we

did voxel-driven backprojection with bilinear interpolation on

the detector. Using η = 0 means that no regularization term

is used and the resulting reconstruction is called weighted

least squares (WLS) solution. It is well known, that unregu-

larized statistical iterative reconstructions, like the WLS, tend

to converge to excessively sharp and noisy images.18 Us-

ing η > 0 means that we incorporate further knowledge in

form of a penalty term. Thus, the WLS solution becomes a

penalized WLS (PWLS) solution. We compare AIR against

the PWLS reconstruction with TV regularization, as TV has

gained much attention in the recent years and is well known.19

Furthermore, it is easy to implement and has only view pa-

rameters, making it easy to comprehend the results. With the

TV regularization the optimization problem becomes

f = arg min
f

‖X · f − p‖2
W + ηT V ( f ). (5)
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The total variation cost penalty is defined as

T V ( f ) =

Nx−1
∑

x=1

Ny−1
∑

y=1

√

(f (x + 1, y) − f (x, y))2 + (f (x, y + 1) − f (x, y))2 + ǫ, (6)

where the parameter ǫ is a small positive constant to avoid

discontinuities. We denote the PWLS with TV penalty

PWLSTV.

2.B. Proposed method: AIR

The AIR algorithm basically is a different approach to reg-

ularization and thus to incorporate prior knowledge into iter-

ative reconstruction to improve the resolution noise trade-off.

One starts with reconstructing basis images f b, which could

be regularized reconstructions, postreconstruction filtered im-

ages, or FBP, for instance. The number of basis images is de-

noted with B. Through these basis images prior knowledge

(regularization) is incorporated into the reconstruction pro-

cess. AIR reconstructs voxel-specific weighting coefficients

αb for each basis image f b that are applied to combine the

basis images, finding the combination which produces the

maximal rawdata fidelity. Thus, each basis image on its own

may suffer from certain deficiencies, due to too strong regu-

larization, for instance. Thus, the algorithm aims at combining

the favored properties of the basis images like high resolution

and low noise. This is done by minimizing the following cost

function:

α =

⎛

⎜

⎜

⎜

⎝

α1

α2

...

αB

⎞

⎟

⎟

⎟

⎠

= arg min
α

C(α)

= arg min
α

‖X ·

(

B
∑

b=1

αb ◦ f b

)

− p‖2
W + U (α), (7)

where X is the x-ray transform, p is the rawdata vector, and

W are the statistical weights as described in Sec. 2.A. The f b

are the basis images and the αb are the corresponding weight-

ing images. The vector α contains all weighting images. The

expression α ◦ f stands for the Hadamard product, i.e., the

vectors are multiplied element wise. One has to determine the

α-images by minimizing the above cost function. The result

image is defined as

f AIR =

B
∑

b=1

αb ◦ f b. (8)

Note that
∑

b αb �= 1 in general. The regularization term U (α)

is used to set certain constraints to the weighting images αb

such as continuity. We define our penalty term U (α) as

U (α) = β

B
∑

b=1

T V (αb) + γ

B
∑

b=1

‖αb − db‖
2
2, (9)

where the vectors db are constant vectors. Here, we chose

db = db1 with db being a constant scalar value. In other

words, all entries of db are identical and chosen to be db. In

general, there may be other reasonable or even better ways to

choose the entries of db. This, however, is beyond the scope

of this work. The TV penalty is used, defined in Eq. (6), to

enforce homogeneity and to suppress the occurrence of noise

in the weighting images. We use the TV penalty, because it

has only few open parameters that can be tuned rather eas-

ily. Note that instead of using TV one could think of applying

other penalties. The strength of the TV penalty is controlled

by parameter β. The second penalty term defines the default

value db of basis image b. Regarding this penalty term in

Eq. (9) one can see that the minimum norm of zero is achieved

when all values in the weighting images αb are equal to db.

