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Dominant mutations in two functionally related DNA/RNA-binding

proteins, trans-activating response region (TAR) DNA-binding pro-

teinwith amolecularmass of 43KDa (TDP-43) and fused in sarcoma/

translocation in liposarcoma (FUS/TLS), cause an inherited form of

ALS that is accompanied by nuclear and cytoplasmic aggregates

containing TDP-43 or FUS/TLS. Using isogenic cell lines expressing

wild-type or ALS-linked TDP-43 mutants and fibroblasts from

a human patient, pulse-chase radiolabeling of newly synthesized

proteins is used to determine, surprisingly, that ALS-linked TDP-43

mutant polypeptides are more stable than wild-type TDP-43.

Tandem-affinity purification and quantitative mass spectrometry

are used to identify TDP-43 complexes not onlywith heterogeneous

nuclear ribonucleoproteins family proteins, as expected, but also

with components of Drosha microprocessor complexes, consistent

with roles for TDP-43 in both mRNA processing and microRNA

biogenesis. A fraction of TDP-43 is shown to be complexed with

FUS/TLS, an interaction substantially enhanced by TDP-43 mutants.

Taken together, abnormal stability of mutant TDP-43 and its

enhanced binding to normal FUS/TLS imply a convergence of

pathogenic pathways from mutant TDP-43 and FUS/TLS in ALS.

mass spectrometry | protein stability | amyotrophic lateral sclerosis |
microRNA | ribonucleoproteins

Pathological protein aggregation is one of the hallmarks of
neurodegenerative diseases (1). In 2006, trans-activating re-

sponse region (TAR) DNA-binding protein with a molecular
mass of 43 KDa (TDP-43) was identified as a major component
of ubiquinated inclusions found in frontotemporal lobar degen-
eration with ubiquitin aggregates (FTLD-U) and ALS patients
(2, 3). Since then, intracellular TDP-43–positive inclusions have
been found in an array of neurodegenerative diseases, including
Alzheimer’s disease (AD), Pick’s disease, various forms of Par-
kinson’s diseases (PD), and others (4).
Starting in 2008, multiple studies identified over 30 dominant

mutations in TDP-43 in both sporadic and familial ALS patients
but not in other neurodegenerative diseases including AD or PD,
indicating that these mutations are specific to ALS pathogenesis
(4–7). This evidence has shaped an emerging TDP-43 protein-
opathy hypothesis in which sequestration of nuclear TDP-43 into
pathological inclusions is proposed to contribute to disease
pathogenesis (8). Additionally, mutations in a second function-
ally related gene, fused in sarcoma/translocation in liposarcoma
(FUS/TLS), were found to be linked with ALS (9, 10).
In a normal context, both TDP-43 and FUS/TLS are involved in

RNA transcription and splicing regulation (4). However, how
ALS-linked mutations in TDP-43 and FUS/TLS contribute to
cellular toxicity is not understood. TDP-43 is thought to be pre-
dominantly a nuclear protein found in nuclear bodies (TDP
bodies) that are distinct from other known nuclear structures (11).
The normal functions of TDP-43 are not established, although it
has been proposed that TDP-43 is involved in transcription re-
pression (12, 13) and splicing regulation (14–16). TDP-43 was first
identified as a transacting factor binding to the TAR DNA pro-
moter region of HIV to repress the expression of the TAR gene

(13). Similarly, repression of the mouse SP-10 gene during sper-
matogenesis by TDP-43 was also proposed (12). Reduction of
TDP-43 in cell culture leads to down-regulation of cyclin-
dependent kinase 6 and histone deacetylase 6, further supporting
TDP-43’s role in regulating gene expression (17, 18). There is,
however, growing evidence indicating that TDP-43 functions in
RNA processing. In particular, presence of TDP-43 affects the
exon usage of the cystic fibrosis transmembrane regulator
(CFTR), apolipoprotein A-II, and survival of motor neuron
(SMN) transcripts (14–16). TDP-43 interacts with heterogeneous
nuclear ribonucleoproteins (hnRNP) A2/B1 and hnRNP C in
vitro, and these interactions may be required for splicing site se-
lection (19). In addition to a nuclear function, TDP-43 also
colocalizes with fragile X mental-retardation protein (FMRP)
and Staufen proteins in the neurites of primary neurons, which
suggests a role in RNA transport and localization (20).
Whether nuclear or cytoplasmic, the RNA targets and protein

interactors of TDP-43 have not yet been systematically identified,
and it is not known how ALS-linked mutations in TDP-43 affect
its normal function(s). In disease conditions, affected neurons
typically lose nuclear TDP-43 staining, possibly before the for-
mation of intracellular aggregates (21). In addition, TDP-43
seems to be ubiquitinylated, phosphorylated, and fragmented in
pathological conditions (3). Transient expression of TDP-43
fragments in mammalian cell lines and yeast have led to a widely
held view that the C-terminal fragment of TDP-43 is extremely
toxic (22, 23), although it remains unresolved how C-terminal
fragments are generated under physiological or pathological
conditions (24, 25).
Two key questions for understanding the TDP-43 proteino-

