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Abstract: The development of AlphaFold2 marked a paradigm-shift in the structural biology com-
munity. Herein, we assess the ability of AlphaFold2 to predict disordered regions against traditional
sequence-based disorder predictors. We find that AlphaFold2 performs well at discriminating disor-
dered regions, but also note that the disorder predictor one constructs from an AlphaFold2 structure
determines accuracy. In particular, a naïve, but non-trivial assumption that residues assigned to
helices, strands, and H-bond stabilized turns are likely ordered and all other residues are disordered
results in a dramatic overestimation in disorder; conversely, the predicted local distance difference
test (pLDDT) provides an excellent measure of residue-wise disorder. Furthermore, by employing
molecular dynamics (MD) simulations, we note an interesting relationship between the pLDDT
and secondary structure, that may explain our observations and suggests a broader application of
the pLDDT for characterizing the local dynamics of intrinsically disordered proteins and regions
(IDPs/IDRs).

Keywords: AlphaFold2; disordered proteins; IDPs/IDRs; machine-learning; biophysics; structural
bioinformatics; molecular dynamics; simulation

1. Introduction

Predicting the three-dimensional structure of a protein from its primary amino acid
sequence is a grand challenge in molecular structural biology dating back to the late
1950’s [1,2]. About a year and a half ago, AlphaFold2 (AF2), a deep-learning program,
provided a paradigm-shift in this problem [3]. Not only did it outperform all other groups
at the 14th Critical Assessment of protein Structure Prediction (CASP14) [3], but it did so
with astonishing accuracy and a large margin. Consequently, this breakthrough has caused
enthusiasm in several related fields, including drug development [4].

The full problem of protein folding is, however, multi-faceted, and despite AlphaFold’s
stellar success, many problems and open questions remain. As has already been pointed
out by several authors [5–9], dynamics of protein folding remains a formidable problem;
prediction of the folding pathways, effects of mutations, the solution environment, ag-
gregation and, as a very particular category, intrinsically disordered proteins and regions
(IDPs/IDRs).

IDPs remain a major challenge since they are almost entirely devoid of native structure
and because they function primarily as conformational ensembles [10–17] with folding free
energy landscapes that are relatively flat [18–20]. This is a direct consequence of their amino
acid sequences [21–23], in particular the enrichment of disorder-promoting residues over
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and above order-promoting ones [24–27]. The application of AF2 to the prediction of IDRs
and IDPs has only briefly been discussed in the literature [6–8,28], and its performance
against multiple traditional predictor methods is currently absent.

In light of the recent publication of the critical assessment of protein intrinsic disorder
(CAID) benchmark [29], detailing the performance of over three dozen sequence-based
disorder predictors and their datasets, we saw an excellent opportunity to benchmark AF2.
Herein, we compare the performance of AF2 to the top performing sequence-based disorder
predictors as determined at CAID. Importantly, while we find AlphaFold2 to perform
exceptionally well on disorder identification; we also note that the disorder predictor
one constructs from an AlphaFold2 structure determines accuracy. Specifically, a naïve,
non-trivial assumption that the structure assignment provided by DSSP [30], the primary
method for assigning secondary structure based on protein geometry, can be used for
the determination of disordered regions, leads to a dramatic overestimation in disorder
content and represents a potential pitfall for researchers who are less familiar with IDPs
and structural prediction methods.

The predicted local distance difference test (pLDDT), which is correlated to the con-
fidence of the structure prediction, provides a better metric for identifying ordered and
disordered regions. Furthermore, we find that traditional predictors are capable of out-
performing AF2 in disorder prediction even when the pLDDT is used. We also show how
secondary structure and pLDDT scores are interestingly related, providing a potential
explanation for the observed performance discrepancy and highlight a link between local
protein dynamics and the pLDDT using a well characterized IDP and MD simulations.