In this paper, we use db = db1 with db = 1/B such that the

basis images default to an average value of 1/B. Thus, ho-

mogeneous regions in the image tend to be averaged. This is

because homogeneous regions do not contribute much to the

rawdata fidelity, apart from the mean value picked up by a ray

segment running through such a region. As this penalty term

is strictly convex, the overall cost function is strictly convex,

too, and a unique global minimum exists. In the following, we

will refer to regions in the basis images where the detail in-

formation is close to the correct image (i.e., the ground truth)

as regions with a high correlation with the rawdata, due to

the fact that the closer the reconstructed image to the ground

truth, the higher is the rawdata fidelity. If regions strongly dif-

fer from the ground truth we refer to them as regions with a

low correlation. By minimizing the overall cost function one

finds the optimal voxel-wise combination of the basis images

with respect to the rawdata fidelity and the penalty term U (α).

The minimum norm of this cost function is reached when the

weighting images will have large contributions in regions of

the corresponding basis image which highly agree with the

rawdata and low weighting otherwise because the smoothness

constraint defined by the TV penalty prohibits arbitrary val-

ues in the weighting images. Thus, the highest contribution

to a specific detail in the final result will be provided by the

basis image best representing the real anatomical information

in this specific region. In Secs. 3.A.1–3.A.3, we give a more

detailed insight of how the method works in principle.

We minimize Eq. (7) with a gradient descent approach.

For that we have to calculate the gradient of the cost function

C(α). The gradient of Eq. (7) is

∇C(α) =

⎛

⎜

⎜

⎜

⎝

f 1 ◦ g

f 2 ◦ g
...

f B ◦ g

⎞

⎟

⎟

⎟

⎠

+ ∇U (α), (10)
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with

g = 2XT ·

(

W · X ·

(

B
∑

b=1

αb ◦ f b

)

− p

)

. (11)

XT is the transpose x-ray transform and ∇U (α) is the gradient

of the penalty term for α. One gradient descent update step for

the weighting images can be written as

α
ν+1 = α

ν − λ∇C(αν), (12)

where ν denotes the iteration step and λ denotes the step

length of the gradient descent method. The step length λ was

calculated by a backtracking line search method.28 To be sure

that the gradient based minimization process converges to an

unique global minimum, one has to ensure that the overall

cost function is strictly convex. The rawdata fidelity term of

cost function (7) is convex but underdetermined due to the

weighted sum of the basis images. Thus, the rawdata fidelity

term is convex but not strictly convex. The global minimum

is not unique. The sum over the TV of the weighting images

is convex but not strictly convex because the minimum norm

can be achieved with an infinite number of solutions for α.

Thus, the combined cost of the rawdata fidelity and the total

variation penalty is convex but not necessarily strictly convex.

However, the additional penalty term is a strictly convex func-

tion, as its minimal value can only be achieved when all αb

equal db. Thus, the overall cost function is strictly convex and

there is a unique global minimum and the overall cost function

is suited for minimization by a gradient descent approach. We

initialize α with zero. Regions outside the phantom or patient

are clipped to zero in the corresponding weighting images af-

ter reconstruction. This is done by thresholding. We do so for

cosmetic reasons because then one can see the boundaries of

the object. All iterative algorithms were iterated until conver-

gence. Defining convergence in practice can be difficult. To

be sure that all algorithms reached convergence, we analyzed

the cost value as function of the iteration number and did ex-

tensive visual inspection of succeeding iterations. We found

that 500 iterations are sufficient for all algorithms to converge.

In order to be consistent, this number of iterations was used

for all reconstructions. We did not incorporate further meth-

ods to speed up the convergence process to have a predictable

base line for the algorithms. Therefore, we accept the higher

computational effort. For the proposed method, we choose

β = 0.01 and γ = 0.02. These parameters were used in all

simulations. The choice of these values is explained in detail

in Sec. 3.

2.C. System geometry

As we want to investigate the performance of AIR for a

state-of-the-art scanning modality, we base the simulations

on the fan-beam geometry of the Somatom Definition Flash

scanner (Siemens Healthcare). The scanner has a distance

from the source to the center of rotation of RF = 595.0 mm

and a distance from the detector to the center of rotation of

RD = 490.6 mm. In total N = 1160 projections per rotation

are acquired over an angular range of 360◦. The detector con-

sists of M = 736 detector columns. A circular scan with a

single x-ray source was simulated.

