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We investigate the modification of gas phase ion polarizabilities upon solvation in polar solvents and
ionic liquids. To this aim, we develop a classical electrostatic theory of charged liquids composed
of solvent molecules modeled as finite size dipoles, and embedding polarizable ions that consist of
Drude oscillators. In qualitative agreement with ab initio calculations of polar solvents and ionic
liquids, the hydration energy of a polarizable ion in both types of dielectric liquid is shown to favor
the expansion of its electronic cloud. Namely, the ion carrying no dipole moment in the gas phase
acquires a dipole moment in the liquid environment, but its electron cloud also reaches an enhanced
rigidity. We find that the overall effect is an increase of the gas phase polarizability upon hydration.
In the specific case of ionic liquids, it is shown that this hydration process is driven by a collective
solvation mechanism where the dipole moment of a polarizable ion induced by its interaction with
surrounding ions self-consistently adds to the polarization of the liquid, thereby amplifying the di-
electric permittivity of the medium in a substantial way. We propose this self-consistent hydration
as the underlying mechanism behind the high dielectric permittivities of ionic liquids composed of
small charges with negligible gas phase dipole moment. Hydration being a correlation effect, the
emerging picture indicates that electrostatic correlations cannot be neglected in polarizable liquids.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816011]

I. INTRODUCTION

The atomic electron cloud distortion induced by an exter-
nal field is strongly influenced by the dielectric environment
embedding the atom. This distortion ability referred as the
induced polarizability is one of the key ion specific effects
in the simulation of salt solutions in inhomogeneous media
such as the water-air interface or protein-water surfaces.1 The
precise knowledge of the change in the polarizability of an
isolated ion upon hydration in water is particularly important
for the development of polarizable force fields used in these
simulations. Moreover, ionic polarizability is also believed to
have a substantial effect on the polarity of ionic liquids. In-
deed, numerical studies based on ab initio calculations show
that the large dielectric permittivity of ionic liquids such as
[C2mim][NTf2] and [C2mim][BF4] composed of ions with
small individual dipole moments cannot be solely explained
by their rotational polarizability.2 This suggests that an addi-
tional polarization mechanism resulting from the interaction
of the polarizable ion with the surrounding ions in the liquid
must be present.

The alteration of ionic gas phase polarization upon solva-
tion has been so far considered within numerical approaches
based on quantum calculations with polarizable continuum
model (PCM) or explicit solvent. These two approaches in-
terestingly yield diverging pictures on the hydration of po-

a)Email: sahin_buyukdagli@yahoo.fr
b)Email: Tapio.Ala-Nissila@aalto.fi

larizable ions. Namely, the calculations with explicit solvent
indicate that the ionic polarizability is decreased with respect
to the gas phase,3 whereas PCM approaches yield a higher
polarizability in the liquid state4, 5 (see also Ref. 6 for a re-
view on the computational state of the art). The latter case
is also in line with the ab initio calculations of pure water
clusters7 and ionic liquids,8 where the transfer of both type of
molecules from gas to the liquid environment was shown to
increase their dipole moment.

In order to understand the physics behind the hydration
of polarizable molecules, analytical theories offering a deeper
understanding are needed. The theoretical formulation of the
problem requires in turn an explicit and realistic consider-
ation of the discrete charge structure of solvent molecules
and ions. Unfortunately, this level of refinement has been un-
til recently beyond the state of the art of electrostatic the-
ories, which are mostly based on dielectric continuum sol-
vents embedding point charges. The first statistical theory of
inhomogeneous electrolytes with explicit solvent was intro-
duced in Ref. 9 in the form of a mean-field (MF) dipolar
Poisson-Boltzmann (DPB) equation. This approach that mod-
els the solvent molecules as point dipoles was later gener-
alized by including the steric interactions between the par-
ticles for inhomogeneous charged liquids,10 and a one-loop
extension was presented as well in Ref. 11 to explain the salt
induced dielectric decrement effect in bulk electrolytes. We
have recently incorporated into the DPB approach surface po-
larization effects, which allowed us to significantly improve
the agreement of the dielectric continuum electrostatic with
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experimental capacitance data of carbon based materials.12

Sophisticated electrostatic formulations accounting for the
dipolar and higher order multipolar moments of ions in the
point dipole limit have been also proposed in Refs. 13–16. In a
similar context, we can also mention the works of Refs. 17–19
where the extended charge structure of rigid linear molecules
was ingeniously considered.