2. Methodology
2.1. Dataset Generation

Two datasets were used in this work, DisProt and DisProt-PDB, derived from the
DisProt database [31]. Both reference sets are based on the CAID benchmark dataset and
are composed of 475 targets, annotated between June and November 2018 (DisProt release
2018_11). Note that this is less than the 646 targets used at CAID because AF2 predicted
structures do not exist for some sequences. In the DisProt reference set, all residues not
labeled as disordered (1) are labeled as ordered (0). We would like to note that such a
definition has significant limitations and the conclusions we draw herein are principally
based on the DisProt-PDB dataset. Figures and tables based on the DisProt set are found
in Supplemental Information and care should be taken when drawing conclusions from
them. Our decision to include them here is simply for completeness. The DisProt-PDB
reference set, on the other hand, only annotates residues for which some experimental data
are available; either a PDB structure that suggests a residue to be ordered or experimental
findings, catalogued in DisProt, which suggest a residue to be disordered. Note that if a
conflict arises between a DisProt entry suggesting disorder and a PDB structure suggesting
order, a disordered assignment is made. All residues not covered by PDB structures
or DisProt annotations are masked and were excluded from analysis. As a result, the
DisProt-PDB dataset contains no ’uncertain’ residues. All residues considered in this set
have either a DisProt annotation, based on prior literature, or belong to a PDB structure.
We note that the EMBL/AF2 database contains some structures that are present in the
dataset. The degree to which this improves the performance of AF2 is not easily measured;
however, it is our belief the impact to be small. Additional details pertaining to dataset
construction are provided in Supplementary Information and the full list of proteins,
structures, and combined disorder data are available at https://github.com/SoftSimu/
AlphaFoldDisorderData (accessed on 21 September 2021).

AF2 structures were downloaded from the EMBL database (https://alphafold.ebi.ac.
uk/, accessed on 21 September 2021) and run using DSSP [30] to assign secondary structure.
We assume that residues belonging to helices, strands, or H-bond stabilized turns are
ordered (0) and all other residues are disordered (1). We refer to this as the näive DSSP
predictor or DSSPp for short.

https://github.com/SoftSimu/AlphaFoldDisorderData
https://github.com/SoftSimu/AlphaFoldDisorderData
https://alphafold.ebi.ac.uk/
https://alphafold.ebi.ac.uk/
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We also collected pLDDT values for each structure. Every residue in an AF2 structure is
assigned a value, scaled between 0 and 100, which predicts the Cα local distance difference
test (lDDT) [3,28,32] score of a model; in short, this metric captures the residue-wise
confidence of an AF2 model. We transform this value according to the equation,

tpLDDT = 1− pLDDT/100, (1)

as suggested by Tunyasuvunakool et al. [28], giving us a pLDDT-based predictor of dis-
order, where 1 is disordered and 0 is ordered. We refer to this prediction method as the
transformed pLDDT or tpLD for short.

We can discretize this pLDDT predictor by classifying a residue with a pLDDT
score ≥ n as ordered (0) and disordered (1) otherwise; we use pLDDTn (or pLDn for short),
to indicate this binary predictor. Thresholds for n were chosen based on the Matthews
correlation coefficient (MCC), which has been documented to be an excellent metric for
assessing the accuracy of binary classifiers [33] and was the approach used at CAID [29].
Notice this gives us two predictors: (1) a continuous predictor (tpLDDT) where a residue’s
degree of disorderedness is captured, and (2) a discrete predictor (pLDn) where a residue
is either disordered or ordered depending on the pLDDT and chosen threshold (n). The
CAID dataset contains predictions made by three dozen predictors. We selected the top
10 performing on the DisProt and DisProt-PDB giving a combined non-redundant set
of 11 (fIDPnn [34], SPOT-Disorder2 [35], RawMSA [36], fIDPlr [34], PreDisorder [37],
AUCpreD [38], SPOT-Disorder1 [39], SPOT-Disorder-Single (SPOT-Disorder-S) [40] , Dis-
oMine [41], AUCpreD-np [38] and ESpritz-D [42]). The sequence predictors provide a score
between 0 and 1, inclusive, as well as a binary disorder/order assignment. No modification
to the classification thresholds for these predictors was attempted. Descriptions of disorder
prediction methods are provided in the Supplementary Information of the original CAID
paper [29]. For two vectors, v and w, we compute the RMSD as

RMSD =

√
1
m

m

∑
i=1
|vi − wi|2, (2)

where m is the number of elements (residues) in each vector (protein), v and w. Given
binary vectors, a random predictor has an RMSD of ∼0.7 on a uniform dataset. Receiver
operating characteristic (ROC), area under the curve (AUC), precision–recall, F1-score, and
correlation analysis were all performed using scikit-learn [43], and kernel density estimate
(KDE) analysis was performed in seaborn [44]. Descriptions of statistical methods are
provided in Supplementary Information.