2.D. Phantom

For all simulations, we assumed a monoenergetic x-ray

spectrum. The mathematical definition of the phantom allows

for an analytical calculation of the line integrals during raw-

data simulation, which can be described mathematically as

p̄nm = − ln
Īnm

I0

=

∞
∫

0

dλf (sn + λ�nm). (13)

Provided that f is the ideal image (without noise), Īnm is the

ideal measured intensity (number of photons) for projection

number n ∈ {1, . . . , N} and detector element m ∈ {1, . . . , M}

without noise. I0 is the unattenuated intensity, p̄nm is the ideal

projection value without noise. For rawdata simulation, we

used Eq. (13) to create the ideal projection data. The points sn

are the source positions and �nm are the unit vectors pointing

from sn to the center points of the detector elements. From the

analytical intensities Īnm, we generated Poisson-distributed

noisy intensities Inm (representing the measured intensities)

with mean and variance Īnm. The constant value I0 is the num-

ber of photons which a nonattenuated ray deposits per projec-

tion angle n in each detector element m. In all simulations,

I0 was set to the same value I0 = 1.0 × 105, which results

in approximately 30 HU noise in the reconstructed FBP ref-

erence images, measured in a homogeneous region denoted

with D in water-equivalent tissue (indicated with a circle in

Fig. 1). Thus, we obtain the Poisson-distributed projection

values as pnm = −ln(Inm/I0). Figure 1 shows the ground truth

of the resolution phantom (left) we used for the simulations

and the analytical reference reconstruction (right) which is a

FBP with a Ram-Lak kernel.29 To quantitatively and qualita-

tively investigate the algorithms, resolution bar patterns are

used. The bar patterns have a resolution ranging from 4.2 to

14.5 LP/cm, covering the total relevant resolution bandwidth.

The high contrast resolution patterns have a CT-value of 1000

HU, the resolution patterns with lower contrast are at 200 HU.

The low contrast disks have 100, 50, and 25 HU. The back-

ground is water-equivalent. The diameter of the phantom is

160 mm. The reconstructed field of view has a diameter of

200 mm comprising Nx × Ny = 512 × 512 pixels resulting in

a grid spacing of �x = �y = 0.39 mm.

2.E. Bilateral filter

In this paper, we use the bilateral filter30, 31 as an edge-

preserving postreconstruction filter to generate basis images

for the experiments in Sec. 3.A.4. Thus, we can introduce

prior knowledge of smoothness with preserved sharpness into

the reconstruction process. For this purpose, we define the bi-

lateral filter in one dimension as

Bf (x) =

∫

dtD(x, t)Rf (x, t)f (t)
∫

dtD(x, t)Rf (x, t)
, (14)

Medical Physics, Vol. 41, No. 6, June 2014
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FIG. 1. Left: Ground truth of the phantom. The bar patterns have a resolution ranging from 4.2 to 14.5 LP/cm. Noise was measured within the ROI D. Right:

FBP reconstruction from noisy projections. C = 0 HU, W = 1000 HU, σ = 30 HU.

with B denoting the bilateral filtering operator and

D(x, t) = e
−

(

x−t
σx

)2

,

Rf (x, t) = e
−

(

f (x)−f (t)

σf

)2

.

Here, f(x) is the unfiltered image and Bf (x) is the filtered

image. The bilateral filter consists of a domain part denoted

with D(x, t) and a range part denoted with Rf (x, t). The domain

part is a Gaussian distribution for smoothing controlled by the

parameter σ x and the range part is a Gaussian distribution for

edge-preservation controlled by the parameter σ f. The greater

the difference of the values f(x) and f(t) the smaller the weight

Rf (x, t) resulting in less contribution of this value in averaging

and thus preserving edges. An example for bilateral filtered

image can be seen in Fig. 2.