We have recently developed a non-local electrostatic the-
ory of polar liquids with explicit solvent and polarizable
ions beyond the point dipole approximation.20 The electrolyte
model that treats solvent molecules as finite size dipoles and
polarizable ions as Drude oscillators was investigated at the
MF level. It was shown that the consideration of the extended
charge structure of solvent molecules enables us to capture
the non-local dielectric response of water at charged inter-
faces observed in molecular dynamics simulations and atomic
force experiments. In this article, we reconsider the model of
Ref. 20 beyond the MF level of approximation in order to
characterize the hydration induced modification of ionic po-
larizabilities in high dielectric bulk liquids. We review in
Sec. II the derivation of the field theoretic charged liquid
model, and derive the closure equations accounting for the
correlations between the ions and the solvent molecules.
These equations are first solved in Sec. III A in order to in-
vestigate the hydration of a single polarizable ion in a po-
lar solvent such as water. Then, within the same theoretical
framework, we consider in Sec. III B an ionic liquid free of
solvent molecules in order to investigate a collective polar-
ization effect in the liquid. It is shown that in both systems,
our simple theory can capture the solvation induced electronic
cloud expansion effect observed in ab initio calculations,4, 5, 8

and provides a physical explanation in terms of the electro-
static energy released by the ion upon hydration. The lim-
itations of the liquid model and the computation scheme,
and necessary extensions are discussed in detail in the
Conclusion.

II. MODEL

We briefly review in this section the derivation of the field
theoretic partition function for the polar liquid model previ-
ously introduced in Ref. 20. Then, starting from the Dyson
equation, we derive an integral equation for the dielectric per-
mittivity function embodying the interactions between the po-
larizable ions and solvent molecules of the bulk liquid.

The geometry of solvent molecules is depicted in
Fig. 1(a). The polar liquid is composed of overall neutral sol-
vent molecules modeled as linear dipoles of length a, and
two point charges of valency ±Q = ±1 at the extremities.
Furthermore, the solvent contains polarizable molecules of
p species, each of them being an oscillating rod of length b
(see Fig. 1(b)). The point charges ei and ci at the extremities
satisfy the inequality eici < 0, where the index i = 1. . . p runs
over the ionic species. Moreover, the ionic polarizability is
taken into account within the Drude oscillator model,21

hi(b) = b2

4b2
pi

, (1)

FIG. 1. Charge composition of solvent molecules of size a (a) and polariz-
able ions with a fluctuating length b (b). In the present work, we consider
exclusively the case of ionic valencies ei and ci of opposite sign (eici < 0),
and solvent molecules with monovalent point charges Q = 1.

where the square of the variance of electronic cloud oscilla-
tions b2

pi is proportional to the induced polarizability of ions
α in the gas phase.20 Because the former offers a more intu-
itive realization of the electronic cloud fluctuations induced
by thermal excitations, we will discuss the results in terms of
the length scale bpi. Furthermore, in the present work, we will
consider exclusively the case of equal ionic polarizabilities
for all species, but the analytical results will be given for the
general case. We also note that the electroneutrality condition
implies the equality

∑
i ρ ibqi = 0, with ρ ib the bulk density,

and qi = ei + ci the total charge of the polarizable molecules
with species i.

