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ABSTRACT

Machine learning models are being used extensively in many important areas, but
there is no guarantee that a model will always perform well or as its developers
intended. Understanding the correctness of a model is crucial to prevent potential
failures that may have significant detrimental impact in critical application areas.
In this paper, we propose a novel framework to efficiently test a machine learn-
ing model using only a small amount of labelled test data. The core idea is to
efficiently estimate the metrics of interest for a model-under-test using Bayesian
neural network. We develop a novel methodology to incorporate the information
from the model-under test into the Bayesian neural network training process. We
also devise an entropy-based sampling strategy to sample the data point such that
the proposed framework can give accurate estimations for the metrics of interest.
Finally, we conduct an extensive set of experiments to test various machine learn-
ing models for different types of metrics. Our experiments with multiple datasets
show that given a testing budget, the estimation of the metrics by our method is
significantly better compared to existing state-of-the-art approaches.

1 INTRODUCTION

Today, supervised machine learning models are employed across sectors to assist humans in making
important decisions. Understanding the correctness of a model is thus crucial to avoid potential (and
severe) failures. In practice, however, it is not always possible to accurately evaluate the model’s cor-
rectness using the held-out training data in the development process (Sawade et al., 2010). Consider
a hospital that buys an automated medical image classification system. The supplier will provide
a performance assessment, but this evaluation may not hold in this new setting as the supplier and
the hospital data distributions may differ. Similarly, an enterprise that develops a business predic-
tion system might find that the performance changes significantly over time as the input distribution
shifts from the original training data. In these cases, the model performance needs to be re-evaluated
as the assessments provided from the supplier or from the development process can be inaccurate.
To accurately evaluate the model performance, new labelled data points from the deployment area
are needed. But the process of labelling is expensive as one would usually need a large number of
test instances. Thus the open question is how to test the performance of a machine learning model
(model-under-test) with parsimonious use of labelled data from the deployment area.

This work focuses on addressing this challenge treating the model-under-test as a black-box as in
common practice one only has access to the model outputs. One previous approach aims to estimate
a risk score which is a function of the model-under-test output and the ground-truth (akin to metric)
using limited labelled data (Sawade et al., 2010). However, the approach has only been shown to
be tractable for some specific risk functions (e.g. accuracy). Another approach in (Gopakumar
et al., 2018) suggested to search for the worst case model performance using limited labelled data,
however, we posit that using worst case to assess the goodness of a model-under-test is an overkill
because the worst case is often just an outlier. Recently, (Schelter et al., 2020) learns to validate the
model without labelled data by generating a synthetic dataset representative of the deployment data.
The restrictive assumption is that it requires domain experts to provide a set of data generators, a
task usually infeasible in reality.

1



Under review as a conference paper at ICLR 2021

We propose a scalable data-efficient framework that can assess the performance of a black-box
model-under-test on any metric (that is applicable for black-box models) without prior knowledge
from users. Furthermore, our framework can estimate multiple metrics simultaneously. The moti-
vation for evaluating one or multiple metrics is inspired by the current practice of users who need
to assess the model-under-test on one or varied aspects that are important to them. For instance, for
a classification system, the user might want to solely check the overall accuracy or simultaneously
check the overall accuracy, macro-precision (recall) and/or the accuracies of some classes of interest.

To achieve sample efficiency, we formulate our testing framework as an active learning (AL) prob-
lem (Cohn et al., 1996). First, a small subset of the test dataset is labelled, and a surrogate model is
learned from this subset to predict the ground truth of the unlabelled data points in the test dataset.
Second, an acquisition function is constructed to decide which data point in the test dataset should
be chosen for labelling. The data point selected by the acquisition is sent to an external oracle for la-
belling, and is then added to the labelled set. The process is conducted iteratively until the labelling
budget is depleted. The metrics of interest are then estimated using the learned surrogate model.

With this framework, one choice is to use a standard AL method to learn a surrogate model that
accurately predicts the labels of all the data points in the test dataset, however, this choice is not
optimal. To efficiently estimate the metrics of interest, the surrogate model should not need to accu-
rately predict the labels of all the data points; it only needs to accurately predict the labels of those
data points that contribute significantly to the accuracy of the metric estimations. For our active test-
ing framework, we first propose a method to train the surrogate model that can provide high metric
estimation accuracy (using limited number of labelled data) by incorporating information from the
model-under-test. Second, we derive an entropy-based acquisition function that can select the data
points for whom labels should be acquired so as to enable maximal reduction in the estimation un-
certainty of the metric of interest. We then use this computed entropy to generalize our framework to
be able to work with multiple metrics. Finally, we demonstrate the efficacy of our proposed testing
framework using various models-under-test and a wide range of metric sets on different datasets. In
summary, our main contributions are:

1. ALT-MAS, a data-efficient testing framework that can accurately estimate the performance
of a machine learning model;

2. A novel approach to train the BNN so as to accurately estimate the metrics of interest;

3. A novel sampling methodology so as to estimate the metrics of interest efficiently; and,

4. Demonstration of the empirical effectiveness of our proposed machine learning testing
framework on various models-under-test for a wide range of metrics and different datasets.

2 PROBLEM FORMULATION AND BACKGROUND

2.1 PROBLEM FORMULATION

Let us assume we are given a black-box model-under-test A that gives the prediction A(x) for an
input x, with A(x) ∈ C = {1, . . . , C}. Let us also assume we have access to (i) an unlabelled test
dataset X = {xi}

N
i=1, and, (ii) an oracle that can provide the label yx for each input x in X . Given

a set of performance metrics {Qk}
K
k=1, Qk : RN × R

N → R, the goal is to efficiently estimate the

values of these metrics, {Q∗
k}

K
k=1, when evaluating the model-under-test A on the test dataset X .

