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Abstract—The way of multisensory data integration is a crucial

step of any data fusion method. Different physical types of sensors

(optic, thermal, acoustic, or radar) with different resolutions, and

different types of GIS digital data (elevation, vector map) require

a proper method for data integration. Incommensurability of the

data may not allow to use conventional statistical methods for

fusion and processing of the data. A correct and established way

of multisensory data integration is required to deal with such

incommensurable data as the employment of an inappropriate

methodology may lead to errors in the fusion process. To perform a

proper multisensory data fusion several strategies were developed

(Bayesian, linear (log linear) opinion pool, neural networks, fuzzy

logic approaches). Employment of these approaches is motivated

by weighted consensus theory, which lead to fusion processes that

are correctly performed for the variety of data properties.

As an alternative to several methods, factor graphs are proposed

as a new approach for multisensory data fusion. Feature extraction

(data fission) is performed separately on different sources of data

to make an exhausting description of the fused multisensory data.

Extracted features are represented on a finite predefined domain

(alphabet). Factor graph is employed for the represented multisen-

sory data fusion. Factorization properties of factor graphs allow

to obtain an improvement in accuracy of multisensory data fusion

and classification (identification of specific classes) for multispec-

tral high resolution WorldView-2, TerraSAR-X SpotLight, and el-

evation model data. Application and numerical assessment of the

proposed method demonstrates an improved accuracy comparing

it to well known data and image fusion methods.

Index Terms—Classification, factor graphs, fusion, graphical

models, multisensor data, TerraSAR-X, WorldView-2.

I. INTRODUCTION

T HE practical use of spaceborne very high resolutionmulti-

spectral data (e.g., IKONOS,WorldView-2, or GeoEye-1)

is still growing but the information gathered from the multi-

spectral data is less in comparison to full spectral imaging. An

improvement can be achieved by employment of fusion ap-

proaches with data from other sensors or sources since this may

increase the quality of scene classification. Fusion of Synthetic

Aperture Radar (SAR) and optical data is employed for several

topics in remote sensing data interpretation, e.g., for landcover

classification [1]–[3], change detection [4], object detection [5].
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Incommensurability of different sources of data (e.g., optical,

SAR, and DEM) requires a proper design of the fusion process.

J. Benediktsson et al. [6], [7] first investigated statistical versus

neural network approaches for multisensory data fusion and

classification. Linear opinion pool and logarithmic opinion

pool optimized by a multilayer neural network are proposed for

the combination of multisensory data (multispectral, elevation,

slope, aspect, and SAR). Several approaches for multisensory

data fusion following consensus theory and employing different

techniques such as Bayesian or neural networks were devel-

oped. F. Pacifici et al. [3] developed the best fusion algorithm

for the 2007 GRSS Data Fusion Contest. The algorithm is based

on a neural network classification enhanced by preprocessing

and postprocessing. Principal component analysis is applied

on SAR data. Altogether, 14 inputs to the neural network

were given: 2 SAR images, 6 Landsat-5 spectral images, and

6 Landsat-7 spectral images. The classification into 5 classes

(City center, Residental area, Sparce buildings, Water, Vege-

tation) provided a high Kappa coefficient equal to 0.9393. M.

Fauvel et al. [8] applied decision fusion for classification of

urban areas. The fusion approach consists of two steps. In the

first step, data are processed by each classifier separately and

the algorithms provide for each pixel membership degrees for

the considered classes. In the second step, a fuzzy decision

rule is used to combine the results provided by algorithms ac-

cording to the classifiers’ capabilities. The method is tested and

validated with two classifiers on IKONOS images from urban

areas. The proposed method improves classification results

when compared with separate use of different classifiers. The

overall accuracy of classification for 6 classes (Large buildings,

Houses, Large roads, Streets, Open areas, and Shadows) is

75.7 %.

F. Rottensteiner et al. [9] presented a method for building de-

tection from a combination LIDAR data and multispectral im-

ages. They showed its applicability in a test site of heteroge-

neous building shapes. The method is based on the application

of Dempster-Shafer theory for data fusion. The authors note

that achieved results are satisfactory but in some cases build-

ings and trees could not be accurately separated, either because

of shadows or because the resolution of the LIDAR data is not

sufficient.

Graphical models (a type of factor graphs) were primarily

employed for natural image classification and annotation.

Fei-Fei Li et al. [10] proposed a new probabilistic directed

graphical model for jointly modeling the image, its class label

and its annotations. The model treats the class label as a global
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description of the image, and treats annotation terms as local

descriptions of parts of the image. Approximate inference

and estimation algorithms based on variational methods were

employed.

M. Lienou et al. [11] employed latent Dirichlet allocation

model for the annotation of satellite images. The annotation task

combines a supervised classification of the image patches and

the integration of the spatial information between the patches.

The model represents each patch of a collection as a random

mixture of latent topics, where each topic is characterized by

a distribution over words. The capability of the model is used

to assign probabilities to unseen images to classify the patches

of the large image into the semantic concepts. The authors in

paper [12] developed a solution for bridging the gap between

the results of classification algorithms and high semantic ter-

minology of cartographic data. The Latent Dirichlet Allocation

model is employed to map heterogeneous pixels with similar

intermediate-level semantic meaning into land cover classes of

various mapping products. A big problem in generating carto-

graphic information from a fully automatic classification map is

solved and demonstrated for Landsat images.

M. Datcu et al. [13] developed information mining system to

retrieve remote sensing imagery from a database. The system

allows semantic interpretation of the imagery using Bayesian

networks. Unsupervised clustering of the features leads to ob-

taining an abstract vocabulary of signal classes. The vocabulary

of signal classes is linked to the user-defined semantic landcover

types using Bayesian networks.

The concept of factor graph (FG) was first devised in 1997

[14] and since then the application of FGs for signal/image

processing and recognition is gradually emerging. B. Frey et

al. [15] performed a thorough and exhaustive work on com-

parison of learning and inference methods for probabilistic

graphical models (Bayesian networks, Markov random fields,

factor graphs). For complex models that accurately describe

many problems, direct application of Bayes rule leads to an

intractable number of computations. A graphical model (factor

graph) identifies the modules in the system and can be used to

derive algorithms that achieve exponential speedups. Factor

graphs subsume properties of Bayesian networks and Markov

random fields. Any Bayesian network or Markov random field

can be easily converted to a FG, without loss of information.

Further, there exist models that have independence relation-

ships that cannot be expressed in a Bayesian network or a

Markov random field, but that can be expressed in a FG. FGs

are more explicit about the factorization of the distribution than

Bayesian networks and Markov random fields. Another advan-

tage of FGs is that, because they explicitly identify functions,

they provide a useful graph for message-passing algorithms,

such as belief propagation [15].

Application of factor graphs for sensor fusion is performed by

J. Moura et al. [16] on synthetic data. In this study a fusion of

data collected by several heterogeneous sensors is performed to

obtain a common goal. Successful fusion results were obtained

on simulated scenarios with high sensing resolution and small

sensor network, or low sensing resolution and large sensor net-

work (e.g., 150 sensors and 200 targets). Application on sonar

data is performed by K. Kampa et al. [17]. In this work a dy-

namic factor graph is employed for data fusion (3 real targets

taken by 2 sensors) and segmentation (in the sense of proba-

bilistic framework). The linear-time inference is achieved on

a tree-structured network using the sum-product algorithm. R.

Naphade et al. [18] employed factor graphs for semantic anno-

tation of video sequences. A factor graph is used for mapping

low-level features to high-level semantics. To reduce the com-

plexity and computational cost of the factor graph (probability

function is exponential in the number of variables), a factoriza-

tion of the function is enforced (instead of one joint probability

mass function, several mass functions of two argument variables

were used).

Remotely sensed data have a high complexity and the pro-

cessing or interpretation requires a definition of a model. The

model should have properties like, for example, an established

mathematical basis, tractable learning and inference, good gen-

eralization capabilities, calculation time, absence of curse of di-

mensionality. Explicit factorization properties of factor graphs

allow to compose complex models from simpler modules and

establish links among the simpler modules using the rules of

probability theory. Approximate inference methods applied for

factor graphs allow to receive fast and plausible decisions; plau-

sible decisions by inference on non-full data are possible to per-

form. These properties give a good motivation to employ factor

graphmodel for data and imagery interpretation especially in re-

mote sensing applications. Nevertheless, factor graphs are not

widely employed yet especially for remotely sensed data pro-

cessing and interpretation.

This research is motivated by previous works of the authors

on single-/multisensory data classification [19] of satellite data.

The used method employs input data/feature representation

(separately for each data source) using an unsupervised clus-

tering. -means clustering or entropy based -means (allows

automatic computation of a proper number of clusters [20]) can

be used. The unsupervised clustering allows to combine objects

and structures with similar (i.e., spectral or textural) properties,

reduce the size of the data, and make a higher level of feature

abstraction. Since the represented data have a finite number

of states a proper fusion method following consensus theory

should be used. Considering the properties, factor graphs were

chosen to perform multisensory data integration.

