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Abstract

The main object of this paper is to introduce an alternative form
of generate asymmetry in the normal distribution that allows to fit
unimodal and bimodal data sets. Basic properties of this new distribu-
tion, such as stochastic representation, moments, maximum likelihood
and the singularity of the Fisher information matrix are studied. The
methodology developed is illustrated with a real application.
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1. Introduction

The univariate skew-normal (SN) distribution has been studied by Azzalini
(1985, 1986), Henze (1986), Pewsey (2000), and others, and synthetized
in the book edited by Genton (2004). In the univariate case, this type of
distributions are denominated skew-symmetric, and they have been used in
multiple applications to study the asymmetric behavior of empirical data
sets coming from different research areas. Thus, in the last years, differ-
ent families of skew-symmetric distributions have been generated, some of
which are related with the SN model introduced by Azzalini (1985). Exam-
ples of these families are those considered by Arellano-Valle et al. (2004)
and Gómez et al. (2006). Most of those classes include the normal dis-
tribution as a particular case and satisfy similar properties as the normal
family. Mudholkar and Hutson (2000) proposed an asymmetric normal
family of distributions with a different structure of the SN class considered
by Azzalini (1985), which is called epsilon-skew-normal (ESN) and is de-
noted {ESN( ) : | | < 1} where represents the asymmetry parameter, so
that ESN(0) corresponds to the normal distribution. On the other hand,
there has been a number of works exploring bimodality arising from skew
distributions. See Ma and Genton (2004), Azzalini and Capitonio (2003),
Arellano-Valle et al. (2005) and Elal-Olivero et al. (2009).

The aim of this article is to introduce a new family of distributions that
is flexible enough to support both unimodal and bimodal shape. Many
data sets arising in practice can be adequately modeled in this way and so
the proposal plays a unifying role in this context.
This new family is called alpha-skew-normal (ASN) and is denoted by
{ASN(α) : α ∈ R} where α represents the asymmetric parameter with
effect of uni-bimodality, so that ASN(0) corresponds to the normal distri-
bution.

The rest of this article is organized as follow. Section 2 presents the
new family, and develops its main property. In particular, we show how
uni-bimodality shape are obtained. Section 3, shows important proba-
bilistic properties of the new family distribution, including the stochastic
representation. Section 4 considers maximum likelihood estimation, with
emphasis on the derivation of the Fisher information matrix. Real data
applications are reported in section 5. In what follows, density and accu-
mulative function of the standard normal distribution will be expressed as
φ(·) and Φ(·) respectively.
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2. Alpha-Skew-Normal Distribution

Definition 2.1. If a random variable Y has density function,

f(y) = y2φ(y), y ∈ R,(2.1)

then we say that Y is a bimodal-normal random variable. We denote this
as Y ∼ BN .

Definition 2.2. If a random variable X has density function,

f(x) =
(1− αx)2 + 1

2 + α2
φ(x), x ∈ R,(2.2)

where α ∈ R, then we say that X is a alpha-skew-normal random variable
with parameter α. We denote this as X ∼ ASN(α).

If X ∼ ASN(α), the following properties are deduced immediately from
the definition:

(i) If α = 0, then X ∼ N(0, 1).

(ii) If α→ ±∞, then X
d→ BN .

(iii) −X ∼ ASN(−α).

Proposition 2.1. The density function (2.2) has at most two modes.

Proof 2.1. Differentiating (2.2), we obtain

f 0(x) =
1

2 + α2

h
(−2α+ 2α2x)φ(x) + (2− 2αx+ α2x2)(−xφ(x))

i
=

φ(x)

2 + α2

h
(−α2x3 + 2αx2 − (2− 2α2)x− 2α

i
,

thus, f 0(x) has at most three zeros, hence f(x) has at most two modes.

Remark 2.1. Considering the cubic term inside the square brackets in
f 0(x), in proof above, and applying a numerical method, we conclude that
the transition from bimodality to unimodality of f(x) occurs around α =
±1.34.
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Figure 1 : Plots of the skewed density ASN(α) for different choice of
α.