That is, we aim to estimate,

Q∗
k = Qk(AX ,YX ), k = 1, . . . ,K, (1)

with AX = {A(x)}x∈X and YX = {yx}x∈X , using the minimal number of oracle queries.

In this work, we focus on classifiers because they are common supervised learning models and also
the target models of most machine learning testing papers (Zhang et al., 2019). Besides, it is also
worth noting that, as we only have access to the outputs of the black-box classifier, the metrics
{Qk} must be those that can be computed using solely the classifier outputs AX and the ground-
truth labels YX of the test dataset X . Examples of Qk include the accuracy, error rate, per-class
precision/recall, macro precision/recall, Fβ score, etc. This is to distinguish with the metrics that
require information from the classifier internal structure such as the log-loss metric.
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2.2 BACKGROUND

Bayesian neural networks (BNNs) are special neural networks that maintain a distribution over its
parameters (MacKay, 1992; Neal, 1995). Specifically, given the training data Dtr = {xi, yi}

N
i=1,

a BNN can provide the posterior distribution p∗(ω|Dtr) with ω being the neural network weights.
In practice, performing exact inference to obtain p∗(ω|Dtr) is generally intractable, hence we use
a variational approximation technique to approximate this posterior. In particular, we employ the
MC-dropout method (Gal & Ghahramani, 2016) as it is known to be both scalable and theoretically
guaranteed in terms of inferring the true model posterior distribution p∗(ω|Dtr). That is, the MC-
dropout method is equivalent to performing approximate variational inference to find a distribution
in a tractable family that minimizes the Kullback-Leibler divergence to the true model posterior.

3 ACTIVE TESTING WITH METRIC-AWARE SAMPLING STRATEGY

Our active testing framework is summarized as follows. First, a small subset Xl of the test dataset
X is labelled to construct a labelled set Dl = {Xl,YXl

}, where YXl
denotes the labels provided by

the oracle for Xl; and a BNN Bω (with parameter ω) is learned from Dl to predict the labels of the
unlabelled data points in X . Second, an acquisition function is constructed based on the BNN Bω ,
the characteristics of the metric set, and the model-under-test outputs AX to decide which data point
is to be labelled so as to maximally reduce the uncertainty in the metric estimations. This data point
is sent for labelling, and is added to the labelled set Dl. This process is conducted iteratively until
the labelling budget is depleted. The metrics of interest are estimated using the BNN Bω .

In this section, we propose a method to train a BNN that can give accurate metric estimations from
a limited number of labelled data (Section 3.1), a method to estimate the metrics of interest given
the BNN (Section 3.2), and a method to sample the most informative data point to maximize the
estimation accuracy of a specific metric (Section 3.3) or a set of metrics (Section 3.4).

3.1 BAYESIAN NEURAL NETWORK TRAINING METHODOLOGY

Given the labelled set Dl and the model-under-test outputs AX , the goal is to train a BNN Bω such
that the corresponding metric estimations are most accurate. Training BNN using solely the labelled
set Dl might not result in accurate enough metric estimations. Thus, to improve the metric estimation
accuracy, we propose to incorporate the information from the model-under-test outputs AX into the
BNN training process. In particular, using the labelled set Dl, we also train a binary classifier Cη
that aims to predict the data points in the test dataset for which the model-under-test agrees with the
ground-truth. Using the predictions by the classifier Cη , we then construct an augmented labelled
set Sl = {XS ,YXS

} where XS are all the data points in the test dataset X that Cη identifies the
model-under-test predictions are accurate, and YXS

are the corresponding model-under-test outputs
of XS . The BNN is then trained using both the labelled set Dl and the augmented labelled set Sl.

To train the binary classifier Cη , we first split the labelled set Dl into two parts: training and vali-
dation, and then train Cη on the training part whilst tuning the softmax probability threshold using
the validation part so that Cη achieves the highest precision on the validation part. This is because
we want Cη to choose a data point only when it is most certain that the ground-truth and the model-
under-test output of that data point is the same. Besides, as the precision of Cη is rarely 100%, thus,
after obtaining the set of data points provided by Cη , we only take Ns data points from this set with
the highest softmax probability. The number Ns is computed by multiplying the precision of Cη
on the validation part with the cardinality of the original predicted set. For example, if the preci-
sion of the classifier Cη is 50% on the validation part and the original predicted set consisting of
100 data points, the final augmented labelled set Sl only consists of 50 data points with the highest
softmax probability. Finally, the binary classification problem can be imbalanced, particularly when
the model-under-test is very accurate or very bad. Hence, when training Cη , we employ the over-
sampling technique (for the minority class) to ensure the training data of the binary classification
problem to be balanced, i.e. the cardinalities of the majority and minority classes are equal.

Remark 3.1. With this training methodology, the more accurate the model-under-test, the more
accurate the BNN Bω . In case when the model-under-test is bad, the augmented labelled set Sl does
not consist of many elements, thus, the BNN accuracy does not improve much compared to when
training solely using the labelled set Dl. However, in this case, the BNN does not need to have high
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accuracy in order to accurately estimate the metrics. Specifically, for any data point for which the
model-under-test disagrees with the ground truth, the BNN does not need to accurately predict its
label. That is, even when the BNN predicts other labels (except the model-under-test output label),
the metric estimation is still accurate (more detailed examples in Section C.3 of the appendix).

Remark 3.2. For simplicity, we suggest to set the architecture of the binary classifier and BNN to
be same. For example, if the BNN is a 2-layer MLP, then the binary classifier is also a 2-layer MLP.