2.F. Assessment of image quality

For visual inspection, we show the results of the differ-

ent algorithms. Noise was quantified as the standard deviation

within the ROI D (see Fig. 1). We assess the spatial resolu-

tion in a quantitative approach as we measured the contrast

of material to background in dependence on the size of the

structures of linepairs with line profiles. To assess the resolu-

tion potential for the phantom results, we calculate a contrast

factor CF as a function of the spatial resolution evaluated on

the high contrast resolution bar patterns. To calculate the con-

trast, averaged line profiles are evaluated which cover 90% of

the width of the bar patterns. The three inner local gray-value

maxima Max(i) and minima Min(i) of the averaged line pro-

file are evaluated and averaged. The CF is given by

CF =
Max(i) − Min(i)

E − F
, (15)

where F is the ideal attenuation of the background (0 HU),

E the ideal attenuation of the bar patterns (1000 HU),

Max(i) = 1
3

∑3
i=1 Max(i) the mean of the three inner max-

ima, and Min(i) = 1
3

∑3
i=1 Min(i) the mean of three in-

ner minima. This is done for each bar pattern that can

be resolved in the reconstructions and the calculated CFs

are plotted against the corresponding resolution in LP/cm

(contrast-resolution plots). For a quantitative assessment of

the reconstruction quality, the normalized cross-correlation

(NCC) between the reconstruction results and the ground

truth is used. The NCC between a region 
 in the recon-

structed image f and a region in the ground truth image g is

given by

NCC =
1

|
|

∑

x,y∈


(f (x, y) − f̄ )(g(x, y) − ḡ)

σf σg

, (16)

where f̄ , ḡ are the mean values and σ f, σ g the standard de-

viations over the image region 
. The number of pixels con-

tained in 
 is |
|. The NCC ranges from [−1, 1]. A value

of +1 means the images have a perfect positive relation. The

closer the results are to +1 the closer is the reconstructed im-

age to the ground truth. The region 
 for the NCC analysis

are all values f b of the phantom exceeding −500 HU (i.e.,

air is not considered). For this region, we also calculate the

root-mean-square deviation between the ground truth and the

reconstruction results as a measure of image quality defined

as

RMSD =

√

√

√

√

1

|
|

∑

x,y∈


(f (x, y) − g(x, y))2. (17)

The smaller the value of the RMSD the closer is the recon-

struction result to the ground truth. Furthermore, we calculate

the contrast-to-noise ratio (CNR) of the low contrast disks A

and B to the water equivalent background in the ROI D (see

Fig. 1). The CNR is defined as
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FIG. 2. Results of the experiments with three basis images.

CNR(X) =
|X̄ − D̄|

√

σ 2
X + σ 2

D

, (18)

where X̄ is the mean value of the desired ROI (A or B) and D̄

is the mean value of the water background. The values σX and

σD are the corresponding standard deviations.

3. RESULTS AND DISCUSSION

3.A. Basic experiments

3.A.1. One basis image

We start the analysis of the AIR algorithm by using only

one basis image. We vary the trade-off parameter β of AIR to

demonstrate its influence on the weighting image α. As ba-

sis image we use the reference FBP reconstruction. We use

three different settings for the parameter β ∈ {0.0, 0.01, 1.0}.

Figure 3 shows the simulation results. The top row shows the

FBP reconstruction and the result of the WLS reconstruction

(PWLS reconstructed with η = 0.0, at convergence). Rows

two to four show the results for the different settings for β.

As we only use the FBP reconstruction as one basis image,

the algorithm only reconstructs the α-image α1. For β = 0.0

no regularization is applied to the α-image. Thus, the recon-

structed α1 is noisy which is undesired (see Fig. 3, row two).

In column three of row two, one can see the difference image

between the proposed method and the WLS reconstruction.

The results are nearly identical. To find a good standard value

for β, we did a parameter sweep to find a suitable value for β.

We choose β just large enough, so that the weighting images

are smooth in homogeneous regions. This is achieved with β

= 0.01 (see Fig. 3, row three). One can see that α1 is smooth

in the homogeneous water background regions. Thus, the AIR

result will have the same noise as the basis image FBP. As

we do not want to introduce noise through the weighting

images we use this value for β in all further simulations in

Secs. 3.A.2–3.A.4. As we do not regularize directly in the re-

sulting image f AIR, we are more flexible with the choice of

β, as loss of details in the α-image will not necessarily lead

to loss of details in the final result. For β = 0.01, the dif-

ference image (row three column three) shows that the AIR

result is mainly identical to the FBP reconstruction at homo-

geneous regions with the difference that the contrast of the

resolution patterns is slightly improved, due to the weighting

of the α-image. Further increasing the regularization strength

to β = 1.0 will lead to a homogeneous weight of 1.0 in α1

and thus the result will be identical to the basis image FBP.

