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Abstract
In recent years, more 3D protein structures have become available, which has made the analysis of large molecular
structures much easier.There is a strong demand for geometric models for the study of protein-related interactions.
Alpha shape and Delaunay triangulation are powerful tools to represent protein structures and have advantages in
characterizing the surface curvature and atom contacts. This review presents state-of-the-art applications of alpha
shape and Delaunay triangulation in the studies on protein^DNA, protein^protein, protein^ligand interactions
and protein structure analysis.
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INTRODUCTION
The study of proteins, one of the essential elements

in biological organisms, has attracted scientists’ atten-

tion for hundreds of years since it was first recognized

by Antoine Fourcroy in the 18th century. More im-

portantly, protein-related interactions such as pro-

tein–DNA, protein–protein and protein–ligand

interactions take place in almost every living organ-

ism. As the key process of gene inheritance, protein–

DNA interaction involves DNA replication, DNA

transcription and nucleosome remodeling [1–4].

Protein–protein interaction plays a crucial role in

cellular function [5, 6] and studies of protein–protein

interaction provide a better understanding of the

functional organization of the proteome [7].

Among the protein-related interactions, protein–

ligand interaction has been paid the most attention

because it is related to the understanding of protein

functions and drug development [8, 9].

As tremendous progress is being made in structural

biology, more high-resolution 3D molecular

structures are becoming available. There is a growing

demand for a 3D geometric model to represent and

study protein-related interactions. Here, we review

the alpha shape [10] and its underlying model

Delaunay triangulation [11]. The 3D Delaunay tri-

angulation, applied for the first time in the analysis of

protein structure by Singh et al. [12], is a unique

partition of 3D space with non-overlapping tetrahe-

drons. In a protein structure, the Delaunay triangu-

lation is a powerful tool to represent the relationship

between the neighboring atoms. Singh et al. derives

five classes of every four neighboring Ca atoms and

develops a four-body potential to evaluate

sequence-structure compatibility for solving the in-

verse protein folding problem. The alpha shape is

proposed by Edelsbrunner and Mucke for comput-

ing the 3D structure of a finite point set in space

based on the Delaunay triangulation. It is first applied

to the field of structural biology by Liang et al.
[13, 14] to compute the molecular area and volume

and detect inaccessible cavities in proteins. In the
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past, Poupon presented a review focusing on the

application of the Voronoi tessellation in studying

protein structure and interaction [15]. However,

great development has taken place in the field of

structural biology where a review of the

state-of-the-art methods is required. We therefore

present a review of the recent applications of alpha

shape and Delaunay triangulation in the studies of

protein–DNA, protein–protein, protein–ligand

interactions and some other protein structure studies.

ALPHA SHAPE ANDDELAUNAY
TRIANGULATION
Delaunay triangulation or Delaunay tessellation, the

dual shape of the Voronoi diagram enables a unique

division of the space to be made based on nearest

neighbors. We can define the Delaunay triangulation

based on its duality with a Voronoi diagram. Given a

set of points S ¼ Piji ¼ 1,2 . . . , nf g, the Voronoi

diagram (Figure 1A) is the set of cells, Vi defined by:

Vi ¼ PjdðP,PiÞ � dðP,PjÞ,8j 6¼ i
� �

: ð1Þ

where dðP,PiÞ is the distance between P and Pi. In

other words, Vi is the locus of the points closer to Pi
than any other points in S. Then, the Delaunay tri-

angulation can be computed as the dual shape of the

Voronoi diagram (Figure 1B). Using a 3D Delaunay

triangulation, one can easily get the atom contacts

which are represented by the edges in the Delaunay

triangulation (Figure 2A).