This paper is organized as follows. In Section II a detailed in-

troduction and description of the proposed method for multisen-

sory data fusion is given. Section III gives a short introduction to

factor graphs, presents description of relationships of variables

and factors in the factor graph, and a proper model of the factor

graph is selected. Information on configuration and inference

methods is also given. Description of the employed multisen-

sory data, fusion strategies, results of the experimental part and

discussion are given in Section IV. Conclusion and prospective

development of the fusion model are given at the end of the

paper.
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II. ALPHABET-BASED DATA FUSION

Different types of data (qualitative and quantitative) are

represented using different scales, e.g. nominal scale (color,

flavour, or specie, an unordered set of qualitative “values”,

numbers are used as labels and express no mathematical prop-

erties); ordinal scale (the result of qualitative or quantitative

data, e.g., student rank in a school, numbers indicate the relative

position of items); interval scale (opinion scale, time difference,

or date in calendar, numbers indicate difference between items,

there is no absolute zero point); ratio scale (length in meters,

duration in hours, numbers indicate difference and there is a

fixed zero point); absolute scale (the number of books in a

library, numbers are properties of the attribute).

Performing fusion and classification of features represented

on different scales and obtained from different acquisition de-

vices (e.g., the features possess different statistical properties

and distributions) may be difficult using parametric statistical

methods and may lead to errors. An assumption on a parametric

distribution for the employed features may not always hold. To

overcome these difficulties we perform feature transformation

to make an intermediate representation of a feature (e.g., assume

a categorical (multinomial) distribution [21] separately for each

transformed feature). This transformation (representation on the

alphabet, or a vocabulary of signal classes [13]) makes another

level of feature abstraction, generalized by similarity in the fea-

ture space, simultaneously performing data reduction. -means

unsupervised clustering is the most popular and easy way to per-

form this transformation and used in works [11], [13], [19], [21],

[22]. The number of clusters can be selected empirically or by

using approaches to determine the optimal number. In work [11]

the optimal number of clusters is selected by modeling the fea-

tures as a Gaussian mixture and using the minimum description

length criteria to accede to the optimal complexity of the model

[23]. The unsupervised clustering method by entropy minimiza-

tion [20] performs clustering of data with automatic definition

of a proper number of clusters.

Factor graph is a discrete graphical model (each variable can

take any value of a finite predefined domain) therefore the input

features can only be discrete. A trade-off between the number of

clusters and the accuracy of fusion and classification is investi-

gated. A factor graph is employed to integrate the multisensory

data represented in a finite domain. Employment of this type

of graphical models is motivated by the fact that factor graphs

were used effectively in a wide range of application areas such

as Decoding of codes, Behavioral modeling, Probabilistic mod-

eling, Fast Fourier transform [14].

Detailed explanation of the fusion framework is given in the

following.

A. Framework

The fusion framework consists of three main steps:

1) Information fission: feature extraction from input

datasets. The aim of this step is to extract information and

to make a full description of the input data (to provide the

quasi-full description) [19]. For each data source relevant

features are extracted. These features are expected to char-

acterize different properties of structures and objects in

each data source. After feature extraction a large amount

of redundant information is obtained.

2) Feature representation on an alphabet. The aim of this

step is to represent a feature on a finite predefined do-

main—alphabet. The number of states of the feature value

is reduced, i.e., a kind of “quantization” is performed. The

objects with similar properties are combined and the data

size is decreased. This representation can be made using

several methods, e.g., unsupervised clustering. -means

clustering is used. All features extracted frommultisensory

data are processed in this way and a vector of features is

composed. This vector is used as input evidence for a con-

figured (learned on training data) factor graph.

3) Fusion and classification of coded data or features is

performed using the factor graph [14], [24]. Configurations

(parameter sets) of the FG are calculated according to su-

pervisely selected classes and training areas. Configured

FG is used for inference on evidence data (i.e., clustered

input features). The posterior probability (maximum prin-

ciple) or calculated marginal distribution of a latent vari-

able is employed for data classification.

The overall scheme is given in Fig. 1. Different feature types

can be extracted to make an exhausting description of the data.

For example, a multispectral image can be used for extraction

of spectral information, DVI indexes and texture features (Har-

alick, Gabor, or Laws). For some data sources (e.g., DEM) fea-

ture extraction is not carried out and the data are directly repre-

sented on the alphabet. The size of the alphabet should be appro-

priately defined for data or features (multispectral, textural, or

DEM). At the final step the evidence (a code composed from

features represented on an alphabet) is given to factor graph

(factor graph is configured for several classes) and a class label

is selected according to the maximum likelihood probability.

III. FACTOR GRAPH DEFINITION

A. Feature Representation on Finite Alphabet

Input data and extracted features have varying value ranges,

statistics, and physical nature. For example, WorldView-2 has

11-bit coded multispectral data, TerraSAR-X has 16-bit coded

data, while other sources of data and extracted features may

have other value ranges. Clustering of input data is performed

to fit the nature and properties of the data fusion method or clas-

sifier (e.g. neural network, Bayesian network, Markov random

field, or Factor graph).

The aim of such feature coding is to represent a feature using a

predefined finite domain (alphabet). The finite domain refers to

the unique values (or a list of values) the feature can have. Here

we use a finite domain consisting of natural numbers. To repre-

sent the input data source (or a feature) on the finite domain, the

data are proposed to be processed by unsupervised clustering

[20]. A cluster’s number is assumed as the value from the de-

fined domain. The number of clusters is set empirically or can

be automatically computed by the clustering method (according
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Fig. 1. Inference (classification) is performed using a configured factor
graphon evidence (input features for the graph). After belief propagation on
the graph the likelihood probability is calculated and a pixel is labeled by the
class that has the maximum probability (minimum energy) of the configured
factor graph.

Fig. 2. An illustrative example of simple factor graph with three variables
and two function nodes and .

to the scene complexity) and equals to the size of the domain.

Unsupervised clustering allows to group objects in the data

source by the properties described by the sensor (intensity, DN

value, or spectral properties) and to reduce the complexity of

the data set.

After clustering, each feature is represented on a domain with

a particular size (the number of clusters can be different and

should be defined for each feature) and a vector is composed

from the represented features. This vector (code vector, under

some assumptions) is the input data (evidence) for a factor

graph.

B. Factor Graph for Discrete Data

Factor graphs are more general graphical models than

Bayesian networks or Markov random fields (according to the

Hammersley-Clifford theorem [25], Bayesian networks and

Markov random fields are particular cases of corresponding

factor graphs). A FG possesses properties of Bayesian network

and Markov random field and allows to describe relationships

among parts of a modeled system using the rules of probability

theory. Probability propagation in a Bayesian net is equiv-

alent to the application of the sum-product algorithm to the

corresponding factor graph [18]. FGs were found efficient for

discrete-valued data recognition in various applications [16],

[26], [27].

A factor graph is a bipartite graph containing two types of

nodes: variable nodes and function nodes (fac-

tors) , where a variable node

takes value on a finite domain (alphabet ) [14]. A variable

node is connected to a factor node if and only if is an

argument of the . A factor is a function of

the variables with a configuration space :

(1)

Fig. 2 presents an example of a factor graph with three vari-

ables and two function nodes and with factor-

ization: .

The sum-product algorithm [14] works by computing mes-

sages at the nodes using a simple rule and then passing the mes-

sages between nodes according to a selected schedule [18]. A

message from a function node to a variable node is the product
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of all messages incoming to the function node with the func-

tion itself, summarized for the variable associated with the vari-

able node. A message from a variable node to a function node

is simply the product of all messages incoming to the vari-

able node from other functions connected to it. Consider a mes-

sage on the edge connecting function node to variable node

. Let mesg denote the message sent from node to

node in the operation of the sum-product algorithm. Also let

mesg denote the message sent from node to node .

Further, let denote the set of neighbors of a given node

in a factor graph and let indicate the summary operator [14],

[18]. Consider a function then a possible summary

operator could be the summation operator in (2):

(2)

The message computations performed by the sum-product algo-

rithm can be expressed as follows. Variable to local function:

(3)

Local function to variable:

(4)

In the case where a local function has ar-

guments from subset (each has a partic-

ular subset of variables ), the product (global

function, ) of local functions can be ex-

pressed as:

(5)

C. Factor Graph Structure and Relationships Definition

The task of classification consists of determining the proba-

bility of a particular hypothesis given some observed evidence.

Usually, this is solved by calculation of the marginal probability

of a latent variable, or by calculating the posterior probability

(likelihood on the configured factor graph given the evidence):

(6)

where the is the class, is the evidence (the evidence is a set

of features: ).

Bayes rule allows to expand this rule to:

(7)

where the is the evidence prior probability (fixed

during inference), is the -th class prior probability (the

probability can be flat over classes).

Fig. 3. Fusion modelling using factor graph: (a) the exact model (high com-
plexity of learning and inference due to one configuration factor); (b) the inde-
pendent model (low complexity).