Proposition 2.2. Let X ∼ ASN(α), then

E[X2k] =
2 + α2(2k + 1)

2 + α2

kY
j=1

(2j − 1), for k = 1, 2, 3, . . . ,(2.3)

E[X2k−1] = − 2α

2 + α2

kY
j=1

(2j − 1), for k = 1, 2, 3, . . . .(2.4)
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Proof 2.2. knowing that

E[Z2k] =
kY

j=1

(2j−1) and E[Z2k−1] = 0, for k = 1, 2, 3, . . . , when Z ∼ N(0, 1),

we obtain

E[X2k] =
1

2 + α2

³
2E

h
Z2k

i
− 2αE

h
Z2k+1

i
+ α2E

h
Z2(k+1)

i´
=

1

2 + α2

⎛⎝2 kY
j=1

(2j − 1) + α2
k+1Y
j=1

(2j − 1)]

⎞⎠
=

2 + α2(2k + 1)

2 + α2

kY
j=1

(2j − 1),

on the other hand

E[X2k−1] =
1

2 + α2

³
2E

h
Z2k−1

i
− 2αE

h
Z2k

i
+ α2E

h
Z2k+1

i´
= − 2α

2 + α2

kY
j=1

(2j − 1).

Proposition 2.3. Let γ1 and γ2 the indices of skewness and kurtosis re-
spectively of model ASN(α), then

− 0.811 < γ1 < 0.811 and − 1.3 < γ2 < 0.7489.(2.5)

Proof 2.3. Let X ∼ ASN(α). Using (2.3) and (2.4), we obtain

E[X] = µ1 = −
2α

2 + α2
, E[X2] = µ2 =

2 + 3α2

2 + α2
,

E[X3] = µ3 = −
6α

2 + α2
and E[X4] = µ4 =

6 + 15α2

2 + α2
.

The definition of γ1 and γ2, leads to

γ1 =
µ3 − 3µ1µ2 + 2µ31
(µ2 − µ21)

3
2

=
12α5 + 8α3

(3α4 + 4α2 + 4)
3
2

,

and

γ2 =
µ4 − 4µ1µ3 + 6µ21µ2 − 3µ41

(µ2 − µ21)
2

−3 = 15α8 + 120α6 + 168α4 + 96α2 + 48

(3α4 + 4α2 + 4)2
−3,

applying a numerical method, we obtain (2.5)
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Proposition 2.4. If F (t) is the distribution function of X ∼ ASN(α),
then

F (t) = Φ(t) + α

µ
2− αt

2 + α2

¶
φ(t).

Proof 2.4.

F (t) =
1

2 + α2

Z t

−∞
(2− 2αx+ α2x2)φ(x)dx

=
1

2 + α2

∙
2

Z t

−∞
φ(x)dx− 2α

Z t

−∞
xφ(x)dx+ α2

Z t

−∞
x2φ(x)dx

¸
=

1

2 + α2

h
2Φ(t)− 2α(−φ(t)) + α2(−tφ(t) + Φ(t))

i
= Φ(t) + α

µ
2− αt

2 + α2

¶
φ(t).

Proposition 2.5. If MX(t) is the moment generating function of X ∼
ASN(α), then

MX(t) =

∙
1− αt

µ
2− αt

2 + α2

¶¸
exp

Ã
t2

2

!
.

Proof 2.5 :
Mx (t) = 1

2+α2
R∞
−∞ exp(tx)(2− 2αx+ α2x2)φ(x)dx

= 1
2+α2

h
2
R∞
−∞ exp(tx)φ(x)dx− 2α

R∞
−∞ exp(tx)xφ(x)dx

+α2
R∞
−∞ exp(tx)x

2φ(x)dx

= 1
2+α2

h
2 exp

³
t2

2

´
− 2α

³
t exp

³
t2

2

´´
+ α2

³
t2 exp

³
t2

2

´
+ exp

³
t2

2

´´i
=

h
1− αt

³
2−αt
2+α2

´i
exp

³
t2

2

´
.

3. Stochastic Representation

The next proposition shows a stochastic representation for the model BN .

Proposition 3.1. Let T , V be two independent random variables, where
T ∼ χ2(3) and V is such that P [V = 1] = P [V = −1] = 1

2 . If Y =
√
TV ,

then

Y ∼ BN.
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Proof 3.1. If h(y) is the density function of H =
√
T , then

h(y) = 2y2φ(y), y ≥ 0,

on the other hand, if Y = HV is easy to show that the density function
of Y is

f(y) = y2φ(y), y ∈ R,

which proves the required result.

Remark 3.1. From the above proof we can deduce that:

Y ∼ NB ⇔ Y ∼ ±χ3

where ±χ3 is the square root of the χ23 random variable, with a random
sign attached.

Proposition 3.2. IfMY (t) is the moment generating function of Y ∼ BN ,
then

MY (t) = E[exp(tY )] = (1 + t2) exp

Ã
t2

2

!
.

Proof 3.2.

MY (t) =

Z ∞
−∞

exp(ty) y2φ(y)dy,

= t2 exp

Ã
t2

2

!
+ exp

Ã
t2

2

!