The canonical partition function for the system composed
of solvent molecules and ions coupled with electrostatic inter-
actions read

Zc = eNsεs

Ns!λ
3Ns

T d

∫ Ns∏
k=1

d�k

4π
dxk

×
p∏

i=1

Ni∏
j=1

eNiεi

Ni!λ
3Ni

T i

∫
dbj(

4πb2
pi

)3/2 dyij e−hi (bj −H (v),

(2)

where Ns is the total number of solvent molecules, Ni is the
number of ions for the species i, and λTd and λTi denote,
respectively, the thermal wavelengths of solvent molecules
and ions. We also introduced in Eq. (2) the compact no-
tation v = ({xk}, {ak}, {yij }, {bj }) for the vectors character-
izing the configuration of particles, with xk and yij denot-
ing, respectively, the coordinate of the charges +Q and ei

of the solvent molecules and polarizable ions depicted in
Fig. 1. Furthermore, �k = (θk, ϕk) is the solid angle char-
acterizing the orientation of the kth solvent molecule, θ be-
ing the angle between the oriented dipole and the z-axis (see
Fig. 1(a)). We finally note that in Eq. (2), we subtracted
from the total Hamiltonian the self-energies of ions and po-
lar molecules in the air, εi = (e2

i + c2
i )vc(0)/2 + eicivc(b) and

εs = Q2[vc(0) − vc(a)]. This point will be discussed below in
further detail.

The Hamiltonian of the bulk liquid is composed of pair-
wise electrostatic interactions,

Hel(v) = 1

2

∫
rr′

[ρic + ρsc]rvc(r − r′)[ρic + ρsc]r′ , (3)
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where the total ionic and solvent density operators for the
charge compositions depicted in Fig. 1 are defined as

ρic(r) =
p∑

i=1

Ni∑
j=1

[eiδ(r − yij ) + ciδ(r − yij − bj )], (4)

ρsc(r) =
Ns∑
k=1

Q[δ(r − xk) − δ(r − xk − ak)]. (5)

Moreover, in Eq. (3), vc(r − r′) = 
B/|r − r′| stands for the
Coulomb potential in the air medium, with 
B = e2/[4πε0kBT]
� 55 nm the Bjerrum length and ε0 the dielectric permittivity
in the air, e the electron charge, and T = 300 K the ambient
temperature. We note that in the rest of the article, dielectric
permittivities will be expressed in units of the air permittivity
ε0, and energies in units of the thermal energy kBT.

In order to transform the partition function (2) into a
more tractable form, we pass from the particle density to the
fluctuation potential representation by performing a standard
Hubbard-Stratonovich transformation. In this representation,
the grand canonical partition function of the system defined
as ZG = ∑

Ns≥0

∏p

i=1

∑
Ni≥0 eμiNi eμwNs Zc takes the form of

a functional integral over the fluctuating electrostatic potential
φ(r), ZG = ∫

Dφ e−H [φ], with the Hamiltonian functional20

H [φ] =
∫

dr
[∇φ(r)]2

8π
B

− 
s

∫
d�

4π
dr eεs+iQ[φ(r)−φ(r+a)]

−
∑

i


i

∫
db(

4πb2
pi

)3/2 dr e−hi (b)+εi

× eieiφ(r)+iciφ(r+b). (6)

The first term on the rhs of Eq. (6) is the electrostatic energy of
the freely propagating field in the air. The second term corre-
sponds to the density of solvent molecules, and their fugacity
is denoted by 
s. Finally, the third term on the rhs of Eq. (6)
is the density of polarizable ions with fugacity 
i.

The Hamiltonian (6) was already derived in Ref. 20 for
the more general case of multipolar solvents embedding po-
larizable ions, and the saddle-point solution of the partition
function corresponding to the MF approximation was investi-
gated for polar liquids in contact with charged planes. In order
to account for correlation effects in the bulk liquid beyond the
MF level, we need to derive the electrostatic correlation func-
tion. Our starting point is the following form of the Dyson
equation, ∫

Dφ
δ

δφ(r)
e−H [φ]+∫

drJ (r)φ(r) = 0, (7)

where J (r) is a generalized current introduced for the deriva-
tion of the two-point correlation function. A proof of the
equality (7) can be found in Ref. 22. We also remind that
the derivation of the electrostatic self-consistent equations of
the primitive ion model23 with the use of this equality was
presented in Ref. 24. By taking now the functional deriva-
tive of Eq. (7) with respect to J (r′) and setting J (r′) = 0, one
obtains the following equation for the two-point correlation

function,

∇2
r 〈φ(r)φ(r′)〉

+ 4π
BiQλs

∫
d�

4π
dr eεs {〈eiQ[φ(r)−φ(r+a)]φ(r′)〉

− 〈eiQ[φ(r−a)−φ(r)]φ(r′)〉}

+ 4π
Bi
∑

i


i

∫
db(

4πb2
pi

)3/2 dr e−hi (b)+εi

× {〈[
eie

ieiφ(r)+iciφ(r+b) + cie
ieiφ(r−b)+iciφ(r)