Assuming that the factor graph is configured ( is the con-

figuration for class ) the joint distribution of is the

following [28]:

(8)

Conditioning on we can write:

(9)

The following models can be defined for (7): the exact model

(Fig. 3(a)) and the independent model (Fig. 3(b)). The exact

model assumes that the class configuration is a single factor with

dependent features. The independent model assumes that each

input feature is independent.

1) Exact Model: Assume that we have coded input features

(denote as ) as an evidence . The exact model factor graph

(Fig. 3(a)) can be written as:

(10)

where the variables are the input features

(evidence ), is the -th class, is the factor defining

prior probability of class variable

is the factor of input features and class variable

are the factors defining prior probabil-

ities (normalizing

factors).

Message updating for the exact model factor graph (Fig. 3(a))

is described in Fig. 4.

2) Independent Model: The independent model factor graph

(Fig. 3(a)) can be written as:

(11)
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Fig. 4. Message update diagram for function node (an
equivalent to the joint mass function), the node defining the prior probability
of class variable , and the normalization functions
in the exact model factor graph (Fig. 3(a)) (also see Naphade et al. [18]).

Fig. 5. Message update diagram for function nodes
, the node defining the prior probability of class variable ,

and the normalization functions in the independent
model factor graph (Fig. 3(b)).

where the factors are the factors of the features

and share the class variable is the -th

class variable; is the factor defining the prior probability of

class variable .

Message updating for the independent model graph

(Fig. 3(b)) is described in Fig. 5. Detailed step-by-step message

propagation map for the independent model is given in the

Appendix.

Different topologies of the graph pose some difficulties and

advantages on the graph use. A single configuration factor

in the exact model allows to perform exact inference but makes

learning and inference problematic on this graph due to its high

complexity, while the independent model is an equivalent to

a tree-structured Bayesian network and has low complexity

leading to easier configuration and inference.

Several modifications of the exactmodel can bemade in order

to allow usage of the arbitrary number of input features:

1) Factorization of functions. The factor in (10) has expo-

nential nature on the number of input variables (features),

therefore the cost of computation increases quickly. In-

creasing the number of input features as well as the al-

phabet size, the factor graph will obtain a high and in-

tractable state space and the configuration of this factor

graph as well as inference may become difficult to per-

form. To overcome this disadvantage a factorization of

mass functions can be done (e.g., [18]).

2) Features as binary variables. Additionally an input feature

can be represented using several binary variables to reduce

the state space of an input feature variable (then the number

of input feature variables increases).

D. Model Learning: Graph Configuration

The structure of a factor graph (the exact or independent

model) defines a dependency of class variable node on input

features (evidence ). The probability

can be calculated using the configured (learned) factor graph.

The use of training data allows to calculate a configuration

(parameter set ) for the factor graph (the is calculated

to maximize the , (6)–(9)).

An important issue is a proper way to configure (make su-

pervised learning) the graph. The configuration of the FG con-

sists of two steps. In the first step we maximize the total likeli-

hood subject to all the factors (estimated factors are

, and ) using training data for all the classes (the

number of samples for each class should be almost equal). In

the second step, the factors and (prior probabilities

over the features and class) are fixed and the factors

are estimated for each class using only training data for the

class . Such a two step configuration procedure allows the com-

parison of factor graph (parametrized by ) posterior proba-

bilities for the classes using the maximum rule.

The gradient ascent method is employed for the calculation

of the graph configuration . An inference on the configured

factor graph given the evidence data allows to calculate a prob-

ability. A comparison of the calculated probabilities allows to

make a classification of the input scene (maximum rule is used).

E. Inference

Usually the task of inference means one of two scenarios: 1)

to compute a configuration of latent variables to maximize the

posterior probability (in our task a latent variable is and the

task is to maximize the ); 2) to compute the marginal

distribution for a single node, or marginal distributions

over sets of nodes: (see [29]).

The task of marginalization could be difficult to perform be-

cause of a high complexity of the model together with a high

number of input features (the number of variables can be up to

300) as well as a quite high number of classes (23 classes in this

work). In order to avoid such marginalization problems the first

scenario (maximization of the posterior probability) is selected.

Mean field inference [15] is employed.

IV. EXPERIMENTS, RESULTS, AND DISCUSSIONS

The main aim of this section is to illustrate fusion and clas-

sification advantages of the proposed method in comparison

with other known methods. Fusion and classification accuracy

of a method can be numerically assessed on multisensory

data. The same multisensory data and fixed training and test

samples are employed by all compared fusion methods and

numerical measures are calculated using the test samples.

Comparison of the numerical assessment results can reveal the

method providing the best accuracy. Standard assessment mea-

sures such as overall accuracy, Cohen’s Kappa, McNemar’s

test, and calculation of confusion matrices are used for the
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TABLE I
PARAMETERS OF THEWORLDVIEW-2 AND TERRASAR-X DATA FOR MUNICH TEST SCENE

comparison. Well known and employed methods such as

maximum likelihood classification (based on statistics, not

following consensus theory) and neural network (widely used

for multisensory data fusion, following consensus theory) are

selected for comparison. Single sensor (multispectral World-

View-2) and multisensory data (WorldView-2 Elevation or

WorldView-2 Texture (SAR and Optical) Elevation) were

employed for comparison of fusion and classification accuracy.

Experimental analysis is run on two multisensory data sets

(WorldView-2, TerraSAR-X, and elevation data) acquired for

Munich (23 classes) and London (14 classes) cities.

A. Munich Test Area

1) Multisensory Data and Features: For an experimental

evaluation, a combination of very high resolution (VHR) satel-

lite data from the optical spectrum (WorldView-2) and the mi-

crowave range (TerraSAR-X) together with a digital surface

model (DSM) are used. Multispectral data allow to classify ob-

jects by spectral properties, but the single-angle acquisition im-

ages do not allow to reveal the elevation of an object, therefore

some classes can be confused (e.g., asphalt material can belong

to a road or can be a roof material). SAR data (here X-band

is assumed) allows to assess the homogeneity, object surface

structure, and other properties of the objects. This kind of infor-

mation can be used for proper description and delimitation of

objects with similar spectral properties. The DSM data allows

to obtain information on object height in the scene, but employ-

ment of the DSM for scene classification can not allow to de-

fine a high number of classes. An adequate fusion method of the

multisensory data allows to detect a higher number of landcover

classes with increased accuracy. Urban area (Munich city) is es-

pecially selected for data fusion because it contains a variety of

objects, structures and allows to define a high number of land-

cover classes.

Acquisition geometries of the employed WorldView-2 (5.2

look angle, almost nadir view) and TerraSAR-X (49.2218 look

angle) data allow to use the multisensory data for fusion [30].

WorldView-2 (WV-2) multispectral data were pan-sharpened

by the General Fusion Framework method [31]. The optical and

SAR data were orthorectified (SRTM 30 m DEM) and distor-

tions introduced by terrain are decreased. Ortorectified World-

View-2 and SpotLight Level-1B Product TerraSAR-X (TSX)

data were used. A detailed description of the employed data

sets is given in Table I. The registration of optical and radar

data is made in ENVI using manual selection of control points.

In more complicated cases other registration methods should be

employed, e.g., [32].

Highly detailed Digital Surface Model (DSM) of urban scene

is generated using the Semiglobal Matching algorithm using in

this case two Worldview-2 stereo pairs with small convergence

angles (less than 20 degrees) [34].

Specific features should be extracted from the data to make an

exhaustive description of landcover classes, structures, and ob-

jects. For example, a multispectral image can be used for extrac-

tion of spectral information, Difference Vegetation Index (DVI)

indexes, well known texture features (Haralick features, Gabor,

or Laws), while the TSX data is primarily suitable for extraction

of texture features to describe specific properties of objects. For

some data sources (e.g., DSM) feature extraction is not carried

out and the data are directly represented on the domain. The size

of the domain should be appropriately defined for each different

feature (multispectral, textural, or the DSM).

The TSX image is employed for the characterization

of surface and textural properties. Optical WV-2 data are

also used for textural feature extraction and for providing

spectral information on the objects of the scene. In our ex-

periment Gabor features [35] were calculated on TSX data

and on Red color channel (630–690 nm) from WV-2 data. A

bank of Gabor wavelets consists of 18 filters (6 orientations

, 3 different periods of

filter’s sine component , and 1 sigma value

). A recursive implementation of Gabor filtering is

employed [36].

A subscene (7115 4516 pixels) is used in the experiments.

-means clustering is employed for feature representation on

the alphabet. In this experiment we try to set the size of the al-

phabet as small as possible to illustrate that the represented data

allows to reach a higher accuracy of the fusion and classifica-

tion comparing to the full range of values. We assume that mul-

tispectral data requires a larger alphabet size to preserve more

spectral information, while the texture and the DSM data can be

represented on the alphabet with a smaller size. The number of

clusters is selected empirically and set to 10 for Gabor features

(calculated on SAR and optical data), 10 for the DSM, and 50

for the WV-2 multispectral data.