= (1 + t2) exp

Ã
t2

2

!
.

Remark 3.2. The density function (2.2), of model ASN(α), can be rep-
resented as sum of two functions, as shown below

f(x) =

Ã
(1− αx)2 + 1

2 + α2

!
φ(x)

=

Ã
2 + α2x2

2 + α2

!
φ(x) +

µ −2α
2 + α2

¶
xφ(x),

where the first summand is a symmetric density function, which is consid-
ered in the following definition.
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Definition 3.1. If a random variable S has density function,

f1(x) =

Ã
2 + α2x2

2 + α2

!
φ(x), x ∈ R,(3.1)

where α ∈ R, then we say that S is a symmetric-component random vari-
able of the model ASN(α). We denote this as S ∼ SCASN(α).

If S ∼ SCASN(α), the following properties are deduced immediately
from the definition:

(i) If α = 0, then S ∼ N(0, 1).

(ii) If α→ ±∞, then S
d→ BN .

Remark 3.3. Note that the density function (3.1) is a mixture between a
normal density and a bimodal-normal density, as shown below

f1(x) =

Ã
2 + α2x2

2 + α2

!
φ(x)

=

µ
2

2 + α2

¶
φ(x) +

Ã
α2

2 + α2

!
x2φ(x).

Proposition 3.3. If MS(t) is the moment generating function of S ∼
SCASN(α), then

MS(t) = E[exp(tY )] =

Ã
1 +

α2t2

2 + α2

!
exp

Ã
t2

2

!
.

Proof 3.3. Let MZ(t) and MY (t) moment generating functions of Z ∼
N(0, 1) and Y ∼ BN respectively. Considering the previous remark, we
can deduced that

MS(t) =
2

2 + α2
MZ(t) +

α2

2 + α2
MY (t)

=
2

2 + α2
exp

Ã
t2

2

!
+

α2

2 + α2
(1 + t2) exp

Ã
t2

2

!

=

Ã
1 +

α2t2

2 + α2

!
exp

Ã
t2

2

!
.
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The next proposition shows a stochastic representation for the model
SCASN(α).

Proposition 3.4. Let Y ∼ BN and Z ∼ N(0, 1) independent random
variables. If

S =

s
α2

2 + α2
Y +

s
2

2 + α2
Z,

then
S ∼ SCASN(α).

Proof 3.4. Let a =
q

α2

2+α2
and b =

q
2

2+α2
, then

MS(t) = E[exp(tS)] = E[exp[t(aY + bZ)]]

= E[exp(atY )]E[exp(btZ)]

=
³
1 + a2t2

´
exp

Ã
a2t2

2

!
exp

Ã
b2t2

2

!

=

Ã
1 +

α2t2

2 + α2

!
exp

Ã
(a2 + b2)t2

2

!

=

Ã
1 +

α2t2

2 + α2

!
exp

Ã
t2

2

!
,

which is the moment generating function of SCASN(α) model.

The stochastic representations, of the models BN and SCASN(α),
presented in propositions 3.1 and 3.4, make possible the application of
“acceptance-rejection” method to generate random numbers for modelASN(α),
algorithm that is described in the next proposition

Proposition 3.5. (The “acceptance-rejection” algorithm )
Let f(x) density function of X ∼ ASN(α) and f1(x) density function of
S ∼ SCASN(α), with

M =sup
x

f(x)

f1(x)
=
2 +
√
2

2
.

To generate a random variable X ∼ ASN(α):

a. Generate U ∼ uniform(0, 1), S ∼ SCASN(α), independent.
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b. If U < 1
M

f(S)
f1(S)

= 2[(1+αS)2+1]

(2+
√
2)(2+α2S2)

, set X = S; otherwise, return to step
a..

Remark 3.4. Given that

f(x) =
(1− αx)2 + 1

2 + α2
φ(x) and f1(x) =

Ã
2 + α2x2

2 + α2

!
φ(x),

is easy to prove that

M =sup
x

f(x)

f1(x)
=
2 +
√
2

2
,

and therefore

1

M

f(S)

f1(S)
=

2[(1 + αS)2 + 1]

(2 +
√
2)(2 + α2S2)

,

on the other hand

P

∙
U <

1

M

f(S)

f1(S)

¸
=
1

M
=

2

2 +
√
2
,

so the number of trials needed to generate one X is a geometric( 1M ) random

variable, and M = 2+
√
2

2 = 1.707 is the expected number of trials.