]
φ(r′)

〉}
= −4π
Bδ(r − r′), (8)

where the bracket 〈 · 〉 denotes the field average with the
Hamiltonian functional in Eq. (6). In Eq. (8), the dependence
of the fluctuating solvent and ion densities (i.e., the functions
inside the brackets on the lhs) on the values of the potential
at different points around r is a signature of non-local electro-
static interactions resulting from the extended charge struc-
ture of the solvent molecules and ions.20

We emphasize that the formal Eq. (8) is an exact relation.
However, because the Hamiltonian of Eq. (6) is non-linear in
the potential φ(r), an exact analytical evaluation of the aver-
ages over the fluctuating potential is impossible. To progress
further, we approximate this non-linear Hamiltonian with a
quadratic Hamiltonian functional,

H0[φ] =
∫

drdr′

2
φ(r)v−1

0 (r, r′)φ(r), (9)

where the electrostatic potential is chosen as the solution
of Eq. (8), that is, v0(r, r′) = 〈φ(r)φ(r′)〉. At this stage, we
note that the spherical symmetry in the bulk liquid implies
v0(r, r′) = v0(r − r′), and this allows us to expand the po-
tential in Fourier space as v0(r − r′) = ∫ d3q

(2π)3 eiq·(r−r′)ṽ0(q).
Evaluating the averages in Eq. (8) with the quadratic func-
tional (9) and injecting into the result the Fourier expansion
of the correlation function, the explicit form of the potential
finally follows in the form25

ṽ−1
0 (q) = q2ε̃(q)

4π
B

+
∑

i

ρibq
2
i , (10)

with the Fourier transformed dielectric permittivity function

ε̃(q) = 1 + κ2
s

q2

[
1 − sin(qa)

qa

]
+

∑
i

κ2
ip

q2

〈
1 − sin(qb)

qb

〉
.

(11)

We introduced in Eq. (11) the solvent and ionic
screening parameters in the air, κ2

s = 8πQ2
Bρsb and
κ2

ip = 8π |eici |
Bρib. Furthermore, we defined in Eq. (11)
the statistical average over the fluctuations of the electronic
cloud,

〈F (b)〉 =
∫ ∞

0 dbb2 e−hi (b)−ψip(b)F (b)∫ ∞
0 dbb2 e−hi (b)−ψip(b)

, (12)
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with the potential of mean force (PMF)

ψip(b) = −|eici |
∫ ∞

0

dqq2

2π2

[
1 − sin(qb)

qb

]
[ṽc(q) − ṽ0(q)],

(13)

where the Fourier transform of the Coulomb potential
in the vacuum is given by ṽc(q) = q2/(4π
B). We also
note that deriving Eq. (10), we used the thermodynamic
relations between the particle fugacities and concentrations,
ρsb = 
s∂ ln Z/∂
s = 
se

−ψd and ρib = 
i∂ ln Z/∂
i

= 
i

∫
dbe−hi (b)−ψip(b)/(4πb2

pi)
3/2, with the liquid state

self-energies of solvent molecules and ions, respectively,
defined as

ψs = −Q2
∫ ∞

0

dqq2

2π2

[
1 − sin(qa)

qa

]
[ṽc(q) − ṽ0(q)], (14)

ψi(b) = −
∫ ∞

0

dqq2

2π2

{
e2
i + c2

i

2
+ eici

sin(qb)

qb

}
× [ṽc(q) − ṽ0(q)]. (15)

One can notice that the energies in Eqs. (14) and (15) cor-
respond to the hydration energies of the solvent molecules
and polarizable ions, i.e., the electrostatic cost to drive the
molecules from the gas to the liquid environment. More-
over, one sees that Eqs. (13) and (15) are related as ψi(b)
= −q2

i [vc(0) − v0(0)]/2 + ψib(b), which indicates that the
PMF ψ ip(b) brings the net contribution from the polarizabil-
ity to the ionic hydration energy. Finally, unlike previous point
dipole models where the electrostatic energies have to be reg-
ularized with an ultraviolet cut-off in Fourier space,11, 16 our
consideration of the finite solvent molecular size and elec-
tronic cloud extension resulted in a cut-off free theory with
well defined self-energies in Eqs. (13)–(15).