2) Fusion Strategies and Classification: One of the main

interests is to assess the influence of multisensory data employ-

ment on classification accuracy and to compare the fusion re-

sults with the results of single sensor data classification. Quan-

titative assessment allows to illustrate usefulnesss of multisen-
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TABLE II
MUNICH TEST AREA. CLASS OF INTEREST, ACRONYM, NUMBER OF TRAINING AND TEST SAMPLES -VALIDATED GROUND TRUTH CREATED BY DR. WIEKE

HELDENS (AVAILABLE ONLY FOR A LIMITED NUMBER OF OBJECTS), -VALIDATED GROUND TRUTH SELECTED FROM ATKIS VECTOR MAP, -TRAIN AND TEST
AREASWERE SELECTED USING VISUAL INTERPRETATION OFWV-2 VISIBLE RANGE DATA TOGETHERWITH BING MAPS, GOOGLE EARTH, AND GOOGLE STREET
VIEW. PER CLASS FUSION AND CLASSIFICATION ACCURACIES OF THEML, NN, AND FG METHODS ONWV-2, WV-2 DSM, ANDWV-2 TEXTURE DSM

sory data for proper landcover class identification. Comparison

of different fusion and classification methods on multisensory

data is also of an interest. Availability of 8-band WV-2 mul-

tispectral data allows to increase the accuracy of fusion and

classification comparing to well known IKONOS, Quickbird,

or Geoeye sensors acquiring only 4-bands. The following com-

binations of multisensory and single-sensor data can be created:

1) WV-2 (8 features (spectral bands)),

2) WV-2 DSM (9 features),

3) WV-2 Texture (SAR and Optical) DSM (45 features).

Single data sets like DSM or only texture were not selected

for comparison since the data do not allow to obtain a com-

parable classification accuracy. Altogether, 23 classes were

defined, the number of training and test samples is given in

Table II. Selection of training and test regions is made manually

on a color composite of WorldView-2 according to available

ground truth data. The training and test samples are spatially

uncorrelated. It should be noted that the validated ground truth

is limited in size (e.g., vector data on class Nr. 12 and 16–23

is available only for a small number of objects and buildings).

The ground truth for the area under investigation is proofed by

the ATKIS vector map provided by Bavarian State Agency for

Surveying and Geoinformation (Landesamt für Vermessung

und Geoinformation). Vector data on the materials available in

the scene is created and provided by W. Heldens [37].

3) Results and Discussion: Table III presents results (overall

accuracy and Cohen’s Kappa) on fusion and classification of

single sensor and multisensory data. Results of two other

methods: Maximum Likelihood (ML) (not following con-

sensus theory) and Neural Network (NN) are also given for

comparison. All the methods were run on the same feature

set and the same training/test regions were employed. Neural

TABLE III
MUNICH TEST AREA. CLASSIFICATION ACCURACY USING DIFFERENT
METHODS TOGETHER WITH THE PROPOSED APPROACH. ML-MAXIMUM

LIKELIHOOD (NOT FOLLOWING CONSENSUS THEORY), NN-NEURAL NETWORK,
FG-FACTOR GRAPH. OVA—OVERALL ACCURACY, KAPPA—COHEN’S KAPPA

network (multilayer perceptron) is chosen since it is shown

to be an efficient and popular solution for multisensory data

fusion and provides a high classification accuracy [3], [6]. The

Neural Network is a 3 layer (2 hidden layers) feed-forward net

trained with Kalman filter, implemented in IDL [38]. The input

features are normalized to one. The number of neurons in the

hidden layer is selected experimentally. Running the neural

network on the same feature set (WV-2 Texture (SAR and

Optical) DSM) and employing different number of neurons

(5, 10, 20, 60, and 80) in the hidden layers it is found that the

three layer network with 20 neurons in the two hidden layers

allows to obtain the best result on fusion and classification

(Table IV). The same number of neurons is employed for the

WV-2 and WV-2 DSM feature sets. For the ML classification

ENVI software package is used.

The independent model of the factor graph is selected for

fusion and classification since less calculation time is required
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TABLE IV
MUNICH TEST AREA. CLASSIFICATION ACCURACY USING THE NN ON

WV-2 TEXTURE (SAR AND OPTICAL) DSM DATASET (ALL TOGETHER
45 FEATURES). THE NN IS A 2 LAYER NETWORK (1 HIDDEN LAYER) OR
A 3 LAYER NETWORK (2 HIDDEN LAYERS) WITH A DIFFERENT NUMBER
OF NEURONS IN THE HIDDEN LAYER/LAYERS (5, 10, 20, 60, AND 80) ARE
EMPLOYED TO FIND THE MOST SUITABLE ARCHITECTURE OF THE NETWORK

AND REACH THE HIGHEST FUSION AND CLASSIFICATION ACCURACY

Fig. 6. Munich test area. Per-class accuracy for the WV-2 data classification
using the ML, NN, and FG.

for the configuration and inference. Estimation of marginal dis-

tribution for class variable can be used when there is a rela-

tively low number of input features and the number of classes

is not high. Employment of a high number of input features and

classes (e.g., 45 features and 23 classes) makes it problematic

to estimate the posterior marginal of class variable (confusion

among classes is high). To avoid the confusion among classes,

total maximum likelihood probability of the factor graph is cal-

culated to produce a probability map separately for each class,

and maximal MAP selection allows to assign the class labels.

Figs. 6, 7, and 8 illustrate the fusion and classification accu-

racy using the defined combinations of multisensory data. Intro-

duction of the textural features and the DSM allowed to increase

the overall accuracy for the NN and the FG fusion methods

from 75.00% and 47.89% up to 76.33% and 76.75%, respec-

tively. Kappa values were increased from 0.7282 and 0.4536

up to 0.7411 and 0.7438 for the NN and FG, respectively. Con-

fusion matrices for the fusion and classification of the WV-2,

Fig. 7. Munich test area. Per-class accuracy for the WV-2+DSM data fusion
and classification using the ML, NN, and FG.

Fig. 8. Munich test area. Per-class accuracy for the WV-2 Texture(SAR and
Optical) DSM data fusion and classification using the ML, NN, and FG.

Texture, and DSM data (Tables V, VI, and VII) allow to com-

pare per class confusion.

The introduction of the textural features extracted from the

SAR data increase the accuracy of the ground class labeling but

the accuracy of building classification is decreased (Table II).

A strong backscatter from a building can reduce the accuracy

of the building and nearby objects classification. Therefore the

fusion with SAR for urban area classification should be used

with caution and employment of multispectral and texture
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TABLE V
MUNICH TEST AREA. CONFUSION MATRIX, THE ML CLASSIFICATION USING WV-2 TEXTURE (SAR AND OPTICAL) DSM DATA.

OVERALL ACCURACY KAPPA

TABLE VI
MUNICH TEST AREA. CONFUSION MATRIX, THE NN FUSION AND CLASSIFICATION USING WV-2 TEXTURE (SAR AND OPTICAL) DSM DATA.

OVERALL

TABLE VII
MUNICH TEST AREA. CONFUSION MATRIX, THE FG FUSION AND CLASSIFICATION USING WV-2 TEXTURE (SAR AND OPTICAL) DSM DATA.

OVERALL
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Fig. 9. Munich test area. A region of the classification map (WV-2 Texture (SAR and Optical) DSM): (a) visible range multispectral image (bands 5,3,2),
(b) fusion and classification by the ML; (c) fusion and classification by the NN; (d) fusion and classification by the FG.

information extracted from the multispectral data, as well as

elevation data should be employed.

Overall, the ML provides a high confusion of buildings with

construction sites in the whole scene on all features (Fig. 9(b)).

Such low accuracies of the ML classification method may

be achieved, since the ML classifier can not efficiently deal

with different distributions of data (spectral and textural)

and features, or the multisensory data is not classified in

the way of consensus classification [7]. The ML fusion and

classification of the WV-2 Texture (SAR and Optical) DSM

data illustrated zero accuracy of the selected material classes

(classes 16–23).

Having a high classification accuracy on single sensor data

(WV-2) the ML illustrates difficulties to employ multisensory

data (see Table III), therefore with addition of the other fea-

tures the fusion and classification accuracy decreased from

% and down to %

and , respectively. Here, fusion and classifica-

tion using the ML (employing stacked data) may not satisfy the

assumptions on different statistical properties of multisensory

data.

Fusion of multisensory data using the FG method (

% ) allowed to obtain an increase of

the accuracy comparing to the fusion and classification results

obtained by the neural network ( %

).

FG based fusion allows better labeling of roads, and com-

paring to the NN the FG allows also better labeling of tram

lines and railroads. Also, the FG fusion illustrates less accu-

rate detection of the class Green house comparing to the NN.