Alpha shape can be derived from Delaunay triangu-

lation, which offers a concrete definition of a shape to

represent the structure of a set of points. Two versions

of alpha shape have been developed: the basic alpha

shape (Figure 1C) and the weighted alpha shape

(Figure 1D). For the basic alpha shape, we consider

a set of none weighted points M and a k-simplex sT

is defined as subset T �M of size Tj j ¼ kþ 1,

where k is 0, 1, 2 or 3. A ball b with b \M ¼ 0 is

defined as an empty ball. The Delaunay triangulation

can be obtained as the collection of all the k-simplex

that have empty open balls b with T ¼ @b \M
where @b is the boundary of ball b. We can see that

the Delaunay triangulation contains the vertices,

edges, triangles and tetrahedrons which are repre-

sented by the 0-simplex, 1-simplex, 2-simplex and

3-simplex, respectively. Therefore, the alpha shape

can be obtained as a subset of the Delaunay triangu-

lation which is controlled by the value of a. Define an

a-ball as an open ball with radius a, 0 � a � 1,

where a 0-ball is a point and a 1-ball is an open

half space. Similarly, an a-ball B is defined as empty

if B \M ¼ 0. For 0 � k � 2, a k-simplex sT is said

to be a-exposed if there is an empty a-ball B with

T ¼ @B \M, where @B is the boundary of a-ball B.

Then, the alpha shape of points set M can be repre-

sented by a polytope which consists of all the

a-exposed sT for 0 � k � 2. We can see that the

Delaunay triangulation is actually a collection of

alpha shapes with 0 � a � 1. The definition of

the weighted alpha shape is similar, but now we con-

sider a set of weighted points W. First, we define the

idea of orthogonal and suborthogonal: two points P1

and P2 with radii r1 and r2 are said to be orthogonal

if P1 � P2j j2¼ r21 þ r22 while they are defined as sub-

orthogonal if P1 � P2j j2> r21 þ r22. For a given value

of a, the weighted alpha shape contains all the k-sim-

plex sT such that there is an a-ball B orthogonal to

the points in sT and suborthogonal to the other

points in W. Using alpha shape to represent the sur-

face of the protein structure (Figure 2B), one can

easily extract the geometric properties of the protein

surface.

Several libraries have been established to calculate

Delaunay triangulation and alpha shape such as the

Qhull [16] and the Computational Geometry

Algorithm Library (CGAL) [17]. Qhull is developed

by Barber et al. based on the Quickhull algorithm

which offers a programmable library to compute

the convex hull, Delaunay triangulation and

Voronoi diagram. CGAL is an open source project

which aims to provide efficient and reliable geomet-

ric algorithms. Compared with Qhull, CGAL offers a

wider range of geometric computation including

polygons, convex hull, Delaunay triangulation,

Voronoi diagram, alpha shape and mesh generation.

PROTEIN^DNA INTERACTION
Early studies of protein–DNA interactions aim to de-

tect genetic codes in the DNA sequence [18, 19].

However, as more 3D structure of protein–DNA

complexes have become available, researchers find

it difficult to encode protein–DNA interaction

using simple codes due to the various spatial relation-

ships between protein and DNA [20]. Therefore,

more attention is being paid to the geometric prop-

erties in protein–DNA interactions. Traditional

methods in studying protein–DNA interactions usu-

ally focus on pairwise atom–atom distance potential.

Robertson and Varani [21] apply a distance-
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Figure 1: Construction of the Delaunay triangulation and alpha shape. (A) Voronoi diagram for a set of points.The
Voronoi cell for a point is the locus closer to the given point than the other points. (B) Delaunay triangulation is
the dual shape of the Voronoi diagram which can be obtained by connecting all the points that share common
Voronoi faces. The edges of Delaunay triangulation (bold segments) represent the connection network of the
points. (C) The basic alpha shape of a set of non-weighted points. The dark coloured sphere is an empty a-ball
with its boundary connects M1 and M2. The segment between M1 and M2 defines an edge of the alpha shape.
(D) The light coloured spheres represent a set of weighted points. The dark coloured sphere represents an a-ball
B which is orthogonal toW1 and W2. Define r1 and r2 as the radii (weight) of point B and W2. B is orthogonal to
W2 because the distance between B and W2 meets the condition B�W2j j2¼ r21 þ r22.

Figure 2: 3D Delaunay triangulation and alpha shape of the molecular structures. (A) Delaunay triangulation of a
protein^DNA complex. The edges in the Delaunay triangulation represent the atom contacts in the protein^
DNA complex. (B) Alpha shape of a protein^DNA complex. The alpha shape characterizes the geometric proper-
ties of the complex surface. (C) Alpha shape of the protein in the complex.The interface of the protein^DNA com-
plex can be obtained by computing the difference between the alpha shapes of the complex and the protein. This
figure is adopted from diagrams in [22].
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dependent statistical potential method by considering

the interface atom–atom distance in a protein–DNA

complex, which shows a good performance in dis-

criminating the native protein–DNA complexes

from the docking decoy complexes.