At this stage, we note that our motivation for subtracting
from the Hamiltonian the gas phase self-energy of polarizable
ions in Eq. (2) was twofold. First of all, this step allowed us
to avoid the dipolar catastrophe problem. Indeed, the classi-
cal Drude oscillator model of Eq. (1) does not prevent the
electron from falling into the nucleus, and this results in di-
vergent ionic self-energies for b → 0. This problem could be
avoided in an alternative way by modifying the Drude model
with a cut-off at small b, but we found that this technical com-
plication shadows the transparency of the analytical results.
Furthermore, the Drude potential is clearly an approximative
fashion to consider the quantum mechanical interatomic inter-
actions that already include the electrostatic coupling between
the electron and the nucleus. We also note that the subtracted
self-energy of solvent molecules does not affect the statistical
average in Eq. (12).

The relations (10)–(13) form a set of closure equations
that should be solved self-consistently. These two relations
can also be interpreted as a single integral equation for the
dielectric permittivity function ε̃(q) in Fourier space. Then,
one notes that computing the average in Eq. (11) by neglecting
the PMF (13) in Eq. (12), one obtains the MF permittivity

function derived in Ref. 20:

ε̃MF (q) = 1 + κ2
s

q2

[
1 − sin(qa)

qa

]
+

∑
i

κ2
ip

q2
[1 − e−b2

piq
2
].

(16)

Hence, electrostatic correlation effects are incorporated in the
hydration PMF ψ ib(b). In the rest of the article, the solution of
the closure equations (10)–(13) will be considered in order to
investigate the solvation of polarizable ions in high dielectric
liquids.

III. RESULTS

In this section, we solve the closure equations (10)–
(13) in order to shed light on the electrostatic mechanism
behind the hydration effects observed in ab initio calcula-
tions for polarizable ions in high dielectric liquids such as
polar solvents4, 5 and ionic liquids.2, 8 We first investigate in
Sec. III A the hydration of a single polarizable ion in a po-
lar liquid such as water, and we characterize in Sec. III B a
similar cooperative solvation mechanism in ionic liquids ex-
clusively composed of polarizable ions.

A. Hydration of a single polarizable ion in water

This section is devoted to the hydration of a single po-
larizable ion in a strongly polar liquid such as water. In the
dilute ion regime, the PMF of Eq. (13) has to be evaluated at
the leading order in the ion concentration by neglecting the
ionic contributions corresponding, respectively, to the second
and third terms on the rhs of Eqs. (10) and (11). In order to il-
lustrate the hydration mechanism in an intuitive way, we first
consider a polarizable ion in a dilute solvent. By expanding
Eq. (13) at the order O((κsa)2), which is valid for the sol-
vent molecular size a = 1 Å in the solvent density regime
ρsb � 0.1M, one obtains for the PMF associated with the po-
larizability the close form expression:

ψip(b) = −|eici |
B

2a
(κsa)2

{
3ab − b2

3a2
θ (a − b)

+ 3ab − a2

3ab
θ (b − a)

}
. (17)

The hydration potential ψ ip(b) of Eq. (17) and the total
distortion energy hi(b) + ψ ip(b) are compared in Fig. 2 with
the distortion potential of an isolated ion hi(b). One sees that
the negative hydration potential ψ ip(b) results in a net reduc-
tion of the bare distortion energy hi(b). In other words, the
hydration of a polarizable ion favors the expansion of its elec-
tronic cloud. This peculiarity results from the fact that the
Born energy of a point charge is proportional to the square
of its valency, and the point charges on the polarizable ion are
of opposite sign and satisfy the inequality e2

i + c2
i > q2

i . As a
result, the solvation energy of two separate charges with va-
lencies ei and ci is lower than the Born energy of a single ion
of valency qi in Eq. (15), that is, ψ i(b → ∞) < ψ i(b = 0).
It follows from this remark that for a rodlike molecule with
the charges ei and ci of the same sign, hydration would in turn
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0 1 2
-0.4