pathies are (i) what are the normal functions of TPD-43 and (ii)
what are the acquired toxicities (gain of function) and/or per-
turbed normal functions (loss of function) of TDP-43 in disease
conditions. Here, we address these questions by the use of site-
directed recombination to produce a series of isogenic cell lines
expressing a single copy gene encoding ALS-linked mutations.
With these isogenic cell lines as well as fibroblasts from a human
patient, we show that the mutant TDP-43 proteins are more
stable than the wild-type protein. Additionally, with isotope la-
beling to produce quantitative mass spectrometry, we define core
TDP-43 protein complexes to contain hnRNP family proteins and
components of Drosha microprocessor complexes, establishing
a direct link of TDP-43 to microRNA biogenesis. Furthermore,
a fraction of TDP-43 interacts with FUS/TLS. Most intriguingly,
FUS/TLS interacts more prominently with mutant TDP-43, even
in the absence of TDP-43 nuclear aggregates. Our results suggest
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that mutations in TDP-43 perturb normal FUS/TLS function,
which may be an early event before any mislocalization and ag-
gregation, and possible convergence of pathogenic pathways in
ALS by TDP-43 and FUS/TLS.

Results

ALS-Linked TDP-43 Mutations Exhibit Longer Protein Half-Lives. A
hallmark of TDP-43 protein pathology is intracellular inclusions
of aggregated TDP-43. Neither the stability of TDP-43 nor its
ALS-linked mutations have been determined. Although several
prior reports using transient transfection to express abnormally
high levels of TDP-43 (or portions of it) have lead to the pro-
posal that C-terminal TDP-43 fragments are toxic (22, 26), we
sought to establish the half-lives of wild-type and ALS-linked
mutations in TDP-43 at physiologically relevant endogenous
levels. We first determined the normal abundance of TDP-43.
Using immunoblotting of known amounts of recombinant full-
length human TDP-43 (Fig. S1) in parallel with total protein
extracts from a known number of cells, endogenous TDP-43 was
identified to comprise 0.04% of total cell protein (8.3 ng per 3 ×

104 cells containing 20 μg of total cell protein). Thus, endoge-
nous TDP-43 corresponds to ∼4 × 106 molecules per cell (Fig. 1).
To achieve similar levels of expression from wild-type or mutant-

encoding transgenes, we initially used a site-directed (Flp) recom-
binase-based system to generate isogenic cell lines (27) in which
a cytomegalovirus (CMV) promoter was used to drive the expres-
sion of tetracycline-inducible wild-type and mutant genes that were
integrated at a common locus (28). Each single copy transgene
of TDP-43 was multiply tagged, including a localization-affinity
purification (LAP) tag (comprised of GFP and hexa-histidine tags)
useful for visualization and purification (29) and additional amino
and carboxyl-terminal epitope tags [myc (EQKLISSEEDL) and
HA (YPYDVPDYA), respectively] (Fig. 1A). Using this ap-
proach, isogenic cell lines expressing wild-type or each of three
ALS-linked mutations (G298S, Q331K, and M337V) in TDP-43
were obtained (Fig. 1).
On tetracycline addition, the full-length transgene-encoded

polypeptide accumulated to a level similar to endogenous TDP-43
(Fig. 1B). Furthermore, no smaller fragments were detected for
wild-type TDP-43 or any of the mutants with either myc or HA
antibodies (Fig. S2A), showing that none of these ALS-linked
mutations generated fragments that accumulate in these cells.
Moreover, except for a slight, apparent elevation in the cytoplas-
mic pool in some cells, LAP-tagged TDP-43 (Fig. 1D and Fig. S2)
localized indistinguishably from the endogenous protein (Fig. 1C),
suggesting that the LAP tag did not interfere with TDP-43 function
or cause proteinmisfolding. At steady state, both endogenous (Fig.
1C) and LAP-tagged TDP-43 (Fig. 1D and Fig. S2) appeared as
nuclear proteins and formed similar nuclear foci.
Half-lives of wild-type and TDP-43 mutations were measured

in randomly cycling cells through use of short-term incubation
with [35S]methionine/cysteine to radiolabel newly synthesized
proteins, and the stability of the labeled proteins followed with
time (30). This analysis revealed, surprisingly, that, in this in vivo
context, the TDP-43 mutations were degraded two (for TDP-
43Q331K) to four (for TDP-43G298S and TDP-43M337V) times
more slowly than was wild-type TDP-43, yielding estimated half-
lives for the mutants of ∼24–48 h versus 12 h for wild-type TDP-
43 (Fig. 2B).
To extend this test to a more disease-relevant setting for

TDP-43 half-life, we used primary fibroblasts collected from a
human patient containing a dominant G298S mutation in TDP-
43 in which one copy of TDP-43 carries a G to A substitution,
which, in turn, leads to glycine to serine substitution (31).
Analysis of pulse radiolabeling of these cells revealed that TDP-
43 in wild-type fibroblasts exhibited a 4-h half-life, whereas,
in cells heterozygous for one copy of the G298S mutation in
TDP-43, the half-life of TDP-43 was 11 h (Fig. 2C), showing

a 2.8-fold slower turnover rate for wild-type plus mutant TDP-43
in these cells.