2.2. Nrf2 Structure Generation

We used ColabFold [45] to generate both Neh4 and Neh5 structures, our model IDP
systems. Two approaches were used: the first was to consider the peptide sequences used
in our previous work [46,47], specifically 111SDALYFDDCMQLLAQTFPFVDDN133 and
180MQQDIEQVWEELLSIPELQCLNIENDKLVE209. These are the Neh4 and Neh5 domains,
respectively. The second approach was to consider the more realistic construct that includes
the linker 106AHIPKSDALYFDDCMQLLAQTFPFVDDNEVSSATFQSLVPDIPGHIESPV
FIATNQAQSPETSVAQVAPVDLDGMQQDIEQVWEELLSIPELQCLNIENDKLVETTM
VP214 and extract the local structures comprising the domains. ColabFold generates five
ranked structures per sequence giving rise to three pools of structures. Alignment of the
structures within the Neh4 and Neh5 pools showed excellent agreement and we opted to
simply consider the top-ranked structures in each pool, denoted Neh4 (P) and Neh5 (P).
Alignment of these peptide structures to the longer construct suggests good agreement;
however, there were some constructs with structural differences. We consider the construct
that was the most heterogeneous with respect to the smaller peptides and extracted the
local Neh4 and Neh5 structures, denoted Neh4 (C) and Neh5 (C).
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2.3. Molecular Dynamics Simulations

The MD simulation protocols for the two force fields were almost identical, the pri-
mary difference was that the simulations using the Amber-99SB*-ILDNP [48–50] force field
were performed at 310 K with the TIP3P water model [51] while the Amber99SB-disp [52]
simulations were performed at 298.15 K with the TIP4P-disp water model [52]. Note that
the Amber-99SB*-ILDNP simulations were taken from our previous work [46] while the
Amber-99SB*-disp runs were new to the work discussed herein. In both cases, the steepest
descent algorithm was utilized for energy minimization, temperature was maintained
using the Parrinello–Donadio–Bussi velocity rescaling method [53] with a 1.0 ps coupling
time and pressure were maintained using the Parrinello–Rahman barostat [54] at 1 bar with
a coupling time of 5.0 ps. The simulation time step was 2.0 fs. Long-range electrostatic in-
teractions were calculated using the particle-mesh Ewald (PME) method [55] with a Fourier
spacing of 0.12 nm and a real-space cut-off of 1.0 nm; the Lennard–Jones interactions were
computed with a 1.2 nm cut-off. H-bonds were constrained using the LINear Constraint
Solver (P-LINCS) [56]. K+ or Cl− ions were added to neutralize excess charge, i.e., overall
charge neutrality was always preserved. Each simulation was performed in quadruplicate
for 3µs, totalling 12µs of simulation time for each force field–protein combination.