3.0.1. Location and Scale

Definition 3.2. Let X ∼ ASN(α). The alpha-skew-normal density of
location and scale is defined as the distribution of W = µ+ σX for µ ∈ R
and σ > 0. The corresponding density function is given by

f(x|θ) =
Ã
[1− α(x−µσ )]2 + 1

σ(2 + α2)

!
φ

µ
x− µ

σ

¶
,(3.2)

where θ = (µ, σ, α). We denote this as W ∼ ASN(θ).
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The distribution function of (3.2) is given by

F (t) = Φ

µ
t− µ

σ

¶
+ α

µ
2σ − α(x− µ)

σ(2 + α2)

¶
φ

µ
x− µ

σ

¶
,

and the moment of order n by

E[Wn] =
nX

j=0

(jn)µ
n−jσjE[Xj ] where X ∼ ASN(α).

4. Maximum likelihood estimation

This section concerns likelihood inference about the parameter θ = (µ, σ, α)
of the location-scale family defined in (3.2), In particular, the Fisher in-
formation matrix of the maximum likelihood estimators (MLEs) of these
parameter is obtained.

Let Z1, Z2, ..., Zn be a random sample from the ASN(θ). Thus, the
likelihood function is given by

L(θ|Z1, Z2, ..., Zn) = Π
n
i=1f(Zi|θ),(4.1)

where f(Zi|θ) is given by (3.2). The MLE of θ is obtained maximizing (4.1),
for which a numerical algorithm is necessary. In this work, the subroutine
nlminb of the software S-PLUS is used.

The Fisher information for the parameter θ = (µ, σ, α) is easily com-
puted, obtaining

F =

⎛⎜⎜⎝
4α2b0−α2+2
σ2(2+α2)

4α2b1−2α
σ2(2+α2)

2+4αb1
σ(2+α2)

4α2b1−2α
σ2(2+α2)

4α2b2+2α2+4
σ2(2+α2)

4α(b2−1)
σ(2+α2)

2+4αb1
σ(2+α2)

4α(b2−1)
σ(2+α2)

4(α2b2+2b2−α2)
(2+α2)2

⎞⎟⎟⎠ ,

where

Z ∼ N(0, 1) and bk = b(k) = E

"
Zk (1− αZ)2

(1− αZ)2 + 1

#
k = 0, 1, 2,

which has to be evaluated numerically.

On the other hand, in the normal model when α = 0, the Fisher infor-
mation matrix is

F =

⎛⎜⎝ 1
σ2 0 1

σ
0 2

σ2
0

1
σ 0 1

⎞⎟⎠ .
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Note from this matrix that the column corresponding to the parameters
µ and α are linearly dependent, implying that it is a singular matrix. This
irregularity is discussed by Azzalini (1985) in the context of the SN model,
and afterwards it is studied systematically by Chiogna (2005) in some other
context. Di Ciccio and Monti (2004) studied this singularity problem in the
context of the skew-exponential power distribution and Salinas et al. (2007)
generalized it in the context of the extended skew-exponential power dis-
tribution. In this latter context, the authors make use of the methodology
considered in Rotnitzky et al. (2000), so that an adequate reparametriza-
tion can be found for which the asymptotic properties of the maximum
likelihood estimators remain valid.

Using the same procedure as studied in Chiogna (2005), Di Ciccio and
Monti (2004) and Salinas et al. (2007), start by supposing that the pa-
rameter value is θ∗ = (µ∗, σ∗, 0), that is, data set has been generated by
a normal distribution with mean value µ∗ and variance σ∗2. To θ = θ∗,
leading to the score vector Sθ(θ

∗,W ) = ∂ logL(θ∗)/∂θ = (S∗µ, S
∗
σ, S

∗
α) is

given by

Sθ(θ
∗,W ) =

"
Z∗

σ∗
,
Z∗2 − 1

σ∗
,−Z∗

#
where Z∗ = (W −µ∗)/σ∗. The linear dependence between the components
S∗µ and S∗α causes the singularity problem for the information matrix.