TDP-43 Associates with hnRNP Complexes and microRNA Processing

Machinery. It has been shown that TDP-43 interacts with hnRNP
A2/B1 and hnRNP C in vitro using a blot-overlay assay (19). In
addition, using yeast two-hybrid screening, TDP-43 was identified
as a putative direct interactor with the Xrn2 (5′→ 3′ exonuclease)
involved in RNA degradation (32). Additionally, 261 putative
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Fig. 1. Characterization of isogenic cell lines expressing a single copy of

wild-type and ALS-linked TDP-43 mutations. (A) Schematic representation of

site-directed recombinase-based system to generate isogenic stable cell

lines, in which CMV promoter was used to drive the expression of tetracy-

cline (Tet)-inducible wild-type and mutant genes that were integrated at

a common locus [Flp Recognition Target (FRT) site]. Normally, Tet repressor

(TetR) binds to Tet operator (TetO), repressing transcription. On addition,

binding of Tet to TetR induces a conformation change and releases TetR

from TetO, allowing transcription to start. Lower shows the LAP tag of TDP-

43. The LAP tag is composed of GFP followed by PreScission protease cleav-

age sequences and 6× histidine tag. TDP-43 is tagged at the N terminus with

myc peptide (EQKLISSEEDL) and at the C terminus with HA peptide

(YPYDVPDYA). Three different mutations, G298S, Q331K, and M337V, were

used in this study. (B) Expression of transgene in isogenic stable cell lines.

The transgenes are under TetR control. The transgenes express on in-

cubating with tetracycline (−, without tetracycline; +, with tetracycline); 20

μg total cell extract was loaded for each lane. Recombinant TDP-43 of

known amount is loaded for the quantification, and tubulin is used as

loading control. Exposure shown was taken on the same blot for quantifi-

cation. (C) Immunofluorescence images of TDP-43 in HeLa cells. Both rabbit

polyclonal antibody (ProteinTech) and mouse monoclonal antibody (FL4)

showed similar staining pattern for nuclear TDP bodies. (D) Fluorescent

images of isogenic cell lines. Upper is GFP signal, and Lower is DAPI-stained

to mark the nucleus. All LAP-tagged TDP-43 form nuclear speckles that are

similar to immunofluorescence images of endogenous TDP-43 (C). (Scale

bar, 10 μm.)
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TDP-43 interacting proteins have been proposed from an ap-
proach using a single-step immunoprecipitation from transiently
transfected cells (33), albeit many of these are probably abundant,
contaminant proteins rather than actual interactors. Indeed,
eukaryotic translation elongation and initiation factors and ribo-
somal proteins, factors known to be common contam-
inants for their binding to affinity matrices (34), were among these
proposed TDP-43 interactors (33).
To identify specific interactors, even those in low abundance,

while eliminating abundant contaminant proteins, we combined
(i) tandem-affinity purification (TAP) with two sequential affinity
purification and elution schemes (29, 35) and (ii) quantitative
mass-spectrometry analysis using stable isotope labeling by amino
acids in cell culture (SILAC) (36). A typical SILAC–TAP ex-
periment is outlined in Fig. 3A. Cell lines stably expressing the
LAP double-affinity tag containing wild-type TDP-43 were grown
in isotopically heavy medium containing 13C6,

15N4-arginine, and
13C6,

15N2-lysine, whereas the parental line (i.e., no transgene) was
grown in light medium containing normal arginine and lysine.
Immunoblotting with an antibody recognizing both endogenous
and transgene-encoded TDP-43 revealed that tagged TDP-43 was
associated with endogenous TDP-43 throughout the purification
(Fig. 3B). From the ratio of 1.6:1 molecules of transgene-encoded
and endogenous TDP-43 in the initial extract, the first GFP im-
munoprecipitation step produced a 4:1 ratio. A comparable ratio

carried through the first elution and subsequent second affinity
steps (Fig. 3B), showing that (i) tagged TDP-43 forms a co-
complex with native TDP-43 and (ii) endogenous TDP-43 is
present in complexes with more than one TDP-43 molecule.
Silver staining revealed that thefinal eluates after tandem-affinity

chromatography contained several polypeptides in addition to tag-
ged TDP-43 (Fig. 3C). To identify these TDP-43–related proteins,
quantitative mass spectrometry was used. The spectrum for a rep-
resentative peptide is shown as Fig. 3D (see also Fig. S3). Each
peptide yielded a characteristic spectrum of monoisotopic dis-
tributions of mass to charge species (m/z) as expected from the
natural abundances of isotypes of 13C and 15N. Stringent selection
criteria for TDP-43–associating proteins were defined as: (i) en-
richment of all peptide signals to at least 8-fold or higher compared
with the TAP control (purification from the parental HeLa cell
line), (ii) all proteins must be identified with more than one unique
peptide detected, and (iii) only proteins identified in at least two
independent runs were retained.
All of the proteins whose peptides were found to be TDP-43–

associated in the SILAC mass-spectrometric analyses, the TDP-
43 interactome, are summarized in Fig. 3F. TDP-43 was identi-
fied to be associated with the majority of the known hnRNP
proteins (A0, A1, A2/B1, C, D, F, H1, H2, H3, I, K, L, M, Q, R,
and U), consistent with TDP-43 as an integral component of
hnRNP complexes. Several of the protein partners found by
SILAC mass spectrometry were subsequently confirmed by im-
munoblotting, including the hnRNP components, hnRNP A2/B1,
hnRNP Q, hnRNP K, and hnRNP H. In addition, TDP-43 was
associated with multiple RNA-binding proteins previously im-
plicated in other human diseases. These included CUG-BP1
(involved in myotonic dystrophy) (37) and perhaps of highest
interest, FUS/TLS, another ALS-linked DNA/RNA-binding
protein (see below, Preferential ALS-Linked Mutant TDP43 As-
sociation with FUS/TLS).
Our analysis also identified a second major complex with which