3. Results
3.1. pLDDT Performs Better Than Conventional Predictors and a Näive Use of DSSP for
Disorder Identification

Improved performance with tpLD (Equation (1)) over and against conventional pre-
dictors and a näive application of DSSPp is evidenced by the ROC curves and AUC
values (Figures 1 and S1), as well as the precision–recall (PR) curves and Fmax values
(Figures 1 and S1) on both the DisProt-PDB and DisProt datasets (Tables S1 and S2). Thresh-
olds for the binary pLDn predictor were selected based on the Matthews correlation
coefficients, which gave values of 76 and 68 for the DisProt and DisProt-PDB datasets
respectively (Tables S3 and S4). We refer to these discrete predictors as pLD76 and pLD68.
Unsurprisingly, these values agree with the minimum distance from the ROC curve to
the top left of the plot (i.e., (0, 1)) (Figure 1). The difference between these two values
undoubtedly stems from the nature of the underlying datasets: while DisProt-PDB contains
no uncertain residues, DisProt does. For analysis purposes, we opted to use a combined
pLDDT metric, denoted pLD72, which is the mean of these two. Data using multiple pLDDT
values are provided in Tables S1 and S2. RMSD (Equation (2)) calculations comparing
DSSPp and pLD72 demonstrate improved performance for all protein classes, including
highly disordered (i.e., >95%) and highly ordered (i.e., <10%), irrespective of dataset
(Figures 2 and S2). We note that overall RMSD values are on average lower for the DisProt-
PDB dataset, again likely a result of it lacking “uncertain” residues—residues for which
no PDB or experimental data exists. Shifts towards lower RMSD irrespective of dataset,
or protein length and disorder content, are also evident for pLD72 (Figures S4 and S5). A
regression analysis revealed stronger correlations between pLD72 and the traditional disor-
der predictors with respect to residue-wise disorder RMSD when compared with DSSPp
(Figures S6–S9). Considering global disorder content prediction, we find that on the DisProt
dataset pLD72 shows slightly better performance than DSSPp with a lower mean and a
more accurate distribution; however, we note that both methods significantly overestimate
disorder content (Figures 3 and S3). On the DisProt-PDB dataset, closer agreement between
pLD72 and DSSPp is evident based on the mean with both methods returning values similar
to experiment. The two distributions are, however, notably different. While that produced
by pLD72 has a peak around 0.15, in close agreement with the experiment, the peak in the
distribution produced by DSSPp is larger and shifted to a higher value around 0.3. This
is all to say that a näive application of DSSP for the prediction of disordered and ordered
regions for AF2 structures, specifically the assumption that helical and strand regions are
ordered, and coiled regions are unstructured, leads to poorer prediction (i.e., higher RMSD,
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lower AUC, and higher Fmax) of disordered regions and an overestimation in disorder
content.

Figure 1. Receiver operating characteristic (ROC) curves (top) and precision–recall (bottom) are
depicted for various predictors calculated per residue on the DisProt-PDB dataset. Note that a ROC
curve captures the probability of true and false positives at all thresholds, where an ideal predictor
will have an area under the curve (AUC) equal to 1. Further note that a precision–recall curve captures
the trade-off between precision and recall; again, in the ideal case the harmonic mean of the precision
and recall (Fmax) will be equal to 1; bar colors correspond to the legend, red denotes tpLD. In all cases
the tpLD (Equation (1)) and various discrete pLDn predictors are indicated alongside DSSPp. The
tpLD predictor resulted in one of the highest AUC values and the highest Fmax on the DisProt-PDB
dataset. pLDDT is abbreviated as pLD for plotting purposes.

Figure 2. Average RMSD (Equation (2)) values calculated for the DisProt-PDB datasets using various
prediction methods calculated per protein. Proteins were assigned to classes (highly disordered
i.e., >90% disorder and highly ordered i.e., <10% disorder) based on datasets. Bootstrapping—that is,
sampling with replacement—was used to compute averages and estimate errors with 10,000 samples
of size 60. pLD72 resulted in lower RMSD values on the DisProt-PDB dataset compared to DSSPp.
pLDDT is abbreviated as pLD for plotting purposes.
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Figure 3. Distribution of disorder content per protein in the DisProt-PDB dataset depicted alongside
the distributions predicted by pLD72 and DSSPp. Bin-widths were set at 0.5 and bootstrapping that
is, sampling with replacement, was used to compute the distributions and average values (vertical
dashed lines) with 10,000 samples of size 60. Close agreement between the experiment and pLD72

is evident, conversely, DSSPp predicted a higher disorder content. pLDDT is abbreviated pLD for
plotting purposes.