Recently, Zhou and Yan [22] apply alpha shape to

represent the interface of protein–DNA complexes

and develop a new discriminatory function based

on surface curvature. They use alpha shape to repre-

sent the surface of the protein–DNA complex

(Figure 2B) and the corresponding protein

(Figure 2C), respectively. The interface of the com-

plex can be obtained by computing the difference

between these two alpha shapes. For the interfaces,

they apply solid angle to represent the surface curva-

ture of the interface atoms. The discriminatory func-

tion is established based on conditional probability:

S ¼ �
X

i

ln
Pc Sai,ri,aið Þ Cjð Þ

P Sai,ri,aið Þð Þ
: ð2Þ

where Sai stands for the solid angle of the interface

atom i, ri stands for the residue type and ai stands for

the atom type. The solid angle is defined as follow:

Let OABC be the vertices of tetrahedron with origin

at O subtended by the triangular face ABC and fab,

fbc, fac be the dihedral angle between OAC and

OBC, OAB and OAC, and OAB and OBC, re-

spectively. The solid angle of O can then be calcu-

lated as � ¼ fab þ fbc þ fac � p. The solid angle of

interface atom i can be obtained by summing up the

solid angle values of all tetrahedrons each of which

has a vertex at atom i in the alpha shape.

Pc Sai,ri,aið Þ Cjð Þ represents the low count corrected

[23] probability of the correct protein–DNA inter-

face having a set of features Sai,ri,aið Þ while

P Sai,ri,aið Þð Þ stands for the probability of any struc-

ture having a set of features Sai,ri,aið Þ.

The results [22] show that the curvature-dependent

potential (average z-score� 7.38) outperforms the

distance-dependent potential (average z-score� 6.8)

in discriminating the native protein–DNA complexes

from the low RMSD decoy complexes. They also

demonstrate that the curvature-dependent method

shows good performance (average z-score� 8.17)

in discriminating the native complexes from the

high surface-complementarity scored [24] decoy

complexes. A further study of the interface features

of the protein–DNA complex by Zhou and Yan [25]

using alpha shape and support vector machine also

shows good results in predicting unbound DNA-

binding proteins. These studies indicate that the

surface curvature plays an important role in protein–

DNA interaction.

Using alpha shape and Delaunay triangulation,

one can make a concise reconstruction of the pro-

tein–DNA structure. They are not only useful in

representing the geometric properties of the structure

but also powerful tools in representing the relation-

ships among atoms or residues in the protein–DNA

structure. Mathe etal. [26] use Delaunay triangulation

to represent the four neighboring residues in the

protein structure and develop a four-body potential

to predict the transactivation activity of missense mu-

tations in the DNA-binding domain of tumor sup-

pressor TP53. In their work, they define the centers

of mass of the residue side chains as the vertexes in

Delaunay triangulation and represent the four-near-

est-neighbor residues using the quadruplets in the

Delaunay triangulation. The four-body potential

can be represented as follows:

qijkl ¼ log
fijkl
pijkl

: ð3Þ

where i, j, k and l are the four amino acids that

compose the quadruplet; fijkl is the frequency of the

quadruplet in the training set and pijkl is the fre-

quency of random occurrence of the quadruplet.

PROTEIN^PROTEIN INTERACTION
A variety of methods have been developed for the

prediction of protein–protein interaction, mostly

based on feature extraction and machine learning

methods to perform prediction [27]. Bradford and

Westhead [28] extract a set of features including

surface shape, conservation, electrostatic potential,

hydrophobicity, residue interface propensity and

solvent accessible surface area (ASA) to identify pro-

tein–protein binding sites based on SVM. Porollo

and Meller [29] propose the use of the difference

in observed and predicted relative solvent accessibil-

ity as a feature and apply different machine learning

methods to predict protein–protein interactions.

Therefore, the key issue in the study of protein–

protein interaction is actually the problem of pro-

tein–protein surface or interface representation and

feature extraction.