Low accuracy for classification of single source data by the FG

method (WV-2, 8 features) as well as fusion of WV-2 DSM

data (9 features) can be caused since the size of the alphabet is

low and might not be sufficient (50 for multispectral). There-

fore a loss of information during clustering influences the ac-

curacy comparing to the methods dealing with original 11-bit

single source data. It should be noted that the specially selected

classes (roofing materials of buildings) are difficult to identify

using the employed data, while hyperspectral data allows better

classification of materials [39]. Separability of these classes is

better obtained using the fusion method based on neural net-

work. Fig. 10 presents labels taken from FG classification map,

Fig. 11 illustrates the full size classified image for Munich test

area.

Given the contingency table (see example Table IX) Mc-

Nemar’s test [40] allows to compare the performances of

two classification methods. McNemar’s test has a chi-square

distribution with 1 degree of freedom and the is computed

as follows:

(12)
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Fig. 10. Munich test area. Examples of class labels produced by WV-2 Texture DSM data fusion and classification using factor graphs: (a), (b) Football field;
(c) Tram line; (d), (e) Asphalt road and Parking/car classes; (f) Zink roof; (g) Red roofing tiles; (h) Rail road; (i) Cemetery; (j) Construction site; (k) Construction
site vs. Bare soil classes; (l) Dark roofing tiles.

TABLE VIII
MUNICH TEST AREA. 2 2 CONTINGENCY TABLE FOR THE ML AND FG
FUSION (WV-2 TEXTURE(SAR AND OPTICAL) DSM). .
IS THE NUMBER OF SAMPLESMISCLASSIFIED BY BOTHMETHODS, IS

THE NUMBER OF SAMPLES MISCLASSIFIED BY METHOD I BUT NOT II, IS

THE NUMBER OF SAMPLES MISCLASSIFIED BY METHOD II BUT NOT I, IS

THE NUMBER OF CORRECTLY CLASSIFIED SAMPLES BY BOTHMETHODS

TABLE IX
MUNICH TEST AREA. 2 2 CONTINGENCY TABLE FOR THE NN AND FG
FUSION (WV-2 TEXTURE(SAR AND OPTICAL) DSM).

A low -value calculated from the suggests that the null

hypothesis should be rejected meaning that the two classifiers

achieve different results. For the ML and FG (Table VIII),

and the NN and FG (Table IX) fusion on the WV-2 Texture

TABLE X
FUSION AND CLASSIFICATION USING THE FG ON THE INPUT DATA

REPRESENTED ON THE ALPHABET WITH VARYING SIZE (MUNICH AREA,
WV-2 TEXTURE (SAR AND OPTICAL) DSM FEATURES, 23 CLASSES)

(SAR and Optical) DSM features the values are 4139.06

and 16.45, respectively. The -values for the ML and FG,

and the NN and FG are less than 0.05, meaning that the FG

classification have different performances (better accuracy) on

the same data.

The FG fusion and classification approach allows to achieve

an acceptable accuracy even on a small size of the representation

domain (in the paper experiment the domain sizes are 10 for

Gabor features, 10 for DSM and 50 for multispectral data). Even

a simple structure of the FG allows to increase the fusion
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Fig. 11. Munich test area. Full size image employed for the FG fusion and classification. (a) visible range multispectral image (bands 5,3,2), (b) FG fusion and
classification (WV-2 Texture (SAR and Optical) DSM).

accuracy. The independent model of the factor graph is easy to

configure and apply for real data.

4) Alphabet Size Influence on the Fusion Accuracy: A

trade-off between the size of the alphabet (the number of

clusters) and the accuracy of the FG fusion is of interest. An

experiment is run to assess the influence of the alphabet size

on the FG fusion accuracy. The FG structure, the training

and test samples, and the data (WV-2 Texture (SAR and

Optical) DSM features) are as in the Munich test area exper-

iment. The multisensory data (all features) were represented

using different size of the alphabet: 20, 50, and 100 (Table X).

Here, the increase of the alphabet size does not allow to rise

the accuracy of the FG fusion and classification and it is possible

to conclude that there is no trend on the accuracy improvement



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

TABLE XI
THE RANK OF THE FIRST 10 FEATURES SELECTED BY THE MRMR METHOD FROM THE FEATURE SET EMPLOYED FORMUNICH AREA FUSION AND CLASSIFICATION

USING FACTOR GRAPHS (10 CLUSTERS FOR GABOR FEATURES, 10 FOR THE DSM, AND 50 FOR THEWV-2 MULTISPECTRAL DATA REPRESENTATION)

TABLE XII
PARAMETERS OF THE WORLDVIEW-2 AND TERRASAR-X DATA FOR LONDON TEST SCENE

TABLE XIII
LONDON TEST AREA. CLASS OF INTEREST, ACRONYM, NUMBER OF TRAINING AND TEST SAMPLES (TRAIN AND TEST AREAS WERE SELECTED
USING VISUAL INTERPRETATION OF WV-2 VISIBLE RANGE DATA TOGETHER WITH BING MAPS). PER CLASS FUSION AND CLASSIFICATION

ACCURACIES OF THE ML, NN, AND FG METHODS ONWV-2, WV-2 DSM, ANDWV-2 TEXTURE DSM

TABLE XIV
LONDON TEST AREA. CLASSIFICATION ACCURACY USING DIFFERENT

METHODS TOGETHER WITH THE PROPOSED APPROACH (WV-2 TEXTURE
(SAR AND OPTICAL) DSM DATA). ML-MAXIMUM LIKELIHOOD (NOT
FOLLOWING CONSENSUS THEORY), NN-NEURAL NETWORK, FG-FACTOR

GRAPH. OVA—OVERALL ACCURACY, KAPPA—COHEN’S KAPPA

with enlargement of the alphabet size. It should be noted that

the increase of the alphabet size grows the time for the factor

TABLE XV
LONDON TEST AREA. CLASSIFICATION ACCURACY USING THE NN ON

WV-2 TEXTURE (SAR AND OPTICAL) DSM DATASET (ALL TOGETHER
45 FEATURES). THE NN IS A 2 LAYER NETWORK (1 HIDDEN LAYER) OR
A 3 LAYER NETWORK (2 HIDDEN LAYERS) WITH A DIFFERENT NUMBER
OF NEURONS IN THE HIDDEN LAYER/LAYERS (5, 10, 20, 60, AND 80) ARE
EMPLOYED TO FIND THE MOST SUITABLE ARCHITECTURE OF THE NETWORK

AND REACH THE HIGHEST FUSION AND CLASSIFICATION ACCURACY

graph configuration and further fusion. A moderately low and

sufficient size of the alphabet allows to reach a competitive ac-

curacy of the FG fusion and classification and to have a low

calculation time.
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TABLE XVI
LONDON TEST AREA. CONFUSION MATRIX, THE ML CLASSIFICATION USING WV-2 TEXTURE (SAR AND OPTICAL) DSM DATA.

OVERALL ACCURACY KAPPA

5) Feature Rank: Feature selection is run to analyze and find

the features, which are more relevant for the FG fusion and clas-

sification. Peng et al. [41] developed a new and popular method

for feature selection-the mRMR (minimum Redundancy Max-

imum Relevance Feature Selection). The features selected by

the method have a good performance on various types of clas-

sifiers with different methodology such as support vector ma-

chines, Naive Bayes, Linear discriminant analysis. Table XI

presents the rank of the first ten features selected for Munich

scene. The first five features were taken for the FG fusion and

classification experiment.

The FG fusion and classification on the selected five fea-

tures resulted in the overall accuracy equal to 74.44% and

. The experimental analysis illustrated that

the feature selection does not result in the accuracy increase.

Generally, a proper configuration (learning) of the factor graph

makes it sensitive to the more informative features (for a

particular class), while the less informative input features are

chosen by the FG less significant for the fusion and classifica-

tion. According to the feature rank, WorldView-2 multispectral

(places 1,5,10), Textural (Optical) (places 3,4,6–9), and the

DSM (2nd place) data bring the most significant contribution

for the classification accuracy. The feature rank illustrates that

the SAR textural features are less important for the classes

identification in comparison to Gabor features calculated on

optical data (places 3,4,6–9). The employment of the Gabor

features improves identification of the classes characterized by

spatial context properties. The DSM is placed on the 2nd place

noticing an importance of elevation data. The importance of the

DSM (classification of the objects with the help of the height

information) also corresponds to the rankings obtained in the

classification experiment on WorldView-2 and DSM data on

urban area carried out by Longbotham et al. [42].

B. London Test Area

1) Multisensory Data and Features: A combination of

WorldView-2 multispectral, TerraSAR-X (SpotLight Level-1B

product), and a digital surface model is used. Acquisition

geometry of the employed WorldView-2 data is 6.3 off-nadir

view angle. Acquisition geometry of the TerraSAR-X data

is 48.23 off-nadir look angle. A detailed description of the

employed data sets is given in Table XII. The registration of

optical and radar data is made in ENVI using manual selection

of control points.