3.2 METRIC ESTIMATION WITH BAYESIAN NEURAL NETWORK

For a metric Qk, given the model-under-test outputs AX and the labelled set Dl,
1 the true value

Q∗
k of this metric generally cannot be computed because YXul

(the corresponding labels of the
unlabelled set Xul) is unknown. However, if the true posterior distribution p∗(ω|Dl) of the BNN is
known, then Q∗

k can be computed as,

Q∗
k = Qk(AX ,YX ) = Qk(AX , [YXl

,YXul
]) = EŶXul

∼p(ŶXul
|Xul)

[Qk(AX , [YXl
, ŶXul

])]

=

∫

Qk(AX , [YXl
, ŶXul,ω])p

∗(ω|Dl) dω,
(2)

where ŶXul
is a random variable representing the possible labels of Xul, ŶXul,ω denotes the

predicted labels of Xul using the BNN weights ω, i.e. ŶXul,ω = {ŷx,ω}x∈Xul
, and ŷx,ω =

argmaxc=1,...,C p(yx = c|x, ω), ∀x ∈ Xul. Substitute p∗(ω|Dl) by the MC-dropout variational

distribution qθ(ω|Dl) (Gal & Ghahramani, 2016), we can approximate Q∗
k as,

Q̂k =

∫

Qk(AX , [YXl
, ŶXul,ω])qθ(ω|Dl) dω ≈

1

M

∑M

j=1
Qk(AX , [YXl

, ŶXul,ω̂j
]), (3)

where {ω̂j}
M
j=1 are M stochastic forward passes from the distribution qθ(ω).

Remark 3.3. It is worth noting that the value of metric Qk can also be estimated by computing

E[Qk(AX , ŶX ,ω)] where ŶX ,ω are the predictions of the whole test dataset X using ω. However,
in this case, the estimation might be biased, i.e. the estimation might not converge to the true value
of the metric when the labelled set is the whole test dataset. In fact, this estimation depends on the
quality of the M stochastic forward passes {ω̂j}. In contrast, with the approximation proposed in
Eqs. (2) and (3), the estimation becomes increasingly less biased and when all the data points in the
test dataset is labelled, the estimation obtained by our method is equal to the true metric value.

3.3 SAMPLING METHODOLOGY FOR A SINGLE METRIC

In the sequel, we use Dt
l = {X t

l ,YX t
l
} and X t

ul = X \ X t
l to denote the labelled and unlabelled set

obtained after iteration t, respectively. We also use Bt
ω to denote the BNN trained on Dt

l and YX t
ul

to denote the labels corresponding to the unlabelled set X t
ul. For a metric Qk, at iteration t + 1,

given the model-under-test outputs AX and the labelled set Dt
l , the goal of the sampling process is

to select a data point x∗
t to label so as to maximally increase the metric estimation accuracy. This can

be considered equivalent to sampling the data point x∗
t such that knowing its label results in maximal

uncertainty reduction for the metric estimation. To identify x∗
t , our key idea is to (i) evaluate how

much the uncertainty of each data point’s label contributes to the uncertainty of the metric estimation,
and, (ii) sample the data point causing the highest uncertainty in the metric estimation.

To solve (i), we derive a formulation that captures the relation between the uncertainty of a data
point’s label and the uncertainty of the metric value. We construct this formulation based on Eq. (2),
but we set the data point of interest (e.g. x) as a variable while fixing other data points (e.g. X t

ul \x)
as their expected values. Specifically, let us denote ŷx as the random variable representing all the

possible labels of a data point x, then we define a new random variable Q̃k(x) as follows,

Q̃k(x) = EŶXt
ul

\x∼p(ŶXt
ul

\x|X
t
ul

\x,Dt
l
) [Qk(AX , [YX t

l
, ŶX t

ul
\x, ŷx])], ∀x ∈ X t

ul, (4)

where ŶX t
ul

\x denotes the random variable representing the possible labels of X t
ul \ x conditioned

on Dt
l . This random variable represents the possible values of metric Qk for each data point x.

1
Dl includes the augmented data set generated using the proposed method in Secion 3.2
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To solve (ii), we formulate an acquisition function that can suggest which data point that causes the
highest uncertainty in the metric estimation. We define it as the mutual information (Houlsby et al.,

2011; Gal et al., 2017) between Q̃k(x) and the BNN parameters ω, i.e.,

I[Q̃k(x);ω|x,D
t
l ] = H[Q̃k(x)|x,D

t
l ]− Eω∼p(ω|Dt

l
)[H[Q̃k(x)|x, ω]]. (5)

We use the mutual information as it is one of the most common criteria in deep Bayesian active
learning to represent uncertainty (Gal et al., 2017). The first term of the acquisition function in Eq.
(5) is the entropy of the metric estimation and the second term is an expectation of the entropy of
the metric estimation over the posterior of the model parameters. The data point that maximizes

I[Q̃k(x);ω|x,D
t
l ] is the data point for which the model has many possible values for metric estima-

tion, i.e. the posterior draws have disagreement.

We can approximate I[Q̃k(x);ω|x,D
t
l ] by using the posterior MC-dropout distribution qθ(ω|D

t
l ).

First, we show how to compute the first term on the right hand side of Eq. (5). Since for each data

point x, ŷx is a discrete random variable with C distinct values, so Q̃k(x) is also a discrete random

variable with at most C distinct values. Therefore, its entropy H[Q̃k(x)|x,D
t
l ] can be computed as,

H[Q̃k(x)|x,D
t
l ] = −

∑

q∈Q
p(Q̃k(x) = q|x,Dt

l ) log p(Q̃k(x) = q|x,Dt
l ), (6)

where Q consists of all the possible values of Q̃k(x) when ŷx ∈ {1, ..., C}. By using the union

bound, p(Q̃k(x) = q|x,Dt
l ) can be expressed as

∑

h∈Q̃
−1

k
(q) p(ŷx = h|x,Dt

l ) where Q̃−1
k (q) is the

inverse function that maps the value of Q̃k(x) to ŷx. Given M stochastic forward passes {ω̂j}
M
j=1

from qθ(ω|D
t
l ), H[Q̃k(x)|x,D

t
l ] can finally be approximated as,

H[Q̃k(x)|x,D
t
l ] ≈ −

∑

q∈Q

((

∑

h∈Q̃
−1

k
(q)