TDP-43 was associated: the Drosha microprocessing complex,
whose action is essential for microRNA biogenesis. Drosha com-
ponents identified within the TDP-43 complexes included in-
terleukin-enhancer binding factor 2/nuclear factor 45 KDa (ILF2/
NF45), interleukin-enhancer binding factor 3/nuclear factor 90
KDa (ILF3/NF90), DEAD (Asp-Glu-Ala-Asp) box polypeptide
17, also known as p72 (DDX17), and DEAD (Asp-Glu-Ala-Asp)
box polypeptide 5, also known as p68 (DDX5). All of these latter
components were previously found by Gregory et al. (38) after
affinity purification of epitope-tagged Drosha. ILF3/NF90 was
confirmed to be TDP-43–associated by immunoblotting of the
PreScission elution of purified TDP-43 (Fig. 3E). Thus, our SILAC
mass-spectrometric data show TDP-43 association with complexes
that mediate microRNA biogenesis in addition to proposed
functions in transcription repression and splicing regulation.

Preferential ALS-Linked Mutant TDP43 Association with FUS/TLS.

Discovery of FUS/TLS, another ALS-linked gene product, in
TDP-43 complexes raised the possibility of a common link un-
derlying disease pathogenesis. We first tested an association of
endogenous FUS/TLS and TDP-43 by an additional immuno-
precipitation for TDP-43. Approximately 20% of TDP-43 was
successfully precipitated along with <1% of endogenous FUS
(Fig. 4A). Reciprocal FUS immunoprecipitation followed by
immunoblotting for TDP-43 confirmed an interaction, albeit
only with a very small proportion of FUS/TLS. Ten percent of
endogenous FUS/TLS was successfully precipitated, but, as
judged by the input and amount of protein pull down, a much
smaller percentage (<1%) of TDP-43 was coprecipitated. To test
if the FUS/TLS interaction with TDP-43 was affected by ALS-
linked mutation in TDP-43, we used GFP-affinity purification
with PreScission elution of extracts from our isogenic cell lines
expressing LAP-tagged wild-type or mutant TDP-43. Strikingly,
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(B) Half-lives of LAP-tagged TDP-43 and its ALS-linked mutations (n = 5).

Error bar represents SEM. (C) Half-lives of TDP-43 in primary human fibro-
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13320 | www.pnas.org/cgi/doi/10.1073/pnas.1008227107 Ling et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1008227107/-/DCSupplemental/pnas.201008227SI.pdf?targetid=nameddest=SF3
www.pnas.org/cgi/doi/10.1073/pnas.1008227107


although the distribution of FUS/TLS seemed normal in the
presence of mutant TDP-43 (Fig. S4), the association of FUS/
TLS with TDP-43 was sharply enhanced for both TDP43Q331K

and TDP43M337V ALS-linked mutations (Fig. 4B).
To further confirm the association between TDP-43 and FUS/

TLS and to eliminate the possibility that a TDP-43 and TLS/FUS
interaction was an artifact arising during cell lysis (39), we used an
in vivo, in situ proximity ligation assay (Fig. 4C). In this assay, cell
membranes are gently lysed, primary antibodies against wild-type
or mutant TDP-43 (in this case, we used an myc antibody recog-
nizing LAP-tagged TDP-43) and FUS/TLS were added, much as
is done in conventional immunofluorescence. Instead of fluores-
cence-conjugated secondary antibodies, however, two different
oligonucleotides were linked to the secondary antibodies (one for
each of the two different primary antibodies). If the distance be-
tween the two different oligonucleotides is less than 50 nm, they
can be hybridized and used as primers for rolling-circle amplifi-
cation. Subsequently, fluorescent-labeled oligonucleotides were
then hybridized with the amplification products, and the signals
were observed with a fluorescence microscope. A combination of
anti-myc antibody and rabbit IgG molecules was used as negative
control, whereas a combination of anti-myc and anti–TDP-43
antibodies was used as positive control. Although FUS/TLS was
seen to be associated with wild-type TDP-43 in only a small pro-
portion (10%) of cells (consistent with the immunoprecipitation
evidence above) (Fig. 4D), intranuclear proximity signals to FUS/
TLS were observed in ∼40% cells expressing either of two ALS-
linked TDP-43 (TDP-43Q331K and TDP-43M337V).

Discussion

A key question in understanding how ALS-linked dominant
mutations in TDP-43 cause cellular toxicity is if, and if so how,

these point mutations alter the normal function of TDP-43. In
contrast to Cu/Zn superoxide dismutase 1 (SOD1) where ALS-
linked mutations destabilize the mutant protein (30), using iso-
genic stable cell lines expressing a single copy of each transgene
(wild type, TDP43G298S, TDP43Q331K, and TDP43M337V), we
showed that all three of these ALS-linked mutations exhibit lon-
ger protein half-lives compared with wild-type protein, suggesting
that abnormal stability may be a common feature for ALS-linked
TDP-43mutations. Furthermore, we showed that one of the ALS-
linked TDP-43 mutants (G298S) generates higher TDP-43 sta-
bility in primary fibroblasts from a human patient (Fig. 2C), where
only one copy of the TARDBP gene is mutated and under the
authentic promoter. This highly unexpected discovery suggests
that an inherently increased half-life may be, or at least may
contribute to, the underlying mechanism for the accumulation of
TDP-43 aggregations found in ALS patients.
Perhaps even more importantly, we have shown that a signifi-