WorldView-2 multispectral data were pan-sharpened by

the General Fusion Framework method [31]. Digital Surface

Model (DSM) is generated using the Semiglobal Matching

algorithm [34]. A surface model generated from other sensor

type (LIDAR, for example) can be also employed. The optical

data were orthorectified. Gabor features were calculated on the

TSX data and Red color channel (630–690 nm) from World-

View-2 data. A bank of Gabor wavelets consists of 18 filters (6

orientations , 3 different

periods of filter’s sine component , and 1

sigma value ). A recursive implementation of Gabor

filtering is run [36].

A subscene (3101 3041 pixels) is used for the fusion and

classification experiments. -means clustering is employed for

feature representation on the alphabet. The number of clusters is

selected empirically and set to 10 for Gabor features (calculated

on SAR and optical data), 10 for the DSM, and 50 for the WV-2

multispectral data.

2) Fusion Strategies and Classification: The following com-

binations of multisensory and single-sensor data are created:

1) WV-2 (8 features (spectral bands)),

2) WV-2 DSM (9 features),

3) WV-2 Texture (SAR and Optical) DSM (45 features).

Altogether, 14 classes were defined, the number of training

and test samples is given in Table XIII. Selection of training

and test regions is made manually on visible color composite of

WorldView-2 multispectral data and Bing maps. The training

and test samples are spatially uncorrelated.

3) Results and Discussion: All the methods were run on

the same feature set and the same training/test regions were

employed (Table XIV presents overall accuracy and Cohen’s

Kappa for the compared methods: the ML, NN, and FG). The

Neural Network is a 3 layer (2 hidden layers) feed-forward net

trained with Kalman filter, implemented in IDL [38]. The input
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Fig. 12. London test area. Per-class accuracy for the WV-2 data classification
using the ML, NN, and FG.

features are normalized to one. The number of neurons in the

hidden layer is selected experimentally. Running the neural net-

work on the same feature set (WV-2 Texture (SAR and Op-

tical) DSM) and employing different number of neurons (5,

10, 20, 60, and 80) it is found that the network with two hidden

layers and 20 neurons in a hidden layer allowed to obtain the

best result on fusion and classification (Table XV). The same

number of neurons is employed for the WV-2 feature set clas-

sification. For the ML classification ENVI software package is

used. An independent model of the factor graph is selected for

fusion and classification. Probability maps are calculated for

each class andmaximalMAP selection allows to assign the class

labels.

Table XIII and Figs. 12, 13, and 14 illustrate the fusion and

classification accuracy using single and multisensory data. In-

troduction of the textural features and the DSM allowed to in-

crease the overall accuracy and Kappa values for the ML, NN,

and FG fusion methods. Confusion matrices for the fusion and

classification of theWV-2, Texture, and DSM data (Tables XVI,

XVII, and XVIII) allow to compare per class confusion.

Fusion of multisensory data using the FG method

( % , example in Fig. 15(d))

allowed to obtain a better accuracy comparing to the fusion

and classification results obtained by the neural network

( % ), and by maximum

likelihood classifier ( % ). The

introduction of the DSM and textural features increased the

accuracy of the FG for classes Forest, Grass, Football field, Rail

road, Asphalt road, Shadow, High-rise building, Medium-rise

building, Low-rise building (Table XIII). In comparison to the

NN (Table XIII), the employment of the WV-2 Texture (SAR

and Optical) DSM allowed the FG to reach better labeling

of the classes: Grass/low vegetation, Rail road, Asphalt road,

Shadow, Medium-rise building, Tennis field, Dock.

Overall, the ML provides a comparable accuracy of fusion

and classification on all combinations of data (Table XIII).

Introduction of the textural features and the DSM increased

the accuracy for classes: Forest/Trees, Bare soil, Parking/car,

Shadow, High-rise building, Low-rise building, Medium-rise

Fig. 13. London test area. Per-class accuracy for the WV-2+DSM data fusion
and classification using the ML, NN, and FG.

Fig. 14. London test area. Per-class accuracy for the WV-2 Texture(SAR and
Optical) DSM data fusion and classification using the ML, NN, and FG.

building comparing to the employment of single-sensor multi-

spectral data. The reduce of the accuracy for the other classes

may be caused by the statistical assumptions on the input data

in the ML method. The ML fusion and classification of the

WV-2 and WV-2 Texture (SAR and Optical) DSM data

illustrated zero accuracy for class Tennis field.

The NN provides a less accurate overall accuracy on the

multisensory data in comparison to the FG. The NN allowed

better labeling of Water, Forest, Bare soil, Football field,

Parking, High-rise building, Low-rise building. Labeling of

Tennis field is difficult to perform by the NN; Parking class is

difficult to label by the FG.

Employment of single-sensor data (WV-2 multispectral data)

for classification allowed to reach a high and comparable ac-

curacy by all the methods (Table XIV; the ML resulted with a

slightly higher Kappa value than the others). Usually maximum

likelihood allows to reach a high accuracy for single-sensor op-

tical multispectral data.

For the McNemar’s test on the ML and FG (Table XIX), and

the NN and FG (Table XX) fusion results on theWV-2 Texture

(SAR and Optical) DSM features, the values are 3087.335

and 328.6979, respectively. The -values for the ML and
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TABLE XVII
LONDON TEST AREA. CONFUSION MATRIX, THE NN CLASSIFICATION USING WV-2 TEXTURE (SAR AND OPTICAL) DSM DATA.

OVERALL ACCURACY KAPPA

TABLE XVIII
LONDON TEST AREA. CONFUSION MATRIX, THE FG CLASSIFICATION USING WV-2 TEXTURE (SAR AND OPTICAL) DSM DATA.

OVERALL ACCURACY KAPPA

TABLE XIX
LONDON TEST AREA. 2 2 CONTINGENCY TABLE FOR THE ML AND FG
FUSION (WV-2 TEXTURE(SAR AND OPTICAL) DSM).

TABLE XX
LONDON TEST AREA. 2 2 CONTINGENCY TABLE FOR THE NN AND FG
FUSION (WV-2 TEXTURE(SAR AND OPTICAL) DSM).

FG,and the NN and FG McNemar’s tests are less than 0.05,

meaning that the FG classification have different performances

(better accuracy) on the same data.

Fig. 16 illustrates the full size classified image for London

test area. Fig. 17 illustrates artifacts which can appear during

fusion in the areas with high-rise buildings. This is an illustrative

example where the NN classifier is influenced by the DSM data

and produces a wrong decision (a confusion of shadowing and

High-rise building classes appears).

TABLE XXI
FUSION AND CLASSIFICATION USING THE FG ON THE INPUT DATA

REPRESENTED ON THE ALPHABET WITH VARYING SIZE (LONDON AREA,
WV-2 TEXTURE (SAR AND OPTICAL) DSM FEATURES, 14 CLASSES)

4) Alphabet Size Influence on the Fusion Accuracy: A

trade-off between the size of the alphabet and the accuracy

of the FG fusion is also performed for London test area.

The FG structure, the training and test samples, and the data

(WV-2 Texture (SAR and Optical) DSM features) are as in

the London test area experiment. The multisensory data (all

features) were represented using different size of the alphabet:

20, 50, and 100 (Table XXI).

In this experiment we may conclude that there is no trend on

the accuracy increase of the fusion and classification accuracy

with the increase of the alphabet size (the same conclusions are

made for Munich test area).

5) Feature Rank: Feature selection is run to find the most

relevant and important features for the FG fusion and classifi-

cation. The same feature selection method (mRMR, Peng et al.
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Fig. 15. London test area. A region of the classification (WV-2 Texture (SAR and Optical) DSM data) map: (a) visible range multispectral image (bands 5,3,2),
(b) fusion and classification by the ML; (c) fusion and classification by the NN; (d) fusion and classification by the FG.

TABLE XXII
THE RANK OF THE FIRST 10 FEATURES SELECTED BY THE MRMRMETHOD FROM THE FEATURE SET EMPLOYED FOR LONDON AREA FUSION AND CLASSIFICATION

USING FACTOR GRAPHS (10 CLUSTERS FOR GABOR FEATURES, 10 FOR THE DSM, AND 50 FOR THEWV-2 MULTISPECTRAL DATA REPRESENTATION)

[41]) is employed as in the experiment onMunich test area data.

Table XXII presents the rank of the first ten features selected

from the feature set calculated for London area experiment. The

first five features were taken for the FG fusion and classification

experiment.

The FG fusion and classification on the selected five features

resulted in the overall accuracy equal to 64.74% and

. As in the experiment for Munich area, the analysis il-

lustrated that the feature selection does not result in the accu-

racy increase. The DSM is placed on the 1st place noticing a

high importance of elevation data for the identification of the

classes (corresponds to the rankings obtained in the classifica-

tion experiment on urban area carried out by Longbotham et

al. [42]). Availability if the DSM makes possible identification

and reduces the confusion of the following classes character-

ized by elevation like building type (High-rise, Low-rise, and

Medium-rise building), Asphalt road, and Bare soil. The identi-

fication of buildings, for example, can be difficult without ele-

vation data. In this experiment, three Gabor features calculated

on SAR data were selected (places 4,6,10) among the selected

WorldView-2 spectral bands (places 3,7) and Gabor features

calculated on optical data (places 2,5,8,9). The feature rank for

London area contains several features also selected in Munich

area experiment: the DSM,WorldView-2 Band 1 (Coastal Blue,
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Fig. 16. London test area. Full size image employed for the FG fusion and
classification. (a) visible range multispectral image (bands 5,3,2), (b) FG fusion
and classification (WV-2 Texture (SAR and Optical) DSM).