(
∑M

j=1
p(ŷx = h|x, ŵj))/M

)

× log
(

∑

h∈Q̃
−1

k
(q)

(
∑M

j=1
p(ŷx = h|x, ŵj))/M

))

,
(7)

where Q̃k(x) can be approximated as Q̃k(x) ≈ Eω∼qθ(ω|Dt
l
) [Qk(AX , [YX t

l
, ŶX t

ul
\x,ω, ŷx])] ≈

(
∑M

j=1 Qk(YA, [Y
t
l , ŶX t

ul
\x,ω̂j

, ŷx]))/M , with ŶX t
ult

\x,ω̂j
denoting the predicted labels for X t

ul \ x

given the parameter ω̂j . The second term, Eω∼p(ω|Dt
l
)[H[Q̃k(x)|x, ω]], can also be approximated in

a similar fashion (detailed formula is in Section B.2 of the appendix).

Finally, the data point to be sampled is the one with the highest value of I[Q̃k(x);ω|x,D
t
l ], i.e.,

x∗
t+1 = argmaxx∈X t

ul
I[Q̃k(x);ω|x,D

t
l ]. (8)

Remark 3.4. In the case argmaxx∈X t
ul
I[Q̃k(x);ω|x,D

t
l ] contains multiple elements, we select the

data point that has the highest classification mutual information I[ŷx;ω|x,D
t
l ], where I[ŷx;ω|x,D

t
l ]

is the standard mutual information for classification problems (BALD) (Gal et al., 2017).

3.4 SAMPLING METHODOLOGY FOR MULTIPLE METRICS

Given a set of multiple metrics {Qk}
K
k=1, at iteration t + 1, the goal is to sample the data point to

maximally increase the estimation accuracy of all the metrics. As proposed in Section 3.3, for each

metric Qk, we can sample the data point with the highest value of I[Q̃k(x);ω|x,D
t
l ]. Extending this

idea to multiple metrics, we can sample the data point with the highest sum of I[Q̃k(x);ω|x,D
t
l ],

x∗
t+1 = argmaxx∈X t

ul

∑K

k=1
I[Q̃k(x);ω|x,D

t
l ], (9)

where I[Q̃k(x);ω|x,D
t
l ] defined as in Eq. (5).

Our proposed framework Active Learning for Testing with Metric-Aware Sampling strategy, ALT-
MAS, is summarized in Algorithm 1.
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Algorithm 1 The Proposed ALT-MAS Algorithm

1: Input: Model-under-test A, test dataset X , initial labelled set D0
l = {X 0

l ,Y
0
l } (X 0

l ∈ X ), the

Bayesian neural network Bω , labelling budget T , a set of metrics of interest {Qk}
K
k=1

2: Output: The estimations of the metrics in {Qk}
K
k=1

3: Initialize X 0
ul = X \ X 0

l .
4: for t = 1, 2, . . . , T do
5: /∗ Generate stochastic forward passes ω̂j ∼ qθ(ω|D

t−1
l ) ∗/

6: Train the binary classifier Ct−1
η using Dt−1

l

7: Generate the augmented labelled set St−1
l using Ct−1

η

8: Train the Bayesian neural network Bt−1
ω from Dt−1

l and St−1
l

9: Generate M stochastic forward passes {ω̂j}
M
j=1 from Bt−1

ω using MC-dropout

10: /∗ Compute the distribution of random variables Q̃k(x) for every x ∗/
11: for k = 1, 2, . . . ,K do

12: For each x ∈ X t−1
ul , compute Q̃k(x) with all ŷx ∈ {1, ..., C} using Eq. (4) and {ω̂j}

M
j=1

13: For each x ∈ X t−1
ul , compute the set Qk(x), that consists of all possible values of Q̃k(x)

14: end for
15: /∗ Find the data point that maximizes the mutual information function ∗/

16: Solve x∗
t = argmaxx∈X t−1

ul

∑K
k=1 I[Q̃k(x);ω|x,D

t−1
l ] as formulated in Eq. (5)

17: Ask the oracle for a label of x∗
t

18: Update Dt
l = Dt−1

l ∪ {x∗
t , yx∗

t
} and X t

ul = X t−1
ul \ x∗

t

19: end for
20: Compute the metric estimations {Q̂k}

K
k=1 using Eq. (3)

3.5 THEORETICAL TIME COMPLEXITY OF THE PROPOSED ACQUISITION FUNCTIONS

Let us denote O(ak|X |) as the time complexity when computing metric Qk on test dataset X (e.g.
when Qk is the accuracy metric, ak is 1). Then the time complexity of ALT-MAS (Eq. 8) is
O(C2|X |+ (ak + 2)MC|X |), where C is the number of classes of the model-under-test, M is the
number of Monte Carlo forward passes, and |X | is the cardinality of X . This time complexity is

computed by splitting the computation of ALT-MAS into 3 steps: (1) computing Q̃k(x) ∀x ∈ X
when ŷx ∈ {1, ., C} - time complexity O(αkMC|X |), (2) computing probability distribution of

Q̃k(x) ∀x ∈ X - time complexity O(C2|X | + MC|X |), and, (3) computing the entropy - time
complexity O(MC|X |). For a set of K metrics, the time complexity of ALT-MAS (Eq. 9) is

O(KC2|X |+ 2KMC|X |+
∑K

k=1 akMC|X |), i.e. it is linear in the number of instances in X .

4 EXPERIMENTAL RESULTS

We evaluate our active testing framework using various models-under-test and metric sets on the
datasets MNIST and CIFAR10. Our experiments aim to answer:

1. Does our active testing framework perform better than traditional machine learning testing
approaches? This checks whether a testing framework based on AL is necessary.