cantly higher proportion of endogenous, wild-type FUS/TLS is
associated with both of two ALS-linked mutations tested
(TDP43Q331K and TDP43M337V). This interaction is exclusively
intranuclear but without apparent nuclear aggregation. Taken
together, our findings imply that the increased association be-
tween mutant TDP-43 and FUS/TLS may be driven, in part, by
the increasing stability of mutant TDP-43 (Fig. S5). Conceivably,
this aberrant association caused by the dominant mutations in
TDP-43 could lead to potential perturbations of the normal
functions of both TDP-43 and FUS/TLS, suggesting a possible
convergence of pathogenic pathways in ALS by TDP-43
and FUS/TLS.
Interestingly, familial PD-linked A53T substitution of α-synuclein

also shows increased stability, which, in turn, probably contributes to
the age-dependent accumulation of mutant α-synuclein in transgenic
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mice expressingmutant α-synuclein (40). Prolonged stability could
give rise to at least two additional nonmutually exclusive effects on
TDP-43: (i) permitting additional or aberrant posttranslational
modifications, such as phosphorylation and ubiquitinylation, which
were reported in disease conditions (3, 41) and/or (ii) permitting
aberrant interactions with other proteins, such as with FUS/TLS
reported in this study (Fig. 4). It will now be important to determine
whether ALS-linked TDP-43 mutations show age-dependent ac-
cumulation and mutant-specific interactions in genetically engi-
neered animals, such as transgenicmice (42). Additionally, because
accumulation is the net balance between synthesis and degradation,
it will be essential to determine how TDP-43 is degraded and
whether the ALS-linked mutations cause any defect in the degra-
dation process. Although recent evidence indicates that TDP-43
may be degraded through either autophagosome and/or protea-
somepathways (43, 44), it is not clearwhether oneof thepathways is
themajor default path.Understanding thedegradationprocessmay
aid the design of future therapeutic interventions, because in-

tracellular TDP-43 inclusions are hallmarks of various neuro-
degeneration diseases.
The major advantage of using quantitative mass-spectrometry

analysis is that the common and abundant contaminant proteins
can be easily eliminated and low abundant but specific interactors
can be readily identified (45). Using the SILAC–TAP approach,
we identified the stable core component for TDP-43 complexes.
The majority of the TDP-43–associating proteins are hnRNP
family proteins, indicating that TDP-43 is an integral part of
hnRNP complexes, which associate with nascent transcripts and
influence their fate (46). The biochemical findings are consistent
with TDP-43’s role in RNA transcription and processing and
complement a recent ultrastructural study showing that TDP-43 is
enriched in perichromatin fibrils, nuclear sites of transcription,
and cotranscriptional splicing (47). Beside hnRNPs, several ad-
ditional RNA-binding proteins were identified within TDP-43
complexes, including RBM9 (or FOX2) and CUG-BP1 (Fig. 3F).
Mice overexpressing CUG-BP1 in muscles reproduce the patho-
logical features found in myotonic dystrophy patients accompa-
nied by disrupted normal splicing patterns (37). Similarly, RBM9/
FOX2 influences splicing-site usages by positioning near the exon–
intron junctions in embryonic stem cells (48). These findings are
consistent with a proposed role of TDP-43 in splicing regulation.
Several TDP-43 interacting proteins were found to be com-

ponents of Drosha microRNA processing complexes, including
ILF2/NF45, ILF3/NF90, DDX5, DDX17, and DDX3X (38). The
overlapping components between epitope-tagged Drosha (38)
and TDP-43 (in this study) strongly suggest that TDP-43 is in-
volved in microRNA biogenesis. Indeed, NF45/NF90 has been
shown to complex with pre-miRNAs, and this association
reduces the generation of mature miRNAs (49). In addition,
adenosine deaminases (ADARs), found to bind to TDP-43 in
our proteomic study, are known to influence microRNA pro-
cessing through their editing activities (50). Defects in glutamine
(Q) to arginine (R) substitution of glutamate AMPA receptors
by ADAR-mediated RNA editing have been linked to sporadic
ALS (51), suggesting yet another potential pathogenic mecha-
nism for TDP-43. Indeed, a recent study showed reduced ADAR
immunoactivity in ALS is accompanied by presence of phos-
phorylated (pathological) TDP-43 in ALS patients (52). Taken
together, TDP-43 may be involved in both RNA transcription
and processing through its interaction with hnRNP complexes
and microRNA biogenesis by its association with micro-
processing complexes (Fig. S5). Because gene expression is co-
ordinated and coupled through interconnected multicomponent
machineries (53), it is tempting to speculate that TDP-43 may
coordinate and regulate mRNA processing with microRNA
biogenesis pathway and through this linkage, regulate expression
of various transcripts (54, 55).
Lastly, FUS/TLS, another ALS-linked protein (9, 10), was

found associated with TDP-43. Although less than 1% of wild-
type FUS/TLS interacts with wild-type TDP-43, the association is
strongly enhanced byALS-linkedmutations (Fig. 4). It is tempting
to speculate that dominant mutations in TDP-43 may perturb
normal FUS/TLS function, thus providing possible convergence
of pathogenic pathways in ALS by mutant TDP-43 and FUS/TLS.
Now needed are efforts to determine whether the increasing as-
sociation between mutant TDP-43 and FUS/TLS shown here
affects the RNA targets for TDP-43, FUS/TLS, or both.