400–450 nm), Band 8 (NIR2, 860–1040 nm), and Gabor fea-

tures on optical data (parameter sets are:

) as in Munich experiment. Selected fea-

tures can be dependent on landcover classes and can vary with

the change of the classes.

V. CONCLUSION

Multisensory remote sensing data fusion allows to perform

more precise decisions about the landcover present in the scene

and allows to identify a higher number of specific classes. In

most of the cases some specific landcover classes and objects as

well as a high number of classes in the scene are not possible to

identify using only single-sensor data.

Among several choices for multisensory data fusion, the se-

lection of factor graphs for the fusion allows to perform a classi-

fication into an extended set of classes. It also provides a possi-

bility for the fusion model development and opens possibilities

to augment the model to define more complex systems.

Representation of multisensory data and extracted features

using an alphabet (a predefined domain with finite states) allows

to deal with incommensurable features and data of different na-

ture, statistical properties, and distributions. Such representation

allows easier processing of data using factor graph. Separate

processing of input features (spectral bands, textural features,

or other multimodal features) and employment of the presented

data fusion model is not influenced by the limitations of data

dimensionality (i.e., there is no the curse of dimensionality).

Proper selection of a factor graph structure allows the fusion

model to be tractable for real use and application for remotely

sensed data of arbitrary size. Approximate inference on inde-

pendent models makes it possible to perform inference on input

evidence ofmoderately high size. Application of factor graph on

real multisensory data (WorldView-2, TerraSAR-X, and DSM)

allows to obtain better results than the results reached by appli-

cation of a multilayer perceptron.

The proposed fusion model is influenced and can be lim-

ited by the following properties. The quality of factor graph

configuration depends on the learning method. An appropri-

ately chosen learning method and it’s parameter set (iterations

number, learning step, convergence guarantee, and other) can

increase the generalization of the model and reduce the fusion

error. The initialization of the learning method according to the

knowledge of landcover classes, data type, or data acquisition

parameters should lead to a faster convergence and an increase

of the learning accuracy. Representation of input multisensory

data on the alphabet reduces the data range and a chance on in-

formation loss can exist. A low size of the alphabet can lead

to the fusion and classification error while a very high size can

make the model intractable. To reduce the possibility of infor-

mation loss the size of the alphabet should be chosen sufficient

enough to preserve the necessary information from the input

data. A relevant and sufficient method for the representation

should be selected (knowledge on the data should be taken into

account). The structure of a factor graph is one of the main as-

pects for an efficient solution. An inappropriate structure of the

factor graph can increase the model complexity leading to in-

tractability. The graph structure should be designed carefully

to model the task and keep the tractability of the model. In-

ference method directly influences the decision making error

in a factor graph. Recently developed approximate inference

methods allow to benefit decision accuracy and inference time.

The fusion and classification model is managed to be aug-

mented and developed in several directions. The first direction

is on extension of the graph structure to preserve spatially uni-

form land-cover labeling and to include prior information on

data to perform landcover extraction in unsupervised way. An-

other main direction is towards the employment of multisensory

data and semantic information for modelling of evolution pro-

cesses in a system. Higher levels of data interpretation are to

be modeled by the employment of latent variables, approximate

inference methods, and inference on non-full data. More thor-

ough validation of the method is going to be performed on new

available ground truth data.

APPENDIX

Detailed step-by-step message propagation for the indepen-

dent model is as follows:
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Fig. 17. London test area. An example of artifacts (shadowing) appearing in the area with high-rise buildings. Here, a wrong decision on a class is made by the
neural network (shadowed building is classified as high-rise building, but not shadow; here a high influence of the DSM in the fusion and classification process).
Also, the neural network classification demonstrate a confusion of shadow with class Dock. The same region is classified correctly by the FG fusion and classifi-
cation method. (a)RGB, (b) DSM, (c) NN fusion and classification, (d) FG fusion and classification.

Step 1:

...

Step 2:

...

...

Step 3:

...

...

Step 4:

...

ACKNOWLEDGMENT

The authors would like to thank European Space Imaging

(EUSI) for the collection and provision of Digitalglobe World-

View-2 and IKONOS-2 data over Munich city. TerraSAR-X

data were provided by DLR through the Science Projects

MTH0505 and MTH0948.

REFERENCES

[1] B. Waske and S. van der Linden, “Classifying multilevel imagery from

SAR and optical sensors by decision fusion,” IEEE Trans. Geosci. Re-

mote Sens., vol. 46, no. 5, pp. 1457–1466, 2008.

[2] B. Waske and J. Benediktsson, “Fusion of support vector machines for

classification of multisensor data,” IEEE Trans. Geosci. Remote Sens.,

vol. 45, no. 12, pp. 3858–3866, 2007.

[3] F. Pacifici, F. D. Frate, W. Emery, P. Gamba, and J. Chanussot, “Urban

mapping using coarse SAR and optical data: Outcome of the 2007

GRSS data fusion contest,” IEEE Geosci. Remote Sens. Lett., vol. 5,

no. 3, pp. 331–335, 2008.

[4] N. Longbotham, F. Pacifici, T. Glenn, A. Zare, M. Volpi, D. Tuia, E.

Christophe, J. Michel, J. Inglada, J. Chanussot, and Q. Du, “Multi-

modal change detection, application to the detection of flooded areas:

Outcome of the 2009–2010 data fusion contest,” IEEE J. Sel. Topics

Appl. Earth Observ. Remote Sens. (JSTARS), vol. 5, no. 1, pp. 331–342,

2012.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAKARAU et al.: ALPHABET-BASED MULTISENSORY DATA FUSION AND CLASSIFICATION USING FACTOR GRAPHS 21

[5] F. Tupin and M. Roux, “Detection of building outlines based on the

fusion of SAR and optical features,” ISPRS J. Photogramm. Remote

Sens., vol. 58, no. 1–2, pp. 71–82, 2003.

[6] J. Benediktsson, P. Swain, and O. Ersoy, “Neural network approaches

versus statistical methods in classification of multisource remote

sensing data,” IEEE Trans. Geosci. Remote Sens., vol. 28, no. 4, pp.

540–552, Jul. 1990.

[7] J. Benediktsson, J. Sveinsson, and P. Swain, “Hybrid consensus theo-

retic classification,” IEEE Trans. Geosci. Remote Sens., vol. 35, no. 4,

pp. 833–843, Jul. 1997.

[8] M. Fauvel, J. Chanussot, and J. A. Benediktsson, “Decision fusion

for the classification of urban remote sensing images,” IEEE Trans.

Geosci. Remote Sens., vol. 44, no. 10, pp. 2828–2838, 2006.

[9] F. Rottensteiner, J. Trinder, S. Clode, K. Kubik, and B. Lovell,

“Building detection by Dempster-Shafer fusion of LIDAR data and

multispectral aerial imagery,” in Proc. 17th Int. Conf. Pattern Recog-

nition, Los Alamitos, CA, 2004, vol. 2, pp. 339–342.

[10] C. Wang, D. Blei, and L. Fei-Fei, “Simultaneous image classification

and annotation,” in Proc. IEEE Conf. Computer Vision and Pattern

Recognition, 2009, pp. 1903–1910.

[11] M. Lienou, H. Maitre, and M. Datcu, “Semantic annotation of satellite

images using latent Dirichlet allocation,” IEEE Geosci. Remote Sens.

Lett., vol. 7, no. 1, pp. 28–32, 2010.

[12] D. Bratasanu, I. Nedelcu, andM. Datcu, “Bridging the semantic gap for

satellite image annotation and automatic mapping applications,” IEEE

J. Sel. Topics Appl. Earth Observ. Remote Sens. (JSTARS), vol. 4, no.

1, pp. 193–204, Mar. 2011.

[13] M. Datcu, H. Daschiel, A. Pelizzari, M. Quartulli, A. Galoppo, A. Co-

lapicchioni, M. Pastori, K. Seidel, P. Marchetti, and S. D’Elia, “Infor-

mation mining in remote sensing image archives: System concepts,”

IEEE Trans. Geosci. Remote Sens., vol. 41, no. 12, pp. 2923–2936,

2003.

[14] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the

sumproduct algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.

498–519, Feb. 2001.

[15] B. Frey and N. Jojic, “A comparison of algorithms for inference and

learning in probabilistic graphical models,” IEEE Trans. Pattern Anal.

Machine Intell., vol. 27, no. 9, pp. 1392–1416, Sept. 2005.