2. Does our active testing framework perform better than existing AL approaches when es-
timating metric values? This is to show that a suitable BNN training methodology and a
sampling approach that reduces the uncertainty of the metric estimation are needed.

3. Does our proposed sampling method work well for different sets of metrics and models-
under-test? This is to ensure robustness across scenarios.

4. How is the performance of the BNNs? This checks whether a complex BNN is needed for
our active testing framework to be successful.

To answer questions (1) and (2), we compare our method ALT-MAS with two baselines: (i) Tradi-
tion: the traditional method where the metrics are computed using their mathematical formula with
all the labelled data up to the current iteration, and the labelled data is picked randomly from the
whole test dataset; (ii) BALD: the state-of-the-art deep Bayesian AL method (Gal et al., 2017), the
metrics are estimated using the predicted label of the BNN trained with BALD. Note that here, we
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Figure 1: Average relative error of the estimated metrics, for each combination of model-under-test
(M-MNIST, M-FashionMNIST, & M-MNIST-ES) and metric set. Curves are smoothed over a sliding
window of 10 oracle queries (iterations). Plotting mean and standard error over 3 repetitions. Better
methods are those that converge faster to zero (Best seen in color).

don’t compare with the traditional AL methods as it has been shown that deep Bayesian AL methods
outperform traditional AL methods (Settles, 2010; Gal et al., 2017).

To answer questions (3) and (4), for each dataset, we evaluate our proposed machine learning testing
framework using various types of models-under-test and metric sets. Since our testing framework
depends solely on the model-under-test outputs, we evaluate our proposed framework with different
models-under-test that have different levels of accuracy (e.g. good, average, and bad). This is to
simulate the reality when the user receives a black-box model-under-test and they want to know if
that model-under-test is good or bad using their criteria (i.e. metrics). The metric sets consist of
either a single metric or multiple metrics, and the metrics are of different types: per-class metrics
and overall metrics. For each combination of dataset, model-under-test and metric set, we repeat the
experiment 3 times. Finally, we investigate the prediction performance of the BNNs used in all these
experiments. All the experiments are running on multiple servers where each server has multiple
Tesla V100 SXM2 32GB GPUs. All the source codes are implemented in Tensorflow 1.15.0 and
will be publicly available after the acceptance of this paper.

4.1 MNIST DATASET

We aim to estimate the performance of various models-under-test using different metric sets on
the MNIST test dataset (LeCun et al., 2010). Our experiment setup is as follows. Firstly, we use
a standard convolutional neural network (CNN),2 and then train it on the train MNIST dataset to
construct a good model-under-test (M-MNIST). Secondly, we either reduce the number of training
epochs, retrain the CNN to construct average models-under-test (M-MNIST-ES). Thirdly, we train
the CNN on the train FashionMNIST dataset (Xiao et al., 2017) (completely different from MNIST)
to generate a bad model-under-test (M-FashionMNIST). Details of these models are in Section C.1
of the appendix. For each model-under-test, we aim to estimate various sets of common metrics: i)
3 metric sets containing solely one metric in each set: precision of class 2, recall of class 2,3 and
overall accuracy, and, ii) 2 metric sets consisting of multiple metrics: a set of 3 metrics (accuracy,
macro-precision, macro-recall), and a set of 21 metrics (accuracy, precision and recall of each class).
The BNN and binary classifier are mutilayer perceptrons (MLP) with 2 layers and dropout in each
layer (details are in Section C.1 of the appendix).

In Figure 1, we report the average relative errors of the estimated metrics for each combination
of model-under-test and metric set. First, we can see that the method Tradition is not consistent.

2The model is implemented in tensorflow but use the official network architecture published on keras.com
for MNIST dataset, as there is no official source code on tensorlow.org for MNIST dataset.

3Class 2 is a random choice. Based on our experiments, ALT-MAS outperforms baselines on any class.
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Figure 2: Average relative error of the estimated metrics, for each combination of model-under-test
(M-CIFAR10, M-SVHN, & M-CIFAR10-ES) and metric set. Curves are smoothed over a sliding
window of 10 oracle queries (iterations). Plotting mean and standard error over 3 repetitions. Better
methods are those that converge faster to zero (Best seen in color).

Tradition performs very well on M-MNIST but performs badly on M-FashionMNIST. Based on
our observation, Tradition performs well on M-MNIST because this model has very high accuracy
(99.1%), which means its outputs and the true labels are very similar. Thus, by randomly picking
data points, acquire their labels, and predict all the metric values by the mathematical formula on the
current labelled set will provide the metric estimations to be approximately 100%, which are similar
to the true values of the metrics. However, for other models-under-test with different accuracies, this
technique will not work. Now, we compare the performance between ALT-MAS and BALD. For
most of the combinations of model-under-test and metric set, our method ALT-MAS outperforms
BALD by a high margin, especially on per-class metric and M-MNIST. This is understandable as
i) M-MNIST is a good model and thus the BNN trained with ALT-MAS has much higher accuracy
compared to that with BALD, and, ii) the optimal sampling strategy to achieve accurate estimations
for per-class metrics is very different to the optimal sampling strategy to obtain a BNN with high
accuracy. This clearly demonstrates the superiority of our BNN training and our optimal sampling
methodologies. In particular, we can see that the BNN benefits the information from the model-
under-test, and, the optimal sampling strategy to achieve accurate metric estimation should be the
one that tailors to the characteristics of the models-under-test and the metrics.