3.2. Sequence Predictors Can Still Outperform AlphaFold2 on Disorder Prediction

Comparing the pLDDT-based and DSSPp predictors to various sequence-based pre-
dictors revealed performance differences amongst the methods. Notably, tpLD (Equa-
tion (1)) performed exceptionally well on the DisProt-PDB dataset posting the largest Fmax
(0.784) and one of the largest AUC (0.905) values of the methods considered (Figure 1,
Tables S1 and S3). This was also evidenced by pLD72, which had the highest MCC
(0.701) (Table S1) and one of the lowest RMSD values (Figure 2) on the DisProt-PDB
dataset. Unsurprisingly, on the DisProt dataset, both tpLD (Equation (1)) and DSSPp
performed significantly worse and were readily outperformed by the other predictor meth-
ods, in particular fIDPnn (Fmax: 0.357 (DSSPp), 0.429 (tpLD), 0.457 (fIDPnn); AUC: 0.635
(DSSPp), 0.731 (tpLD), 0.794 (fIDPnn)), which outperformed all other predictors, as evi-
denced by the ROC, PR, and RMSD analyses. We note that with respect to MCC, pLD72
still performed well on both the DisProt and DisProt-PDB datasets achieving scores of
0.310 and 0.697, respectively (Tables S1 and S2). In agreement with the CAID results, we
found that SPOT-Disorder2, fIDPnn, RawMSA, and AUCpreD all performed exceptionally
well (Figures 1 and S1, Tables S3 and S4) [29].

3.3. Secondary Structure Codons (SSC) Suggests Relationships between the pLDDT and
Secondary Structure

In order to explain the discrepancy between the pLDDT-based and DSSP predictors
with respect to local and global disorder prediction, we considered how pLDDT values were
assigned to the secondary structures. Kernel density estimates (KDE) of the distribution
of pLDDT values sampled over all residues revealed a strong left-skew for all but the
coil secondary structure, which exhibited a right-skewed bimodal distribution with peaks
around 94 and 35 (Figure 4). Residues assigned to β-strand and β-bridge structures are the
most likely to be assigned to large pLDDT values, followed by helical and H-bond stabilized
turns. To provide a more detailed picture of the distributions, we introduce the concept of
a secondary structure codon (SSC), a triplet describing the local secondary structure at a
given residue. Analysis of the distributions of pLDDT values for each SSC revealed that
residues predicted to belong to both the ends (HHC/CHH/HHT/THH) and middle (HHH)
of helices can have pLDDT values <50 (Figure S10), this was not observed for residues
belonging to the middle (EEE) and ends of β-strands (EEC/CEE/EET/TEE) (Figure S11).
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For highly coiled residues (CCC/CCT/TCC) and several turn residues (CTT/TTC), both
high (>80) and low (<50) pLDDT values were observed (Figures S12 and S13).

Figure 4. Distribution of pLDDT values per residue calculated for each secondary structure class. Bin-
widths were set at 0.5 and bootstrapping, that is, sampling with replacement, was used to compute
the distributions and mean values (colored vertical dashed lines; black dashed line represents pLD72)
with 10,000 samples of size 500. A bimodal distribution is evident for the coil structures, and while
strand, helical, and turn regions are on average assigned to high pLDDT values, residues belonging
to each can sample much lower values. pLDDT is abbreviated pLD for plotting purposes.