We can conclude that by choosing a proper value for β no

noise will be introduced by the weighted combination of the

basis images. For simplicity, we use β = 0.01 as the standard

value for all further reconstructions. We are aware that the
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FIG. 3. Results of the experiments with one basis image.

weighting factor β is, potentially, case-dependent. However,

the focus of this work is to show the basic principle of the

AIR algorithm and to demonstrate its functionality. We plan

to investigate the influence of the reconstruction parameters

on the final reconstruction result and to find optimal choices

for these parameters in future research.

3.A.2. Two basis images: Experiment 1

This section and Sec. 3.A.3 are intended to demonstrate

how the algorithm works in principle. To do so, we investi-

gate the algorithm using two basis images. Figure 4 shows

the results of this section. Basis image one again is the ref-

erence FBP reconstruction. By using FBP as one of the ba-

sis images one can be sure that all anatomical details are

contained at least in one basis image. Furthermore, we in-

corporate smoothness as prior knowledge into basis image

two. Basis image two is a very smooth version of the FBP

reconstruction obtained by applying a Gaussian filter to the

FBP reconstruction and adapting the FWHM of the filter

so that the noise in the final image is approximately 1 HU

(FWHM = 3.85 mm). The result can be seen in row one of

Fig. 4. Anatomical details are lost in f 2 due to very strong

nonedge-preserving filtering. The result of the AIR method is

shown as well as the resulting reconstructed alpha images α1

and α2. One can see that the weights are high in α1 in those

regions of f 1 where no details are visible in f 2. This was ex-

pected, as the rawdata fidelity for f 1 in regions with anatom-

ical detail is preferred over the blurry regions in f 2. Thus, the

detail information will be taken with from basis image f 1,

i.e., higher weights in α1, because this results in the lowest

cost value for the sum of all three penalty functions. For a

more detailed insight into why the weights are high in the re-

gions in α1 and low in the corresponding regions in α2, please

refer to Sec. 3.A.3. Due to the penalty term on the right hand

side of Eq. (9) the default weighting for homogeneous regions
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FIG. 4. Result of the first experiment with two basis images.

in f 1 and f 2, which do not strongly differ with respect to the

rawdata fidelity, will be d1 = d2 = 1/B = 0.5. This results in

averaging the background content of the basis images. Thus,

the noise in the final image will be averaged. To find a good

value for parameter γ , a parameter sweep was performed. We

chose γ just large enough, so that the reconstructed weight-

ing images αb default to db in regions, which do not differ

with respect to their contribution to the rawdata fidelity. The

anatomical detail will contribute with higher weights from the

high resolution image. This is evaluated for the high contrast

patterns with a contrast-resolution plot in Fig. 5(a). The CF of

AIR is higher than the CF for FBP for patterns with a resolu-

tion lower than 8.0 LP/cm, and almost identical to FBP from

8.0 LP/cm to the resolution limit. A comparison plot of line

FIG. 5. (a) Contrast-resolution plots derived from high contrast patterns. (b) Line profiles through the resolution pattern with 8.1 LP/cm.
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TABLE I. Quantitative assessment of image quality.

Algorithm RMSD [10−3] NCC σ [HU] CNR(A) CNR(B) Resolution limit (CF=0) [LP/cm]

FBP 0.858 0.920 30 0.67 1.24 10.4

Sharp FBP 1.390 0.858 49 0.33 0.62 11.5

PWLSTV η = 0.02 0.674 0.953 23 0.88 1.65 10.4

PWLSTV η = 0.04 0.667 0.955 16 1.26 2.35 8.1

AIR (Sec. 3.A.2) 0.646 0.961 16 1.13 1.96 10.4

AIR (Sec. 3.A.4) 0.565 0.970 16 1.15 1.98 11.5

profiles through the 8.1 LP/cm resolution pattern can be seen

in Fig. 5(b). Thus, the final reconstruction has the same high

contrast resolution of f 1 but with approximately 50% noise.

In row one, column three of Fig. 4 the PWLSTV reconstruc-

tion is shown where we use η = 0.04, which results in approx-

imately 16 HU noise in ROI D. This is similar to the noise in

AIR. Looking at the CF plot in Fig. 5(a) one can see the trade-

off between resolution and noise of the PWLSTV reconstruc-

tion. To achieve the low noise level of 16 HU, line patterns

with a contrast in the range of the noise are oversmoothed.