4.2 CIFAR10 DATASET

We now consider the CIFAR10 test dataset (Krizhevsky, 2009). We use the same strategy as in
Section 4.1 to generate three different models-under-test: M-CIFAR10 (trained on train CIFAR10)
with high accuracy, M-CIFAR10-ES (trained on train CIFAR10 with early stopping) with average
accuracy, and M-SVHN (trained on SVHN - a different dataset) with low accuracy. We use the
same 5 sets of metrics as in Section 4.1. The BNN we use in this case is the standard LeNet model
(Lecun et al., 1998) with dropout applied before the relu layers. More details about the experiment
setup are in Section C.2 of the appendix. In Figure 2, we report the average relative errors of
the estimated metrics of several combinations of model-under-test and metric set. Similar to the
observations on MNIST dataset, the method Tradition is not consistent, i.e. it performs well on the
good model-under-test, but performs badly on other models-under-test. BALD also performs well
on some scenarios but does not perform well when the model-under-test is good or when the metric
is per-class metric. In contrast, ALT-MAS performs well on all of the scenarios.

4.3 THE QUALITY OF THE BNNS

In Section C.3 of the appendix, we investigate the performance of the BNNs in the active testing
methods (ALT-MAS & BALD). In particular, we compare the classification accuracies of the BNNs
in BALD and those in ALT-MAS (with our augmented data training strategy and optimal sampling
strategy). First, we can see that, for most of the models-under-test and metric sets, the BNNs does not

8
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need to have high accuracy for the metric estimation to be accurate. Second, due to our augmented
data training strategy, the prediction accuracies of the BNNs improve significantly, especially when
the models-under-test are good. Lastly, due to our proposed sampling strategy, the BNN only needs
to learn the labels of the data points contributing significantly to the metric estimation in order to
achieve accurate metric estimation. More discussions are in Section C.3 of the appendix.

5 RELATED WORK

Trustworthy Machine Learning. This line of works aims to assess the confidence of deep neural
networks in making predictions on test data points (Platt, 1999; Zadrozny & Elkan, 2002; Niculescu-
Mizil & Caruana, 2005; Guo et al., 2017; Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017;
Hendrycks & Gimpel, 2017; Jiang et al., 2018; Corbière et al., 2019). For example, (Gal & Ghahra-
mani, 2016) and Lakshminarayanan et al. (2017) estimate the uncertainty of deep neural networks
via Bayesian methods so as to return a distribution over the predictions. The work in Hendrycks &
Gimpel (2017) uses the softmax probability of the network to detect if a test data point is misclas-
sified or out-of-distribution. A new trust score to understand whether a classifier’s prediction for a
test data point can be trusted or not is proposed in Jiang et al. (2018). Most recently, Corbière et al.
(2019) assess the confidence of a model by proposing a new target criterion for model confidence
based on the True Class Probability. These methods rely on the training data and/or internal archi-
tecture of the network to generate the model confidence score. Our method, in contrast, assumes
an already trained and black-box model; our goal is to estimate the performance of the model on
various metrics on a new test dataset.

Machine Learning Testing. A comprehensive review of machine learning testing methods can be
found in (Zhang et al., 2019). Some recent notable works include (Tian et al., 2018; Sun et al., 2018;
Zhou et al., 2019). All of these works are based on white-box testing, i.e. the testing framework
uses information about the internal structure of the model. Our work is black-box testing, i.e. our
method assesses the performance of the model based solely on its outputs. The closest related work
to ours are (Sawade et al., 2010; Schelter et al., 2020; Gopakumar et al., 2018) - these methods, their
limitations, and how we overcome them are discussed in Section 1.

Active Learning. These methods aim to train a machine learning model in a data-efficient way
by selecting the most informative data points for which labels should be acquired (Settles, 2010;
Blundell et al., 2015; Gal et al., 2017). These AL methods aim to train a model to predict the labels
of new data points accurately whilst our method aims to train a model to estimate a specified metric
set accurately. We have shown experimentally that for the active testing framework, our proposed
method outperforms existing AL methods.

6 CONCLUSION

We propose a novel approach to efficiently evaluate the performance of black-box machine learning
models. The core idea is to efficiently estimate important metrics of the model being tested based
on Bayesian neural network. We develop a novel method for training the BNN to achieve accurate
metric estimations. We also devise a novel entropy-based sampling strategy to sample a data point
such that the proposed framework can accurately estimate the metrics of interest simultaneously
using a minimal number of labelled data. Experimental results show that our proposed approach
works efficiently for estimating multiple metrics using diverse models and datasets.
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A APPENDIX

B ALGORITHM DETAILS

B.1 BACKGROUND

Bayesian Neural Networks Bayesian neural networks (BNNs) are special neural networks that
maintain a distribution over its parameters (MacKay, 1992; Neal, 1995). In practice, performing ex-
act inference in BNNs is generally intractable, thus, there has been a line of works aiming to perform
approximate inference. In this work, we use the MC-dropout method (Gal & Ghahramani, 2016) to
perform inference as it is both both scalable and theoretically guaranteed - equivalent to perform-
ing approximate variational inference to find a distribution in a tractable family that minimizes the
Kullback-Leibler divergence to the true model posterior.

Bayesian Active Learning by Disagreement (BALD) BALD is a sampling methodology in
Bayesian active learning, which samples the data point that maximizes the mutual information be-
tween the model prediction and the model posterior (Houlsby et al., 2011; Gal et al., 2017). To be
more specific, let us denote Dt

l = {X t
l ,YX t

l
} as the labelled set obtained after iteration t and Bt

ω as

the BNN trained on Dt
l (with parameter ω), then the acquisition function of BALD is defined as,

I[y;ω|x,Dt
l ] = H[y|x,Dt

l ]− Eω∼p(ω|Dt
l
)[H[y|x, ω]], (10)

where y is predicted label for the data point x. The data point that maximizes BALD is the data point
for which the model has many possible predictions, i.e. the posterior draws have disagreement.