3.4. Nrf2: A Case Study

Nrf2 (nuclear factor erythroid 2-related factor 2) is a partially disordered transcription
factor [47,57] and is the master regulator of the cellular anti-oxidative response. Within
the multi-domain Nrf2 protein, two transactivation domains, namely Neh4 and Neh5,
are responsible for binding the transcriptional adaptor zinc-binding domains, TAZ1 and
TAZ2, of CBP; references [58,59]; previous work has elucidated the free-state ensembles
of Neh4 and Neh5 using both MD simulations and circular dichroism [46]. We consider
the AF2 predicted structures of the Neh4 and Neh5 peptides (Neh4 (P) and Neh5 (P))
and the structures predicted for Neh4/5 within a larger construct (Neh4 (C) and Neh5
(C)). Comparison of the secondary structures determined from the AF2 predictions and
simulated ensembles suggested relatively good agreement; regions of low helical propensity
in the ensemble corresponded to lower helical propensity in the AF2 structures, and the
converse was also true (Figure 5). There also appeared to be some agreement between
pLDDT and secondary structure; however, these correlations were weak (Figure 5) and
depended strongly on the system considered (Neh4 vs. Neh5). We also overlaid the
pLDDT with the predicted structures seeking to assess the potential for additional insights.
Immediately evident was the heterogeneity in the predicted structures when considering
the peptide and the larger construct. Notably, the differences in the structure occurred
precisely where the pLDDT was lower (e.g., the N-terminal of the Neh4 (P) that was not
present in the Neh4 (C) and the C-terminal helix in Neh5 (P) that was split in Neh 5 (C)).
The pLDDT and heterogeneity of the structures in particular with Neh5, agreed closely
with the observed secondary structure from the ensembles (Figures 5 and 6); specifically,
the triple helix, with a hard break at I14-P15 and a transient break from N22–E24. These
structural dynamics—that is the exchange between a large and a small helix in the C-
termini of Neh5—appeared to be captured explicitly by the pLDDT and implicitly by the
heterogeneity of the AF2 structures.
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Figure 5. Secondary structure of ensembles versus AF2. Top: Secondary structure was computed
from molecular simulation (red = α-helix, 310-helix or π-helix; blue = β-strand or β-bridge; and
green = turn). The red background color depicts the AF2 predicted secondary structure propensities,
no strand/turn content was predicted. Bottom: Min–max normalized pLDDT values (pLDnorm)
are plotted (circles) with colors ranging from 0 to 1 (orange implies pLDnorm = 1 and blue implies
pLDnorm = 0). We plot correlations between the total secondary structure propensity computed from
MD simulations and the pLDnorm, and fit the data to a line (red) or a power law (orange). pLDDT is
abbreviated pLD for plotting purposes.

Figure 6. AF2 predicted structures correlate with simulated secondary structure. We consider the
peptide (i.e., Neh4/5 (P)) and construct (i.e., Neh4/5 (C)) structures predicted from AF2, without a
colormap and with a pLDDT colormap scaled between 70 and 100 (i.e., blue implies pLDDT = 70 and
orange implies pLDDT = 100). Note how the coloring of the structures provides non-trivial insights
that are undetectable without it. These are depicted alongside the average secondary structure
computed using both the ff99SB*-ILDNP and ff99SB-disp simulations (red = α-helix, 310-helix or
π-helix; blue = β-strand or β-bridge). Note that arrows indicate corresponding regions between AF2
structures (left) and structural propensities computed from MD simulations (right).
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4. Discussion

AF2 has been a paradigm-shift in structural biology, providing a tentative solution
to the protein folding problem that has persisted over half a century [1]. Since the time
that problem was posed by Perutz and Kendrew, a new class of proteins, intrinsically
disordered proteins, has been discovered and IDPs have become the focus of much
study [10,11,13,14,60,61]. Over the past two decades, much effort has been devoted to
developing methods for identifying disordered regions given the primary sequence of a
protein [29,62–66]. Herein, we assess the applicability of AF2 to this problem.

We find (and strongly stress) that simply inferring a residue in an AF2 structure
assigned by DSSP to a helical, strand, or H-bond stabilized turn is ordered, and otherwise
is disordered, results in an overestimation of disorder content and a poor prediction of
disordered regions. While this may seem like a trivial observation, the abundance of AF2
structures generated for disordered proteins has made such a pitfall increasingly likely for
researchers who are less familiar with IDPs and structural prediction methods. Instead,
employing the pLDDT, a measure of the expected position error at a given residue and
originally purposed to assess the residue-wise structural confidence, provides a much more
accurate metric for determining global and local disorder content. Using the pLDDT as a
disorder predictor metric, we observe impressive performance on the DisProt-PDB dataset
when compared to conventional disorder predictors (Figure 1). We here note the work by
Akdel et al. [8], who found that, in addition to the pLDDT, the solvent accessible surface
area of an AF2 structure provides another strong predictor of disorder. Similar to our 2021
benchmark published in bioRxiv [67], this was recently extended by Piovesan et al. [68],
wherein a combined RSA-pLDDT metric for assessing IDP binding was considered.