The proposed method can preserve the patterns due to the

higher contribution from the sharp basis image in regions with

high agreement with the rawdata fidelity [see Fig. 5(a)]. This

shows the potential of the AIR algorithm. The AIR result also

shows a higher agreement with the ground truth, measured

with the NCC and the RMSD (see Table I). Row three of

Fig. 4 shows the result when using β = 1.0. Now the TV

penalty becomes the dominant part of the cost function. Both

weighting images are completely smooth. The default contri-

bution from both basis images is d1 = d2 = 1/B = 0.5 due to

the penalty term on the right hand side of Eq. (9). The final

result will be simple averaging of the basis images. We can

conclude from this experiment that AIR preserves anatomi-

cal details by choosing higher weights from the basis image

with the most correct anatomical information. Noise reduc-

tion is achieved by using at least one basis image which has

low noise. A loss of anatomical information in this low noise

basis image will be compensated for by the remaining basis

images.

3.A.3. Two basis images: Experiment 2

To provide a more detailed insight into AIR, another exper-

iment with two basis images was conducted. The images are

shown in Fig. 6. We chose two extreme basis images which

do not represent the use case but which are rather helpful to

demonstrate how the algorithm works. We generated the two

basis images by manipulating the FBP images. For basis im-

age f 1, we strongly blurred the lower half circle of the FBP

image and clipped the lower right quarter circle. On the one

hand, basis image f 1 contains regions where the detail infor-

mation is correct, while on the other hand there are regions

where the detail information is strongly degraded or com-

pletely missing. To generate basis image f 2, we blurred the

left half circle of the FBP image and we additionally included

the DKFZ logo, which is the logo of our institution. This logo

was added in image space with a CT-value of 500 HU. Nei-

ther the logo in f 2, nor the lower right quadrant of f 1, are

contained in the projection data. They pose completely wrong

and, potentially, misleading information in basis image f 2.

FIG. 6. Results of the second experiment with two basis images.
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FIG. 7. Left: PWLSTV with η = 0.04, resulting in a relative pixel noise of

16 HU, equal to the noise value in AIR (right).

These basis images were designed in order to discuss four

cases in the corresponding reconstructed AIR result which are

delimited by yellow lines in Fig. 6.

Let us start with the upper right quadrant where both ba-

sis images have the same detail information (the one of the

original FBP image). They are identical except for the DKFZ

logo. When looking at the corresponding region in the recon-

structed weighting images one can see that the weights are

low in the regions where the resolution patterns are located

in both weighting images, and they are nearly identical. This

is because both basis images hold the same information and

in both cases there is a high correlation with the projection

data. When looking at the region of the DKFZ logo in the

reconstructed weighting images one can see that both weight-

ing images are low and almost equal in this particular region.

Intuitively, one would probably expect that the weights in

this region are high in the α1 image and low in the α2 im-

age to compensate for the false information. This case would

indeed lead to the same rawdata fidelity in the resulting im-

age. However, the values for the remaining two penalty terms

(the TV penalty and the mean contribution penalty) would be

larger. Thus, the overall lowest cost can be obtained when the

weights are equally low in both weighting images. In the AIR

reconstruction, the DKFZ logo is not visible anymore which

demonstrates that the AIR algorithm can compensate for false

information in the basis images.

Now let us look at the lower right part of the AIR recon-

struction. In this region, the information in basis image f 1

is completely missing. However, the corresponding region in

basis image f 2 is correct and has a high agreement with the

rawdata. Thus, α2 is high and α1 is low. The information will

be transferred from f 2 into the final AIR result.

In the lower left quadrant, the detail information in both

basis images is completely missing. In this case, the algo-

rithm tries to recover the detail information solely by the

weights in α1 and α2. Here, one can again see that the weights

are very similar in both reconstructed weighting images, be-

cause this results in the lowest cost for the TV and the mean

penalty.