Ban etal. [30] use Delaunay triangulation to extract

the interface of protein–protein complexes and

define different level-of-focus hierarchy of the inter-

face. Using the level-of-focus hierarchy of the inter-

face, they develop a function to distinguish hot-spot

residues from neutral residues. The hot-spot residues
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are a small number of residues that contribute a large

amount of binding energy in the interaction which

are usually located in the interface [31]. The function

is defined as follows:

hðRÞ ¼
Xk

i¼0

wi � areaðpiÞ: ð4Þ

where R is a residue, pi is a polygon in the interface

generated by the side-chain atoms in R, wi is the

fraction of the interface surface that belongs to R
before pi is removed. The function shows a better

performance than the buried surface area method

and show equal performance with the physical

model proposed by Kortemme and Baker [32] in pre-

dicting the hot-spot and neutral residues (Table 1).

Similar to the Delaunay triangulation, alpha shape

also provides a good representation of the protein

surface. Albou et al. [33] apply alpha shape to recon-

struct the surface of proteins and use the connectivity

provided by the alpha shape to extract protein bind-

ing sites. The method shows a good signal-to-noise

ratio (SNR) with a value of 4.9 and a maximum

overlap of the binding site residue with a value of

65.9%, which outperforms a previous approach pro-

posed by Jones and Thornton [34] with SNR 2.2

and maximum overlap 56%. They also develop a

local surface curvature C(a) to characterize the sur-

face atoms of the protein:

CðaÞ ¼
X

i2surfacepatch

�ðiÞ
dða,iÞ

: ð5Þ

where d(a,i) is the distance over the surface in the

alpha shape between atom a and i, (i) is the solid

angle in the alpha shape of atom i. The local surface

curvature of a residue is calculated as the means of

C(a) for all the atoms in the residue. This feature

shows good correlation with the ASA [35] by

Pearson correlation coefficient of 0.86 for atoms

and 0.89 for residues, which is useful to analyze

the protein–protein interface properties.

Protein–protein interaction can also be character-

ized by the contact patterns in the interface. Khashan

et al. [36] applies almost Delaunay triangulation to

analyze the contacts of the residues in the interface

of protein–protein complexes. Almost Delaunay tri-

angulation is developed by Bandyopadhyay et al. [37]

to solve the problem of imprecision of atom coord-

inates in molecular structures. A robust structure can

be obtained by almost Delaunay triangulation which

shows tolerance to a small change of the coordinates

in the molecular structure. According to this prop-

erty, protein–protein contact patterns in different

complexes can be revealed by the subgraphs in the

almost Delaunay triangulation. Khashan et al. use the

side chain centroids to represent the protein–protein

complex in residue level and calculate the interaction

residue network using almost Delaunay triangula-

tion. These centroids and the edges connecting

them form the contact patterns in protein–protein

interaction.

PROTEIN^LIGAND INTERACTION
A major issue in the study of protein–ligand inter-

action is ligand binding sites prediction. The most

common approach is to detect the pockets or cavities

in the protein surface, which is also known as the

geometric-based method. Depending on the types of

algorithms used, the geometric-based methods can

be divided into three categories: grid scanning,

probe sphere and alpha shape. PocketPicker [38]

and LIGSITEcsc [39] are widely used grid scanning

methods which map the protein onto a 3D grid

and scan for pockets from different directions

(Figure 3A). PASS [40] is a representative probe

sphere method which uses probe spheres to fill pock-

ets layer by layer and select active site points to rep-

resent ligand binding sites (Figure 3B). A typical

alpha shape method CAST was developed by

Liang et al. [41] using alpha shape to represent the

protein surface and they apply discrete triangles flow

to detect the pockets (Figure 3C). Compared to the

other methods, alpha shape-based methods rely on

the original geometric information from the protein

structure and do not rely on other information such

as the grid size and searching directions.