Materials and Methods
In Situ Proximity Ligation Assay. In situ proximity ligation assays were done

following manufacture’s protocol (Olink Bioscience, Sweden). Anti-myc

(clone 4A6, BD Bioscience), which detected LAP-tag TDP-43, was paired with

anti-TDP43 (ProteinTech), anti-TLS/FUS (Aviva) and purified rabbit IgG

(Sigma-Aldrich) for the primary antibodies. Anti-myc and anti-TDP43 pair

serves as a positive control, and anti-myc and purified rabbit IgG as a nega-

tive control. Detailed methods for plasmids and recombinant protein puri-
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fication, cell culture and creations of isogenic stable cell lines, pulse-chase

assay, tandem-affinity purification and quantitative mass-spectrometry

analysis using SILAC, immunoprecipitation, immunofluorescence, immuno-

blotting, and antibodies are described in SI Materials and Methods.
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SI Materials and Methods

Plasmids and Recombinant Protein Purification. A localization and
affinity purification tag (LAP) contains GFP followed by PreSci-
ssion protease cleavage sites, and 6× histidine was inserted into
pcDNA5/TO/FRT/myc (1) to generate pcDNA5/TO/FRT/LAP.
Human trans-activating response region (TAR) DNA-binding
protein with a molecular mass of 43 KDa (TDP-43) cDNA, which
was epitope-tagged with an N-terminal myc peptide (EQKLIS-
SEEDL) and C-terminal HA-peptide (YPYDVPDYA; C. Shaw,
King's College London, London, UK), was amplified by PCR and
inserted into pcDNA5/TO/FRT/LAP using BamH-I and Not-I
sites. ALS-linked mutations were generated by QuikChange
mutagenesis (Stratagene) and confirmed by sequencing the entire
ORF. For making recombinant protein, full-length (1–414 amino
acids) or the first 251 amino acids (NT1–251) or the 164 carboxy
terminal amino acids (CT251-414) fragment of human TDP-43
were amplified by PCR and cloned into pQE80 plasmids (Qiagen)
with BamH-I and Xho-I sites to generate an N-terminal 6× his-
tidine fusion tag. The recombinant proteins were purified using
Ni-NTA following the manufacture’s protocol (Qiagen).

Cell Culture and Creations of Isogenic Stable Cell Lines. In brief,
a single Flp recognition target target (FRT) site was stably in-
tegrated in the HeLa cell genome (Flp-In TRex-HeLa cells) (2),
and the TDP-43 gene was subsequently inserted into the FRT
locus by flp recombinase-mediated recombination. In contrast to
the traditional way of making stable cell lines by random in-
sertion of plasmids into the host genome, this methodology
produces cell lines that differ only in the ectopic expression of
the target genes in otherwise the same genomes and hence,
isogenic. Isogenic cell lines were grown at 37 °C and 5% CO2 in
DMEM supplemented with 10% tetracycline-free FBS and
penicillin/streptomycin. To establish isogenic stable cell lines
expressing a single copy of wild-type or ALS-linked mutations in
TDP-43, a 10-fold amount of pOG44, the plasmid expressing flp
recombinase, was mixed with a 1-fold amount of pcDNA5-/FRT-
TO containing LAP-tagged TDP-43 with FuGene 6 (Roche)
following the manufacturer’s protocol. After selection in 250 μg/
mL hygromycin, colonies were pooled and expanded. To express
LAP-tagged TDP-43, cells were treated with 1 μg/mL tetracy-
cline for 16–24 h. Primary human fibroblasts were maintained at
37 °C and 5% CO2 in DMEM supplemented with 20% FBS, 0.1
mM nonessential amino acids (Invitrogen), 1 mM sodium py-
ruvate, and penicillin/streptomycin.

Pulse-Chase Assay. Isogenic stable cell lines expressing LAP-tagged
wild-type TDP43, G298S, Q331K, and M337V mutations were
seeded at 5 × 105 cells in 60-mm dishes 2 d prior, and 1 μg/mL
tetracycline was added to the cells for 18 h before labeling and
was included throughout the experiments. Cells were washed
with PBS and incubated with methionine- and cysteine-free
DMEM (Invitrogen) supplemented with 5% dialyzed FBS
(Invitrogen) for 30 min before labeling with 500 μCi of S35-
methionine/cysteine (Perkin-Elmer) for another 30 min. Cells
were washed with PBS and then replaced with DMEM supple-
mented with 10% FBS, 2 mM methionine, and 2 mM cysteine to
begin the chase period. Cells were collected at 0, 4, 8, and 12 h
after the chase period began. Cells were lysed with RIPA buffer
[50 mM Tris, pH 7.5, 150 mM NaCl, 1%, Nonidet P-40, 0.5%
deoxycholate, 0.1% SDS, 1 mM DTT supplemented with com-
plete protease inhibitors and PhosSTOP (Roche)], and the re-
sulting extracts were spun at 16,000 × g for 10 min at 4 °C; 20 μL

of GFP-binder resin (3) were added to the resulting supernatant
and incubated for 2 h at 4 °C. The IP samples were washed three
times with RIPA buffer and resuspended in SDS-PAGE sample
buffer. Two identical gels were loaded for autoradiography and
immunoblot for quantification. The same pulse-chase procedure
was done for the human fibroblasts, except that the fibroblasts
were seeded at a higher density (1 × 106 cells) because of the
slower growth. To ensure that both wild-type and G298S mutants
of TDP-43 can be immunoprecipitated, we pooled two mono-
clonal antibodies that we generated (FL4 and FL9) for immu-
noprecipitation (Fig. S1).