The general result in Rotnitzky et al. (2000) concerning the maximum
likelihood estimator for the parameter vector θ = (θ1, θ2, ..., θq) can be ap-
plied in this context to establish consistency and asymptotic normality for
the MLEs. Rotnitzky et al. (2000) derive the asymptotic distributions for
the MLEs θ = (θ1, θ2, ..., θq) under two conditions: one, the components
of the score vector, say Sθ1 , is zero for θ = θ∗ and, secondly, higher order
partial derivatives of Sθ1 with respect to θ

1 is possibly zero at this point;
however, the first derivative is not a linear combination of the other compo-
nents of Sθ2 , Sθ3 , ..., Sθq . Even though the above conditions are not valid for
the ASN normal model, it is possible to use the iterative procedure proposed
in Rotnitzky et al. (2000) to find a reparametrization so that such condi-
tions are satisfied. This procedure has been detailed in Chiogna (2005) and
by Di Ciccio and Monti (2004). After extensive algebraic manipulations, it
can be shown that such reparametrization is given by eθ = eθ(θ) = (eµ, eσ,α),
where eµ = µ− σ∗α, eσ = σ

Finally, making use of theorem 3 in Rotnitzky et al. (2000), with the
above reparametrization, we can conclude that:
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1. The MLE of θ is unique with probability tending to 1, and it is
consistent.

2. The likelihood ratio statistic for testing the simple null hypothesis
H0 : θ = θ∗ converges in distribution to the χ23.

3. The random vector

[n
1
2 (bµ− µ∗ − σ∗bα), n 1

2 (bσ − σ∗), n
1
6 bα],

converges under θ = θ∗ to (Z1, Z2, Z
1
3
3 ) where (Z1, Z2, Z3) is a normal

random vector with mean zero and covariance matrix equals to the
inverse of the covariance matrix of the vector"

Z

σ∗
,
Z2 − 1
σ∗

,−Z
3

6

#t

which is given by

F =

⎛⎜⎝
1
σ2 0 − 1

2σ
0 2

σ2 0
1
−2σ 0 5

12

⎞⎟⎠
−1

.

5. An illustrative application

In this section, we illustrate the use of the estimation procedures described
in the previous section. The variable to be considered is the average length
of stay for patients who are in hospital for acute care because of problems,
hepatobiliary system and pancreas, and die for this cause. The sample,
under study, corresponds to 1082 hospitals in 10 states of the United States.
For more information see columns 4 in http://lib.stat.cmu.edu/data-expo/
1997/ascii/p07.dat. Table 1 shows descriptive statistics for the data set.

Table 5.1: Summary statistics of the average length of stay of patients in
1082 hospitals, where g1 and g2 represent the coefficients of asymmetry and
kurtosis respectively.

Data n x̄ s g1 g2
1082 5.7593 1.614 0.6723 1.4205
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The models N(µ, σ), ASN(µ, σ, α) and SN(µ, σ, α) are fitted to the
data set using the maximum likelihood approach, where SN(µ, σ, α) is the
skew-normal model introduced by Azzalini (1985). Results are reported in
table 2 with the estimators standard errors being estimated by using the
observed information matrix.
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Table 5.2: Estimated parameters and maximized log-likelihood function
for models N(µ, σ), ASN(µ, σ, α) and SN(µ, σ, α). Standard errors are
reported in parenthesis.

Parameter estimates N ASN SN

µ 5.7593(0.0961) 6.7578(0.1261) 4.1192(0.0602)
σ 1.614(0.068) 1.4873(0.0711) 2.3006(0.0206)
α - 0.9559(0.1444) 2.0608(0.1501)

log-likelihood −2052.824 −2018.41 −2023.653
AIC - 4042.82 4053.306

The likelihood radio test (LRT) for the hypothesis H0 : α = 0 (N(µ, σ)
model) versusH1 : α 6= 0 (ASN(µ, σ, α) model) is such that−2 log(LRT ) =
−2(−2023.653 + 2018.41) = 10.486. Hence, comparing this quantity with
the 95% critical value, namely χ2(1) = 3.84, there is sufficient evidence to re-
ject the null hypothesis, that is, parameter α is significantly different from
zero, concluding that ASN gives a better fit to the data than the normal
model. Since the models ASN(µ, σ, α) and SN(µ, σ, α) are not nested the
Akaike Information Criterion (AIC) has been used for comparison. Ac-
cording to this criterion, the ASN model provides a better fit than the SN
model (4042.82 < 4053.306). These conclusions are also corroborated by
the plots of the fitted densities (using the maximum likelihood estimators),
presented in Figure 2.
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Figure 2 : The histograms correspond to the average length of stay
of patients in 1082 hospitals. The lines represent fitted distributions using
maximum likelihood: ASN(bµ, bσ, bα) (solid line), N(bµ, bσ) (dotted line in (a))
and SN(bµ, bσ, bα) (dotted line in (b)).
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[1] Arellano-Valle, R. B., Gómez, H. W. and Quintana, F.A. A New Class
of Skew-Normal Distributions. Communications in Statistics : Theory
and Methods: 33 (7), pp. 1465-1480, (2004).
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