In the upper left quadrant, we have the same constellation

as in Sec. 3.A.2 where f 1 corresponds to the FBP reconstruc-

tion while f 2 is degraded by blurring. Consequently, the cor-

responding weights are high in α1 and low in α2 because this

results in the lowest cost value for the sum of all three penalty

functions. One would probably expect that the weights in the

regions of the line patterns are about 1 in α1 and about 0 in α2.

This could be expected when one only considers the rawdata

fidelity penalty. However, this would increase the other two

penalty terms which demand smoothness in the reconstructed

weighting images, and the overall cost would not be at the

minimum.

3.A.4. Three basis images

In this section, we present results of the AIR algorithm

using three basis images. Moreover, we incorporate prior

knowledge into the proposed method by applying the edge-

preserving bilateral filter, described in Sec. 2.E, on some of

the basis images. This section shows the performance of the

algorithm regarding image quality. Figure 2 shows the results

of the experiments in this section. Basis image f 1 again is the

FBP reference reconstruction. The second basis image is a

sharp FBP reconstruction which is postprocessed by the bi-

lateral filter. The sharp FBP is obtained by convolving the

sinogram with the kernel (−1/3, 5/3, −1/3) prior to recon-

struction. The sharp FBP reconstruction performs well in the

high contrast resolution patterns due to its high spatial reso-

lution but performs bad in homogeneous regions due to the

high noise. We want to transfer the wanted information of

the sharp FBP reconstruction into our final result. We can

perform edge-preserving bilateral filtering30 to reduce back-

ground noise without degrading the high contrast structures.

To do so we use a high value for the domain filter σ f = 500

HU, and a large range of σ x = 4 mm for strong noise sup-

pression and apply it to the sharp FBP reconstruction. The re-

sulting basis image f 2 can be seen in Fig. 2. One can see that

the high contrast structures are preserved but the low contrast

structures are degraded leading to loss of anatomical informa-

tion in f 2. However, this poses no disadvantage when at least

one basis image still contains this anatomical information.

This is an advantage over standard regularization approaches,

where one has to adapt filter parameters carefully. In the AIR

algorithm, we can choose extreme filter settings for the var-

ious basis images to achieve a strong noise suppression. To

generate basis image f 3, we apply the bilateral filter on the

standard FBP reconstruction with a similar setting as before.

The same range of σ x = 4.0 mm is used, to achieve high

noise suppression, but a smaller domain filter of σ f = 100

HU is used. The resulting basis image f 3 has low noise, simi-

lar to the basis image f 2 in Sec. 3.A.2 with the difference that

most of the low contrast anatomical information is preserved

through the edge-preserving bilateral filter. The result of AIR

can be seen in Fig. 2. One can see in row three of Fig. 2 that

the AIR method has the best high contrast resolution. Low

contrast structures are preserved as well. The results of the

quantitative comparison are summarized in Table I and Fig.

5. Figure 5(a) shows the contrast-resolution plots for the com-

pared algorithms. One can see that AIR preserves the resolu-

tion of the sharp FBP reconstruction all the way to the resolu-

tion limit. At the same time, it sustains the lowest noise value.

Table I shows the results for the CNR analysis and the agree-

ment of the compared algorithms with the ground truth. AIR
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FIG. 8. Results of the patient data at constant zoom factor. The figure shows the FBP, the PWLSTV, and AIR with the corresponding basis images and weighting

images.

FIG. 9. Results of the patient data at constant zoom factor. The FBP result is compared to PWLSTV with η = 0.02 and with AIR. The windowing is C = 0 HU,

W = 1000 HU.
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outperforms the remaining algorithms. Only the PWLSTV

reconstruction with η = 0.04 performs better referring to

CNR(A) and CNR(B) with the downside of oversmoothed

high and low contrast resolution patterns. Figure 7 shows the

result of the PWLSTV with η = 0.04 and AIR enlarged. The

parameter η was chosen so that the resulting relative pixel

noise is the same as in AIR. Here, one can clearly see the

trade-off between low noise and resolution. With higher regu-

larization parameters η the relative pixel noise decreases and

at the same time anatomical details, which have a contrast

in the order of magnitude of the noise, will disappear, which

can be seen in the high contrast and low contrast resolution

patterns of the PWLSTV in Fig. 7. AIR, however, can man-

age to maintain the detail information at the same noise level,

thus improving the trade-off between noise and resolution. We

can conclude, that the AIR algorithm appears to successfully

maintain anatomical information from the basis images best

representing the ground truth by taking the rawdata fidelity as

underlying constraint. Finding optimal choices for the basis

images will be the object of future research.