Recently, Guilloux et al. [42] used the alpha

sphere for the detection of pockets (Figure 3D) in

the protein surface and developed Fpocket. Alpha

sphere is the same concept as a-ball mentioned

before. In 3D space, an alpha sphere contains four

Table 1: Comparison of accuracy for different protein
binding site prediction methodsa

Method Hot-spot residues
identified (%)

Neural residues
identified (%)

Ban et al. 72.4 72.6
BAS 65.0 64.3
Kortemme and Baker 79.0 68.0

aThe results are adopted from [30].
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atoms on the protein surface which have equal dis-

tance to the alpha sphere center. Therefore, the

radius of an alpha sphere reflects the local curvature

defined by the four atoms that it contains. The basic

idea of Fpocket is to find alpha spheres which have

proper radii to represent the clefts and cavities on the

protein surface. The process for detecting the ligand

binding sites in Fpocket is shown below:

(1) Identify proper alpha spheres using maximum

and minimum radius thresholds.

(2) Clustering alpha spheres from step 1 to obtain

potential ligand binding sites.

(3) Rank the potential ligand binding sites according

to their properties such as number of alpha

spheres, hydrophobic density and polarity.

The results show that Fpocket outperforms the

previous methods in predicting ligand binding sites

in both bound and unbound protein structures

(Table 2). Fpocket shows a very high success rate

in detecting the true ligand binding sites within its

top three predicted binding sites, which indicates

good prediction power.

Prediction of potential binding sites is only the first

step in protein–ligand interaction study. We are

Figure 3: Ligand binding sites detection methods. (A) PocketPicker and LIGSITEcsc are based on grid scanning.The
protein is mapped to a grid system and the pockets can be obtained by scanning the grid points near the protein
surface in different directions. (B) PASS is based on probe sphere method. This method uses probe spheres to fill
the pockets layer by layer and active site points to represent pockets. (C) CAST applies alpha shape to represent
the protein structure and uses triangles flow to identify empty triangles (triangle 2 in dotted segments) to represent
pockets. (D) Fpocket uses alpha spheres with different radii to represent different roughness of the protein surface.
The pockets can be identified by clustering the alpha spheres with proper radii.
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more interested in the molecular function and prop-

erties of these binding sites. An extended version of

CAST, established by Dundas et al. [43] is called

CASTp. CASTp further examines the output

residues of CAST and annotates the function infor-

mation of these residues from different databases

[44–46]. Tseng and Li introduce a concept of split

pocket to identify the functional surface of the

protein. They use the same strategy in CAST to

compute the pockets in the protein surface but

with flexible probe (solvent) radii. In the weighted

alpha shape model, if we consider solvent molecules,

the corresponding radius for an atom i is riþ rs where

ri is the radius of the atom and rs is the radius of the

solvent molecule. Tseng and Li assigned different

probe radii according to the physicochemical proper-

ties [47, 48] of the atoms. Using split pocket, they

found that function surfaces tend to be better con-

served in evolution than the other regions of the

protein. This result demonstrates that shape analysis

is useful to infer protein functions and classify differ-

ent protein families.

In protein–ligand interaction, hydrogen bonding

plays a significant role and has been proven to be the

major force maintaining the stability of protein–

ligand complexes [49]. Recently, Zhou and Yan

[50] used alpha shape to reveal geometric patterns

of hydrogen bonding in protein–ligand interaction.

They analyze the curvature of the donor, hydrogen

and acceptor atoms in 1072 hydrogen bonds which

are represented by the solid angles extracted from the

alpha shape of the protein–ligand complexes. The

hydrogen bonds can be classified into four types

[50]: DPHSALS, DPSHSALS, DLHSAPS and

DLSHSAPS, where D, H and A stand for donor,

hydrogen and acceptor atoms, respectively, subscripts

P and L represent protein and ligand, respectively,

and subscript S indicates that the atom is on the

surface of the alpha shape. Results show that hydro-

gen and acceptor atoms are spatially matched in

DPHSALS and DLHSAPS hydrogen bonds while

donor and acceptor atoms are spatially matched in

DPSHSALS and DLSHSAPS hydrogen bonds. They

show that the spatially matched hydrogen bonds

have average association energy of �10.65 kcal/mol

while the unmatched ones �9.97 kcal/mol. That

means that spatially matched hydrogen bonds require

larger energy in the association process than the un-

matched ones. This result demonstrates that the spa-

tially matched hydrogen bonds show larger bond

strength, which indicates these hydrogen bonds

play a more important role than the others in pro-

tein–ligand interaction.