[16] J. Moura, L. Jin, and M. Kleiner, “Intelligent sensor fusion: A graph-

ical model approach,” in Proc. IEEE Int. Conf. Acoustics, Speech, and

Signal Processing, Hong Kong, China, Apr. 2003, vol. 6, p. VI–733–6,

vol.6.

[17] K. Kampa, J. Principe, andK. Slatton, “Dynamic factor graphs: A novel

framework for multiple features data fusion,” in Proc. IEEE Int. Conf.

Acoustics, Speech, and Signal Processing, Dallas, TX, US, 2010, pp.

2106–2109.

[18] M. R. Naphade, I. Kozintsev, and T. Huang, “Factor graph frame-

work for semantic video indexing,” IEEE Trans. Circuits Syst. Video

Technol., vol. 12, no. 1, pp. 40–52, Jan. 2002.

[19] G. Palubinskas and M. Datcu, “Information fusion approach for the

data classification: An example for ERS-1/2 InSAR data,” Int. J. Re-

mote Sens., vol. 29, no. 16, pp. 4689–4703, 2008.

[20] G. Palubinskas, , W. von der Linden, Ed. et al., “An unsupervised

clustering method by entropy minimization,” in Maximum Entropy

and Bayesian Methods. Boston, MA: Kluwer Academic, 1999, pp.

327–334.

[21] S. Aksoy, K. Koperski, C. Tusk, G. Marchisio, and J. Tilton, “Learning

Bayesian classifiers for scene classification with a visual grammar,”

IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 581–589, 2005.

[22] M. Schroder, H. Rehrauer, K. Seidel, and M. Datcu, “Interactive

learning and probabilistic retrieval in remote sensing image archives,”

IEEE Trans. Geosci. Remote Sens., vol. 38, no. 5, pp. 2288–2298,

2000.

[23] I. O. Kyrgyzov, O. O. Kyrgyzov, H. Maître, and M. Campedel, “Kernel

mdl to determine the number of clusters,” in Proc. 5th Int. Conf. Ma-

chine Learning and Data Mining in Pattern Recognition, 2007, pp.

203–217.

[24] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. Kschischang,

“The factor graph approach to model-based signal processing,” Proc.

IEEE, vol. 95, no. 6, pp. 1295–1322, Jun. 2007.

[25] J. Besag, “Spatial interaction and the statistical analysis of lattice

systems,” J. Roy. Statist. Soc. Series B (Method.), vol. 36, no. 2, pp.

192–236, 1974.

[26] H. Shen, J. Coughlan, and V. Ivanchenko, “Figure-ground segmen-

tation using factor graphs,” Image Vis. Comput., vol. 27, no. 7, pp.

854–863, 2009.

[27] B. J. Frey, N. Mohammad, Q. D.Morris, W. Zhang, M. D. Robinson, S.

Mnaimneh, R. Chang, Q. Pan, E. Sat, J. Rossant, B. G. Bruneau, J. E.

Aubin, B. J. Blencowe, and T. R. Hughes, “Genome-wide analysis of

mouse transcripts using exon microarrays and factor graphs,” Nature

Genetics, vol. 37, no. 9, pp. 991–996, 2005.

[28] M. R. Boutell, J. Luo, and C. M. Brown, “Factor graphs for region-

based whole-scene classification,” in Proc. 2006 Conf. Computer Vi-

sion and Pattern Recognition Workshop, Washington, DC, 2006, pp.

104–111.

[29] S. Roth, “High-Order Markov Random Fields for Low-Level Vision,”

Ph.D. dissertation, Brown Univ., Providence, RI, May 2007.

[30] G. Palubinskas, P. Reinartz, and R. Bamler, “Image acquisition geom-

etry analysis for the fusion of optical and radar remote sensing data,”

Int. J. Image and Data Fusion, vol. 1, no. 3, pp. 271–282, 2010.

[31] G. Palubinskas and P. Reinartz, “Multi-resolution, multi-sensor image

fusion: general fusion framework,” in Proc. Joint Urban Remote

Sensing Event 2011 (JURSE 2011), Munich, Germany, 2011, pp.

313–316.

[32] S. Suri and P. Reinartz, “Mutual-information-based registration of Ter-

raSAR-X and IKONOS imagery in urban areas,” IEEE Trans. Geosci.

Remote Sens., vol. 48, no. 2, pp. 939–949, 2010.

[33] Digitalglobe, WorldView-2 Spacecraft Data Sheet.

[34] P. d’Angelo and P. Reinartz, “Semiglobal matching results on the

ISPRS stereo matching benchmark,” in ISPRS Hannover Workshop

2011: High-Resolution Earth Imaging for Geospatial Information,

Hannover, Germany, Jun. 2011.

[35] J. Daugman, “Complete discrete 2-D Gabor transforms by neural

networks for image analysis and compression,” IEEE Trans. Acoust.,

Speech, Signal Process., vol. 36, no. 7, pp. 1169–1179, 1988.

[36] I. Young, L. van Vliet, and M. van Ginkel, “Recursive Gabor filtering,”

IEEE Trans. Signal Process., vol. 50, no. 11, pp. 2798–2805, Nov.

2002.

[37] W. Heldens, U. Heiden, M. Bachmann, T. Esch, A. Müller, and S.

Dech, “Scaling issues in validation of abundance maps derived from

HyMAP data of an urban area,” in 6th EARSeL SIG IS Workshop on

Imaging Spectroscopy, Tel Aviv, Israel, Mar. 16–19, 2009.

[38] M. Canty, Image Analysis, Classification, and Change Detection in

Remote Sensing:With Algorithms for ENVI/IDL, 2nd ed. Boca Raton,

FL: CRC Press, 2009.

[39] W. Heldens, “Use of Airborne Hyperspectral Data and Height Infor-

mation to Support Urban Micro Climate Characterisation,” Ph.D. dis-

sertation, Universität Würzburg, Würzburg, Germany, 2010.

[40] T. G. Dietterich, “Approximate statistical tests for comparing super-

vised classification learning algorithms,” Neural Comput., vol. 10, pp.

1895–1923, 1998.

[41] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual

information: Criteria of max-dependency, max-relevance, and min-re-

dundancy,” IEEE Trans. Pattern Anal. Machine Intell., vol. 27, no. 8,

pp. 1226–1238, 2005.

[42] N. Longbotham, C. Chaapel, L. Bleiler, C. Padwick, W. Emery, and

F. Pacifici, “Very high resolution multiangle urban classification anal-

ysis,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1155–1170,

Apr. 2012.

AliakseiMakarau received the Diploma (Dipl.-Ing.)
in computer science from Belarusian State Univer-
sity of Informatics and Radioelectronics in 2003, and
the Ph.D. in technical sciences from the United In-
stitute of Informatics Problems, Minsk, Belarus, in
2008. His dissertation was on fast methods for mul-
tispectral image fusion and processing.
He is at the Department of Photogrammetry and

Image Analysis at the German Aerospace Centre
(DLR), Remote Sensing Technology Institute (IMF).
His research interests include atmospheric correc-

tion, multimodal data fusion, and pattern recognition.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

22 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Gintautas Palubinskas received the M.S. and Ph.D.
degrees in mathematics from Vilnius University,
Lithuania, in 1981 and the Institute of Mathematics
and Informatics (IMI), Vilnius, in 1991. His doctoral
dissertation was on spatial image recognition.
He was a Research Scientist at the IMI from

1981 to 1997. Since 1997, he has been a Research
Scientist at Remote Sensing Technology Institute,
German Aerospace Center (DLR), Oberpfaffen-
hofen, Germany. From 1993 to 1997, he was a
Visiting Research Scientist at German Remote

Sensing Data Center, DLR; the Department of Geography, Swansea University,
Wales, U.K.; Institute of Navigation, Stuttgart University, Germany; and
Max-Planck-Institute of Cognitive Neuroscience, Leipzig, Germany. His
current interests are in image processing, classification and change detection,
data fusion for optical and SAR remote sensing applications.

Peter Reinartz received the Diploma (Dipl.-Phys.)
in theoretical physics from the University of Munich,
Germany, in 1983, and the Ph.D. (Dr.-Ing) in civil
engineering from the University of Hannover, Ger-
many, in 1989. His dissertation was on statistical op-
timization of classification methods for multispectral
image data.
He is head of the Department of Photogrammetry

and Image Analysis at the German Aerospace Centre
(DLR), Remote Sensing Technology Institute (IMF)
and holds a professorship in Geoinformatics at the

University of Osnabrueck. He has more then 20 years of experience in image
processing and remote sensing and over 150 publications in these fields. His
main interests are in direct georeferencing, stereo photogrammetry and data fu-
sion, generation of digital elevation models and interpretation of VHR image
data from sensors like WorldView, GeoEye a.o. He is also engaged in using re-
mote sensing data for disaster management and using high frequency time series
of airborne image data for real time application in case of disasters as well as
for traffic monitoring.