B.2 DETAILS OF THE PROPOSED ACQUISITION FUNCTION

Our proposed acquisition function is defined as the mutual information (Houlsby et al., 2011; Gal

et al., 2017) between Q̃k(x) and the BNN parameters ω, i.e.,

I[Q̃k(x);ω|x,D
t
l ] = H[Q̃k(x)|x,D

t
l ]− Eω∼p(ω|Dt

l
)[H[Q̃k(x)|x, ω]]. (11)

This mutual information can be approximated using the MC-dropout variational distribution
qθ(ω|D

t
l ). Next, we show how to approximate each tearm on the right hand side of Eq. (11).
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ComputingH[Q̃k(x)|x,D
t
l ]H[Q̃k(x)|x,D
t
l ]H[Q̃k(x)|x,D
t
l ] For each data point x, ŷx is a discrete random variable with C distinct

values, so Q̃k(x) is also a discrete random variable with at most C distinct values. Therefore,

H[Q̃k(x)|x,D
t
l ] can be computed as,

H[Q̃k(x)|x,D
t
l ] = −

∑

q∈Q
p(Q̃k(x) = q|x,Dt

l ) log p(Q̃k(x) = q|x,Dt
l ), (12)

where Q consists of all the possible values of Q̃k(x) when ŷx ∈ {1, ..., C}. By using the union

bound, H[Q̃k(x)|x,D
t
l ] can then be expressed as,

H[Q̃k(x)|x,D
t
l ] = −

∑

q∈Q

(

∑

h∈Q̃
−1

k
(q)

p(ŷx = h|x,Dt
l )
)

log
(

∑

h∈Q̃
−1

k
(q)

p(ŷx = h|x,Dt
l )
)

,

where Q̃−1
k (q) is the inverse function that maps the value of Q̃k(x) to ŷx. Given M stochastic

forward passes {ω̂j} from the MC-dropout posterior distribution qθ(ω|D
t
l ), H[Q̃k(x)|x,D

t
l ] can

finally be approximated as,

H[Q̃k(x)|x,D
t
l ] ≈ −

∑

q∈Q

((

∑

h∈Q̃
−1

k
(q)

(
∑M

j=1
p(ŷx = h|x, ŵj))/M

)

× log
(

∑

h∈Q̃
−1

k
(q)

(
∑M

j=1
p(ŷx = h|x, ŵj))/M

))

,
(13)

where Q̃k(x) can be approximated as Q̃k(x) ≈ Eω∼qθ(ω|Dt
l
) [Qk(AX , [YX t

l
, ŶX t

ul
\x,ω, ŷx])] ≈

(
∑M

j=1 Qk(YA, [Y
t
l , ŶX t

ul
\x,ω̂j

, ŷx]))/M , with ŶX t
ult

\x,ω̂j
denoting the predicted labels for X t

ul \ x
given the parameter ω̂j .

Computing Eω∼p(ω|Dt
l
)[H[Q̃k(x)|x, ω]]Eω∼p(ω|Dt

l
)[H[Q̃k(x)|x, ω]]Eω∼p(ω|Dt

l
)[H[Q̃k(x)|x, ω]] Similar as in the above paragraph, given M

stochastic forward passes {ω̂j}
M
j=1 from the MC-dropout variational distribution qθ(ω|D

t
l ),

Eω∼p(ω|Dt
l
)[H[Q̃k(x)|x, ω]] can be approximated as,

Eω∼p(ω|Dt
l
)[H[Q̃k(x)|x, ω]] ≈

1

M

∑M

j=1
H[Q̃k(x)|x, ω̂j ]

≈ −
1

M

∑M

j=1

(

∑

q∈Q
p(Q̃k(x) = q|x, ω̂j) log p(Q̃k(x) = q|x, ω̂j)

)

≈ −
1

M

∑M

j=1

(

∑

q∈Q

(

∑

h∈Q̃
−1

k
(q)

p(ŷx = h|x, ω̂j)
)

× log
(

∑

h∈Q̃
−1

k
(q)

p(ŷx = h|x, ω̂j)
)

)

,

(14)
where Q consists of all the possible values of Q̃k(x) when ŷx ∈ {1, ..., C}, Q̃−1

k (q) is the

inverse function that maps the value of Q̃k(x) to ŷx, and Q̃k(x) can be approximated as

Q̃k(x) ≈ Eω∼qθ(ω|Dt
l
) [Qk(AX , [YX t

l
, ŶX t

ul
\x,ω, ŷx])] ≈ (

∑M
j=1 Qk(YA, [Y

t
l , ŶX t

ul
\x,ω̂j

, ŷx]))/M ,

with ŶX t
ult

\x,ω̂j
denoting the predicted labels for X t

ul \ x given the parameter ω̂j .

C EXPERIMENT DETAILS

C.1 MNIST DATASET

Models-under-test The three models-under-test we use to evaluate our proposed method are:

(i) M-MNIST: A CNN trained on the train MNIST dataset (LeCun et al., 2010). We implement
the model in tensorflow but use the official network architecture published on keras.com4

as there is no official source code on tensorflow.org. The accuracy of this model on the test
MNIST dataset is 99.06%;

4https://keras.io/examples/mnist_cnn/
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(ii) M-MNIST-ES: A CNN trained on the train MNIST dataset. The model architecture is same
as M-MNIST, but we use early stopping to decrease the model performance, i.e. we set
smaller epochs and higher batch size. The accuracy of this model on the test MNIST
dataset is 70.67%;

(iii) M-FashionMNIST: A CNN trained on the train FashionMNIST dataset (i.e. a completely
different dataset compared to MNIST) (Xiao et al., 2017). The model is implemented
using the official code published on tensorflow.org.5 The accuracy of this model on the test
MNIST dataset is 12.39%.

Metric sets The metric sets we use to evaluate our proposed method are:

(i) Three sets of metrics consisting of only one metric in each set: precision of class 2, recall
of class 2, and overall accuracy. These are common metrics used to evaluate performance
of classifiers, and these metrics cover both per-class metrics and overall metrics.