3.B. Patient data

To confirm the results of the phantom study, we used pa-

tient data acquired with a Somatom Definition Flash scanner.

A sequence scan with 1160 projections at 100 kV was ac-

quired. The scanner has 736 detector columns and 64 active

detector rows. We used the data of the two center rows for

a 2D reconstruction. The reconstructed field of view has a di-

ameter of 500 mm comprising Nx × Ny = 1024 × 1024 pixels

resulting in a grid spacing of �x = �y = 0.49 mm. Figure 8

shows the basis images and the corresponding reconstructed

weighting images. The same settings for β = 0.01, γ = 0.02

and the bilateral filter for the basis images f 2 and f 3 are used

as in Sec. 3.A.4. Figure 9 shows the results of the methods

compared (FBP, PWLSTV, AIR) enlarged for better visual in-

spection. Figure 10 shows the complete transversal slice of

FIG. 10. Results of the patient data. Comparison of the proposed method

with the FBP result. The windowing is C = 0 HU, W = 1000 HU.

the patient reconstructed with FBP and with AIR. The pa-

tient data results indicate that the AIR algorithm is, poten-

tially, capable of achieving noise reduction values in the range

of 50%, compared to the FBP reconstruction, without alter-

ing the anatomical information. Figure 11 shows line profiles

FIG. 11. Line profiles through (a) the vertebra, (b) the ridge. The locations of the line profiles are indicated with the lines.
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which are drawn through the vertebra and the ridge. One can

see that AIR achieves the highest contrast, at the high contrast

structures.

4. CONCLUSION AND OUTLOOK

In this work, we present a new method to incorporate

prior knowledge into iterative reconstruction by using basis

images which are combined by reconstructing voxel-specific

weighting coefficients. Our method is called AIR. We were

able to demonstrate in a phantom study, that the AIR al-

gorithm is capable of reducing the relative pixel noise by

up to 50% and at the same time maintaining the anatomical

information given an adequate choice for the basis images.

Any kind of filtering or regularization can be used to gener-

ate the basis images, thus making the method very flexible.

The applicability of the proposed method on patient data was

also demonstrated for patient data, measured with a Somatom

Definition Flash scanner (Siemens Healthcare, Forchheim,

Germany).

As one is very flexible with the choice of basis images fu-

ture research may be concerned with finding optimal choices

for basis images and with finding optimal choices for the val-

ues db, which control the default contribution of each basis

image to the voxel-specific weighted linear combination. One

example of a possible special application could be cardiac CT.

Here AIR can, potentially, be used to reduce blooming arti-

facts and to optimize dose usage by using one basis image

with high spatial and temporal resolution for reduced bloom-

ing artifacts and one basis image with lower spatial and tem-

poral resolution which contains all redundant data obtained

during the cardiac scan.

Another direction of future investigation could be a slight

generalization of the cost function

C(α) =

∥

∥

∥

∥

∥

X ·

(

B
∑

b=1

αb ◦ f b

)

− p

∥

∥

∥

∥

∥

2

W

+ β

B
∑

b=1

Pb(αb)

+ γ

B
∑

b=1

‖αb − db‖
2
2 + δP

(

B
∑

b

αb ◦ f b

)

.

This includes more general penalties Pb for each alpha im-

age, and it includes an additional penalty term P that reg-

ularizes the final image f =
∑B

b=1 αb ◦ f b. In this paper,

Pb = TV and P = 0. Last but not least one should focus

on the computational complexity of AIR in order to reduce

its computation time. Using ordered subsets may probably

increase the convergence rate by one or two orders of

magnitude.

Summarizing, AIR is a new type of iterative CT image re-

construction algorithm that appears to be highly flexible. Its

potential to reduce image noise while preserving spatial reso-

lution was demonstrated in this paper. AIR is able to automat-

ically select desired properties from the basis images while

it simultaneously prevents false information to propagate to

the final image. This may be an advantage over conventional

types of iterative image reconstruction algorithms. Future in-

vestigations may reveal additional interesting applications for

AIR.
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