OTHER APPLICATIONS
Alpha shape and Delaunay triangulation are not only

useful in the study of protein-related interactions but

also applicable to other studies of protein structures.

Here, we review some promising applications of

alpha shape and Delaunay triangulation to the studies

of protein packing, structural alignment and channel

detection in protein structure.

Protein packing
Distance-dependent potential is a useful method in

studying protein packing. Samudrala and Moult [51]

propose the use of pairwise atom–atom distance po-

tential and develop an all-atom distance-dependent

discriminatory function for the prediction of protein

structure. However, there are disadvantages for con-

sidering all atom pairs when analyzing a large protein

structure or a large scale of protein structure data. It is

computationally expensive and it may contain re-

dundant information. In the past, one way to

reduce the atom pair data is to use a residue pair

which considered only Ca or Cb atom contacts in-

stead of all atom contacts in a protein structure.

However, these approaches were mostly based on

distance cut off criteria which were proven to con-

tain atom pairs with no significant physical inter-

action [52, 53]. Li et al. [54] introduce the idea of

alpha contact instead of distance cut off to analyze

residue contact in protein structure. They use the

edges in alpha shape to identify the contact of

atoms within a protein structure, which show good

performance in discriminating native structures from

decoys. Later, Zomorodian et al. [55] demonstrate

that using alpha shape to filter the set of all residue

Table 2: Percentile success rates in ligand binding sites
prediction for 48 unbound/bound protein structuresa

Method Top 1 Top 3

Unbound Bound Unbound Bound

Fpocket 69 83 94 92
PocketPicker 69 72 85 85
LIGSITEcsc 71 79 ^ ^
PASS 60 63 71 81
CAST 58 67 75 83

aThe results are adopted from [42].
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pairs leads to a significant reduction of the number of

pairs without loss of information and discrimination

power.

Another challenge in protein packing is the pre-

diction of the tertiary structure. While previous stu-

dies focus on the prediction of protein secondary

structure. Singh et al. [12] first establish a four-body

potential based on Delaunay triangulation. They

demonstrate that the tetrahedral motifs found in

their work show a strong correlation with the pro-

tein secondary structure. Recently, Day et al. [56]

represented the contact in the protein structures

with Delaunay triangulation and found tertiary

motifs by clustering the relative packing group.

Structural alignment
Structural alignment is an important tool to study the

homology between different proteins and reveal bio-

logical functions. Ilyin et al. [57] apply Delaunay

triangulation in structural alignment and have

developed TOPOFIT. TOPOFIT is based on the

superimposition of the Delaunay triangulation pat-

terns defined by the contact structures [58]. Using a

maximum topological match threshold, TOPOFIT

is able to obtain a good balance between low RMSD

and large alignment length. However, similar to pro-

tein packing, structural alignment faces a computa-

tional complexity problem. In order to reduce the

computational complexity, Roach et al. [59] propose

the use of the edges in Delaunay triangulation to

represent the relations among the Ca atoms. They

divide the edges into three classes according to their

length, and denote short, intermediate and long

interactions. Using this transformation, the structure

alignment between two 3D proteins is changed into

a 1D string sequence alignment problem. They show

that the sequential representation greatly reduces the

computational complexity with little loss of

information.

Channel detection
The first algorithm HOLE for the study of the chan-

nel inside a protein was developed by Smart et al.
[60]. HOLE starts from a user defined point and

finds the route by squeezing a ball through the chan-

nel. Petrek et al. [61, 62] develop CAVER and

MOLE, which use convex hull and Voronoi diagram

to represent the protein structure, respectively. Both

CAVER and MOLE apply Dijkstra’s graph search

algorithm to detect channels inside a protein.

Compared to CAVER, MOLE is able to give

smoother channel profiles and more precisely loca-

lized channel bottlenecks while significantly redu-

cing the errors. Recently, Yaffe et al. [63] propose

the application of alpha shape and medial axis to

study the protein structure and develop MolAxis to

identify the channels in proteins. They use alpha

shape to approximate a subset of the medial axis

for the complement of the protein. Using this

subset of medial axis, the channels are detected by

the corridors which are probable routes taken by

small molecules passing through channels. They

demonstrate that MolAxis outperforms the previous

algorithms in the following aspects: the detected

channels from MolAxis show a better balance be-

tween length and clearance due to the global opti-

mization approach of the pathways; using fewer

vertices for approximation, MolAxis requires a

much shorter running time than the previous algo-

rithms; MolAxis provides an adjustable resolution

which guarantees smaller errors.