Secondary structure and global disorder analyses point to a potential root of the pre-
diction discrepancy between pLDDT and DSSP; simply put, for AF2, not all secondary
structures are created equal. AF2 will readily assign a coiled geometry and a high pLDDT
value to the same residue, and conversely assign low pLDDT values to structured re-
gions (Figure 4). While a näive DSSP predictor assumes that coils and bends are disordered
while helices, strands, and turns are ordered, a pLDDT predictor captures the biophysical
reality that a coil may be more "ordered" and a helix more "disordered" for certain residues
in certain proteins. It is this former case that likely results in the improved performance
observed for pLDDT and underscores the importance of the nuance provided by this metric
for disordered protein prediction. It also opens the door to another interesting question:
is the conclusion to be drawn from two helices A and B of comparable geometry with
significantly different average pLDDT (pLDDTA < pLDDTB) simply that A is less likely to
be “real”, or is it that both helices exist, however, A exists transiently?

The above question alludes to a second problem associated with IDP prediction,
namely predicting the structural dynamics and transitions (i.e., order-to-disorder, disorder-
to-order, disorder-to-disorder) that an IDP may undergo [62,69]. In light of the secondary
structure analysis, the pLDDT may be just such a means for extracting this information,
namely the transientness of secondary structures, their potential for transition upon binding
and their functional importance. A helix with a low pLDDT may be more transient (i.e.,
existing frequently in a disordered, unfolded state) than a helix with a high pLDDT and
conversely, a coiled region with a high pLDDT, may suggest a disorder–order transition
and/or its conserved role in some biophysical interaction. The strength of AF2 as a predictor
is that both a pLDDT score and a three-dimensional structure are provided, allowing for
more comprehensive insights into an IDPs structure and dynamics. This is anecdotally
evidenced by Nrf2, where considering the structure alone presents an incomplete story,
that is quite literally colored in by the pLDDT, revealing something about the transientness
of the C-terminal helix of Neh5. This hypothesis, pertaining to the relationship between the
pLDDT and the structural transitions of IDRs, originally proposed in our 2021 pre-print [67],
has been further substantiated by the findings of an impressive study by Alderson et al. [70]
that systematically compared both NMR and AF2 data.
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While the significance of this insight is buffeted by the unrealistically high helical
content predicted by AF2, it appears to suggest that continued research into the pLDDT
and heterogeneity of AF2 predicted structures may provide novel insights. We reiterate
that, by their very nature, IDPs exhibit a high degree of conformational flexibility, allowing
them to interact with multiple binding partners in a variety of ways [71–78]. While it is
the case that a single, static, AF2 structure cannot adequately describe the totality of an
often large conformational ensembles [13–15], the ability of the program to predict with
relatively high accuracy the location of disordered regions is nonetheless impressive, and
refinement of the training set to account for more accurate disordered structures could
further improve performance. In addition, thorough analysis of the pLDDT score as it
relates to structural transientness, as well as the local function and dynamics of IDP motifs,
may further enhance the utility of AF2 to the IDP community.

While experimental NMR [47,79–87], and high-quality molecular simulations [46,88–98]
are some of the most accurate methods for determining the (dis)ordered nature and dynam-
ics of proteins, fast and computationally efficient methods play an important role. Unlike
conventional predictors however, AF2 supplies both a pLDDT score, that can provide an
accurate prediction of protein disorder, in addition to a three-dimensional structure, and
when taken in tandem, these appear to provide insights into the underlying local dynamics
(i.e., disorder–order transition) of disordered protein regions.

5. Conclusions

In this study, we assessed the ability of AF2 to predict disordered protein regions. We
benchmark the program on two datasets developed for CAID [29], and find it to perform
quite well, exceeding the performance of 11 traditional predictors on the DisProt-PDB
dataset. Furthermore, we observe that the pLDDT score assigned to each residue by AF2
provides an impressive metric for assessing disorder, far surpassing a näive, but by no
means, non-trivial application of DSSP for researchers who are less familiar with IDPs
and structural prediction methods. Our analysis, in particular that of Nrf2, also suggests
a novel link between secondary structure transience and the pLDDT score, intimating
that continued research into this metric may reveal a connection to the local dynamics of
disordered proteins.
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