Tandem-Affinity Purification and Quantitative Mass-Spectrometry

Analysis Using Stable Isotope Labeling by Amino Acids in Cell

Culture. For quantitative mass-spectrometry analysis, cells were
grown in stable isotope labeling by amino acids in cell culture
(SILAC) DMEM (Thermo Scientific) supplemented with
10% dialyzed FBS and penicillin/streptomycin with 0.4 mM
L-arginine and 0.8 mM L-lysine. For parental Flp-In TRex-HeLa
cell line, normal (light) L-arginine (69 μg/mL) and L-lysine (117
μg/mL) were added to the growth medium; for stable cell lines
expressing LAP-tag TDP-43, heavy L-Arg-13C6,

15N4.HCl (88 μg/
mL) and L-Lys-13C6,

15N2.HCl (152 μg/mL) were added. Cells
were passaged in SILAC media for at least 5–6 doubling times to
ensure complete incorporation of isotopic amino acids (4). Cells
were harvested, and cell extracts were prepared as described
previously with the following modifications (5). Cells were lysed in
lysis buffer [50 mM HEPES, pH 7.5, 150 mM KCl, 1 mMMgCl2,
1 mMEGTA, 1%Nonidet P-40, 10% glycerol, 1 mMDTT, 50 μM
latrunculin B, 50 μM cytochalasin D, 20 U/mL SUPERase-In
(Ambion) supplemented with complete protease inhibitor and
PhosSTOP (Roche)] and sonicated to obtain total cell extracts.
Clarified lysates or high-speed supernatants (HSS) were prepared
by spinning the total cell extract at 100,000 × g for 20 min at 4 °C.
The protein concentrations of HSS were measured using the bi-
cinchoninic acid (BCA) assay (Thermo Scientific) and normalized
for both light and heavy samples. The typical concentration for
HSS was 30–60 mg/mL, and 20 mg of total proteins were used for
tandem-affinity purification. GFP immunoprecipitation was car-
ried out with 1/20 volume (to HSS) of GFP binder at 4 °C for 2 h
(3). PreScission protease was added to liberate TDP-43 and its
associated proteins from the GFP-binder beads. The eluates were
then incubated with Ni-NTA (Qiagen) to capture the 6× his-
moiety of tagged TDP-43. After extensive washes, TDP-43 and its
associating proteins were eluted with 50mMTris, pH 7.5, 150mM
KCl, and 100 mM EDTA with or without 8 M urea. The sample
was prepared as described previously with the following mod-
ifications (6). The MS/MS data were collected by an LTQ Orbi-
trap Discovery and subsequently searched on Sorcerer-
SEQUEST using a semitryptic monoisotopic database generated
for the human IPI database, version 3.47. A 20-ppm parent mass
tolerance and variable modification for lysine and arginine were
included in the search. The searched data were then analyzed
by TPP.

Immunoprecipitation, Immunofluorescence, Immunoblotting, and

Antibodies. Cells (2 × 107) were lysed with 1 mL lysis buffer [50
mM HEPES, pH 7.5, 150 mM KCl, 1 mM MgCl2, 1 mM EGTA,
1% Nonidet P-40, 10% glycerol, 1 mM DTT, 5 μM latrunculin B,
5 μM cytochalasin D, 20 U/mL SUPERase-In (Ambion) sup-
plemented with complete protease inhibitor and PhosSTOP
(Roche)] and spun at 16,000 × g for 10 min at 4 °C. The resulting
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supernatant was precleared with anti-mouse IgG-agarose (Sigma-
Aldrich) for 1 h at 4 °C and then incubated for 2 h at 4 °C with
anti–TDP-43 (FL4 and FL9, mouse monoclonal antibodies),
anti-fused in sarcoma/translocated in liposarcoma (FUS/TLS;
clone 4H11; Santa Cruz), and anti-SFPQ/PSF (splicing factor
proline/glutamine-rich, or polypyrimidine tract binding protein
associated splicing factor, clone B92; Sigma-Aldrich), which were
preincubated with anti-mouse IgG-agrose for 1 h. The beads
were washed three times with wash buffer (50 mM HEPES, pH
7.5, 150 mM KCl, 1 mM MgCl2, 0.1% Nonidet P-40, 10% glyc-
erol) and resuspended in SDS-PAGE sample buffer.
For immunofluorescence analysis of cultured cells, isogenic cell

lines expressing wild-type andmutant TDP-43 cells were grown on
hydrochloric acid-washed poly-L-lysine (Sigma-Aldrich)-coated
12-mm glass coverslips. Transgene expression was induced by
adding 1 μg/mL tetracycline 18 h before fixation. Cells were fixed
with 3.7% formaldehyde and 4% sucrose in 1× PBS for 15 min at
room temperature. After washing with 1× PBS, cells were per-
meablized and blocked with immunofluorescence (IF)-wash
buffer (5% newborn calf serum, 0.1% Triton X-100 in 1× Tris
buffered saline [TBS]) for 30 min. Primary antibodies were di-
luted with IF-wash buffer, anti–TDP-43 (1:200; ProteinTech),