DISCUSSION
The state-of-the-art applications in the studies of

protein-related interactions and protein structure

analysis demonstrate the advantages of alpha shape

and Delaunay triangulation in solving these structural

biology problems. Alpha shape and Delaunay tri-

angulation are robust techniques for reconstructing

the molecular surface and characterizing the curva-

ture of surface atoms, representing the atom contacts

inside or between molecules and extracting hierarch-

ically structural information of the molecules.

Although alpha shape and Delaunay triangulation

are useful in tackling many structural biology prob-

lems, they also have disadvantages in some studies

such as molecular volume and surface area compu-

tation. These disadvantages are caused by the struc-

tural composition of the alpha shape or the Delaunay

triangulation. In contrast, The Voronoi diagram

(dual shape of the Delaunay triangulation) is a

good model for molecular volume computation

[15]. The Voronoi diagram provides an accurate

measure of molecular volume using Voronoi cells.

Compared with alpha shape and Delaunay triangu-

lation, a better model in computation of molecular

surface area is the Connolly surface [64] which is also

known as solvent accessible surface because the

Connolly surface model offers a smoother represen-

tation of the molecular surface that it can estimate

the molecular surface area precisely. However, as
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discussed earlier, the alpha shape and Delaunay tri-

angulation can be used for characterizing the curva-

ture of molecular surface atoms while it would be

difficult to do so with the Voronoi diagram or the

Connolly surface. The aforementioned discussion

shows that the advantages and disadvantages of dif-

ferent geometric models are actually complementary

to each other. In other words, taking advantages of

one model may overcome the disadvantages of an-

other model. For example, if we need the informa-

tion of both surface atom curvature and molecular

volume, we can employ both alpha shape and

Voronoi diagram rather than using either of them

alone.

Some biomolecular interaction-related problems

cannot be solved using the geometric methods dis-

cussed earlier. They include the discovery of evolu-

tionary conservation and free energy calculation,

which require techniques of sequence alignment

and molecular dynamics. BLAST [65] is a

well-known sequence alignment method capable

of searching for conserved domain in both DNA

and protein sequences. A widely employed software

system for molecular dynamics is Amber [66] which

makes use of force fields for protein simulation and

free energy calculation. For some protein-related

studies, a combination of different methods is

needed. For example, Capra et al. [67] integrate se-

quence- and geometric-based methods in the detec-

tion of protein ligand binding sites. Schmidtke et al.
[68] improve Fpocket with molecular dynamics

and develop MDpocket to identify cavities in protein

structures. Therefore, it is useful to combine geo-

metric approaches with sequence- and energy-

based methods for solving difficult problems.

CONCLUSION
With the increased computer power, it is now pos-

sible to analyze large-scale 3D molecular structures.

Alpha shape and Delaunay triangulation provide

robust geometric models for such analysis. Alpha

shape and Delaunay triangulation can be applied to

the characterization of surface curvatures and atom

contacts in protein structures and many studies of

protein-related interactions. In this review, we

have summarized the most recent development of

alpha shape and Delaunay triangulation in the studies

of protein–DNA, protein–protein, protein–ligand

interactions and protein structure analysis. However,

many structural biology problems are still unsolved

and we expect that alpha shape and Delaunay tri-

angulation can be useful in tackling these problems.

For example, much more research is needed to study

protein flexibilities and conformational space. Alpha

shape and Delaunay triangulation may provide useful

mathematical models for these tasks.

Key Points

� As more 3D protein structures become available, there is a
growing demand for 3D geometric models to represent and
study protein-related interactions.

� Alpha shape and Delaunay triangulation have been applied suc-
cessfully in the studies of protein^DNA, protein^protein, pro-
tein^ligand interactions and protein structural analysis.

� Alpha shape andDelaunay triangulation canprovideusefulmath-
ematicalmodels to tackle unsolved structural biology problems,
such as the investigation of protein flexibilities and conform-
ational space.
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