(ii) Two sets of metrics consisting of multiple metrics. We use two sets: one set consisting of
3 metrics (accuracy, macro-precision, macro-recall), and one set consisting of 21 metrics
(accuracy, precision and recall of each class).

The BNN and the binary classifier architecture The BNN and the binary classifier have the
same architecture. The architecture is an MLP with two layers, 256 neurons/layer, and with dropout
applied in each layer. The number of MC-dropout samples are 50. The initial labelled set D0

l has
100 data points randomly sampled from the test dataset. We tuned 3 hyper-parameters: learning
rate, epochs and dropout rate using Bayesian optimization (Snoek et al., 2012). We also reinitialize
the BNN after each iteration as in (Gal et al., 2017).

C.2 CIFAR10 DATASET

Models-under-test The three models-under-test we use to evaluate our proposed method are:

(i) M-CIFAR10: A CNN trained on the train CIFAR10 dataset (Krizhevsky, 2009). We im-
plement the model in tensorflow but use the official network architecture published on
keras.com6 as there is no official source code on tensorflow.org. The accuracy of this model
on the test CIFAR10 dataset is 77.43%.

(ii) M-CIFAR10-ES: A CNN trained on the train CIFAR10 dataset. The model architecture is
same as M-CIFAR10, but we use early stopping to decrease the model performance, i.e. we
set smaller epochs and higher batch size. The accuracy of this model on the test CIFAR10
dataset is 40.39%.

(iii) M-SVHN: A CNN trained on the train SVHN dataset (i.e. a completely different dataset
compared to CIFAR10) (Netzer et al., 2011). The model architecture is same as M-
CIFAR10. The accuracy of this model on the test CIFAR10 dataset is 9.3%.

Metric sets The metric sets we use are same as the metrics set used for the MNIST dataset (as
described in Section C.1).

The BNN and the binary classifier architecture The BNN and the binary classifier have the
same architecture. The architecture is the standard LeNet model (Lecun et al., 1998) with dropout
applied before the relu layers. The number of MC-dropout samples are 50. The initial labelled
set D0

l has 500 data points randomly sampled from the test dataset. We tuned 3 hyper-parameters:
learning rate, epochs and dropout rate using Bayesian optimization (Snoek et al., 2012). We also
reinitialize the BNN after each iteration as in (Gal et al., 2017).

C.3 THE QUALITY OF THE BNNS

In Figures 3 and 4, we plot the prediction accuracies of the BNNs in BALD and ALT-MAS for all
combinations of models-under-test and metric sets on the MNIST and CIFAR10 dataset. Below,

5https://www.tensorflow.org/tutorials/keras/classification
6https://keras.io/examples/cifar10_cnn/
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we evaluate how complex the BNN needs to be for the metric estimation to be accurate and how
effective our augmented training strategy and our proposed sampling methodology are.

Theoretically, we can see that for the BNN to be useful, it does not need to have high classification
accuracy; it only needs to accurately predict the data points that contribute to the metric estimation.
Being incorrect at other data points does not affect the predicted metric values. See example:

True
label

Model-under-test
prediction

Surrogate model prediction

0 5 Any prediction except 5 (e.g. 1, 2, 3, ...) will give accurate metric
estimation

5 5 Correct prediction matters for some metrics (e.g. accuracy, preci-
sion/recall of class 5), but not for other metrics (e.g. precision/recall
of other classes)

In summary, the metric estimation accuracy depends on the model-under-test and the metric set.
This is clearly demonstrated on the performance of BALD. With BALD, we use the predicted labels
by the BNNs trained by BALD to estimate the metric values. For MNIST, the BNNs trained with
BALD have accuracies ranging from 70−90%, but for the models-under-test M-FashionMNIST and
M-MNIST-ES (average & bad models), the metric estimation accuracies range from 90−100% - that
is much higher than the BNNs’ accuracies. Similarly, for CIFAR10, the BNNs’ accuracies range
from 40 − 60%, but for the models-under-test M-SVHN and M-CIFAR10-ES, the metric estimation
accuracies range from 90− 100%. For the good models-under-test M-MNIST and M-CIFAR10 then
BALD requires high BNN accuracy in order to achieve good metric estimations.

For our proposed method ALT-MAS, with the models M-FashionMNIST, M-MNIST-ES, M-SVHN
and M-CIFAR10-ES and the overall metrics (accuracy), the observations are similar to BALD. That
is, the BNNs accuracies are much lower to the metric estimation accuracies. The better thing is that,
for the per-class metrics (precision and recall of class 2, the BNNs accuracies do not need to be
high (as in the overall metrics) in order to achieve high metric estimation accuracy. In particular,
the BNNs accuracies by ALT-MAS are much lower than the BNNs by BALD, but the metric esti-
mations by ALT-MAS are much higher than by BALD. This proves the motivation of our sampling
approach, that is, the BNN only needs to accurately predict the data points that contribute to the met-
ric estimation. For the good models-under-test M-MNIST and M-CIFAR10, due to our augmented
training strategy, the BNN accuracies improve significantly, and thus, leads to the metric estimations
to be much more accurate compared to BALD.

Figure 3: The accuracy of the BNN, for each combination of model-under-test (M-MNIST, M-
FashionMNIST, & M-MNIST-ES) and metric set. Curves are smoothed over a sliding window of 5
oracle queries (iterations). Plotting mean and standard error over 3 repetitions (Best seen in color).
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Figure 4: The accuracy of the BNN, for each combination of model-under-test (M-CIFAR10, M-
SVHN, & M-CIFAR10-ES) and metric set. Curves are smoothed over a sliding window of 5 oracle
queries (iterations). Plotting mean and standard error over 3 repetitions (Best seen in color).
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