anti-myc (clone 4A6, 1:750; BD bioscience), anti-HA (1:200;
Covance), and anti-TLS/FUS (clone 4H11, 1:50; Santa Cruz),
incubated for 1 h, and subsequently, detected with FITC- or
TexasRed-conjugated secondary antibodies (1:200; Jackson Im-
munoResearch). Nuclei were counterstained with DAPI, and
coverslips were mounted with ProLong anti-fade agent (In-
vitrogen). Images of fixed cells were acquired using a 60× or 100×
oil objective on a DeltaVision-modified inverted microscope
(IX70; Olympus) using SoftWoRx software (Applied Precision)
and were deconvolved.
Standard protocol for SDS-PAGE and immunoblotting was

described previously (7). The following primary antibodies were
used at the indicated dilutions: mouse anti–TDP-43 (clone FL9,
1:1,000), rabbit anti–TDP-43 (10782, 1:2,000; ProteinTech),mouse
anti-HA (1:2,000; Covance), mouse anti-myc (clone 4A6, 1:2,000;
BDBioscience),mouse anti-hnRNPA2/B1 (cloneDP3B3, 1:1,000;
Sigma-Aldrich), mouse anti-hnRNP Q (clone 18E4, 1:2,500;
Sigma-Aldrich), rabbit anti-hnRNP K (1:2,000; Bethyl), and rabbit
anti-hnRNP H1 (1:2,000; Bethyl). The immunoreactivity was re-
vealedusinganappropriate peroxidase-conjugated anti-mouse IgG
(1:10,000; GEHealthcare), anti-rabbit (1:10,000; GEHealthcare),
and the chemiluminescent system (Thermo Scientific).
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Fig. S1. Characterization of anti–TDP-43 antibodies. (A) Schematic representation for the recombinant proteins of full-length (FL; 1–414 amino acids),

N-terminal (NT; 1–251 amino acids), and C-terminal (CT; 251–414 amino acids) fragments of human TDP-43. (B) Immunoblot analysis for FL9, FL4, and com-

mercially available antibodies (10782; ProteinTech). M, mouse Neuro2a cell lysate; H, HeLa cell lysate; FL, recombinant full-length human TDP-43; NT,

N-terminal 1–251 amino acids of human TDP-43; CT, C-terminal 251–414 amino acids of human TDP-43. Total cell lysates were loaded at 20 μg, and recombinant

proteins were loaded at 20 ng. Exposure was taken on the same blot. Both FL4 and FL9 recognize the C-terminal portion of TDP-43, whereas commercially

available ProteinTech TDP-43 antibody recognizes the first 251 amino acids. (C) Immunoprecipitation analysis of FL9, FL4, and commercially available anti-

bodies (clone 2E2–D3; Abnova). Purified mouse IgG (Sigma-Aldrich) was used as a negative control. Asterisk denotes a possible IgG heavy-chain signal. Both FL4

and FL9 is able to immunoprecipitate endogenous TDP-43. (D) Summary of approximate localizations of the epitopes.
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Fig. S2. Characterization of isogenic cell lines expressing a single copy of wild-type and ALS-linked TDP-43 mutations. (A) Immunoblotting using HA and myc

antibodies detects LAP-tagged full-length human TDP-43. (B) Fluorescent images of isogenic cell lines. Top is GFP signal, Middle uses anti-HA antibody, and

Bottom is DAPI stained to mark the nucleus. All LAP-tagged TDP-43 form nuclear speckles that are similar with immunofluorescence images of endogenous

TDP-43 and colocalize with HA staining.(Scale bar, 10 μm.)
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Fig. S3. Representative mass spectrum for SILAC–tandem affinity purification (TAP) analysis. Examples of MS data of a representative peptide derived from

each TDP-43–specific binding protein. In each case, the corresponding light isotope-containing peptide is below detection limit, whereas the heavy Lys/Arg-

containing peptide is detected. Asterisks indicate the natural occurrences of 13C/15N in the peptide, as revealed by high-resolution MS.

Fig. S4. ALS-linked TDP-43 mutations do not alter TLS/FUS localization. Fluorescent images of isogenic cell lines. The far left column is GFP signal; the next

column uses anti-TLS/FUS antibody, and DAPI was used to mark the nucleus. The far right column is merged images. All LAP-tagged TDP-43 form nuclear

speckles that are similar to immunofluorescence images of endogenous TDP-43 and do not seem to form intracellular inclusions. (Scale bar, 10 μm.)
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Fig. S5. Proposed physiological and pathological role of TDP-43. In the normal physiological condition, TDP-43 associates with hnRNP complexes and mi-

croprocessing complex to ensure proper gene expression. In pathological conditions, ALS-linked dominant mutations in TDP-43 exhibit longer half-lives, which,

in turn, may contribute to protein accumulation and aggregation as well as permit posttranslational modifications. The TDP-43 mutants could also contribute

directly to the aberrant interactions with other nucleic acid binding protein(s), which could lead to RNA processing errors. Boxed text indicates what is shown in

this paper.
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