0.0

0.4

0.8

h(b)+ ip(b)

ip(b)P
M

F
s 

(k
B
T

)

b/a

h(b)

FIG. 2. Drude oscillator potential Eq. (1) (blue curve), hydration energy of
Eq. (17) (red curve), and total distortion potential of a hydrated polarizable
ion (black curve). Model parameters are a = 1 Å, ρsb = 10−4M, bpi = 1 Å,
and |eici| = 2.

lead to a compression of the electronic cloud. Furthermore,
the black curve in Fig. 2 shows that the total distortion po-
tential hi(b) + ψ ip(b) exhibits a minimum. This means that
the polarizable molecule without average dipole in the gas
phase acquires a net dipole moment upon hydration. One fi-
nally notes that in Eq. (17), the hydration potential converges
for b � a to a constant value ψ ib = −|eici|(κsa)2
B/(2a).
Thus, for dilute solvents, the hydration modifies the electronic
cloud rigidity mainly at separation distances below the solvent
molecular size.

To extend the investigation of the hydration induced mod-
ification of the electronic cloud radius and rigidity beyond the
dilute solvent regime, we can map Eqs. (10) and (13) onto
an effective polarizable ion model. By adsorbing the effect of
the hydration potential ψ ib(b) into an effective Drude oscilla-
tor model

hi(b) = (b − bmi)2

4b2
vi

, (18)

with the average dipole moment (or electronic cloud radius)
bmi and induced ion polarizability bvi in the liquid environ-
ment, and evaluating the average in Eq. (11) with the distor-
tion potential (18) without the hydration PMF (13), we are left
with the effective permittivity function

ε̃eff (q) = 1 + κ2
s

q2

[
1 − sin(qa)

qa

]

+
∑

i

κ2
ip

q2

[
1 − sin(qbmi)

qbmi

e−b2
viq

2

]
. (19)

The comparison of the function (19) with Eq. (16) indicates
that at the MF level, the ion has no dipole moment (bmi = 0),
and its polarizability is equal to the gas phase value
(bvi = bpi). By expanding now Eqs. (11) and (19) in the
infrared (IR) regime up to the order O(q4) and identifying
the quadratic and quartic terms in the wavevector q, one
obtains the coupled equations 6b2

vi + b2
mi = 〈b2〉 and 60b4

vi

+ 20b2
mib

2
vi + b4

mi = 〈b4〉. The solution of these equations, re-
spectively, yields for the average dipole moment and induced

polarizability of the hydrated ion

b2
mi =

[
5

2
〈b2〉2 − 3

2
〈b4〉

]1/2

, (20)

b2
vi = b2

tot,i − b2
mi

6
, (21)

where we introduced the total ionic polarizability

b2
tot,i = 1

6
〈b2〉. (22)

We evaluated the dipole moment and polarizabilities in
Eqs. (20)–(22) with the numerical solution of Eqs. (10)–(13).
Figure 3(a) displays the variation of the ionic dipole moment
bmi with solvent density for the gas phase polarizability bpi

= 0.2 Å and various molecular valencies (solid curves). First
of all, it is seen that an increase of the solvent concentration
is accompanied with a monotonic rise of the dipole moment
from zero to bmi � 4 Å, until the latter saturates in the den-
sity regime ρsb > 10M where the ion becomes fully hydrated.
Then, one notices in Fig. 3(b) that the expansion of the av-
erage electronic cloud radius upon hydration results in turn
in an amplification of the total polarizability btot, i by several
factors. We note that the increase of the ionic polarizability
upon hydration in a high dielectric liquid has been previously
observed in ab initio calculations with PCM solvent.4, 5 This
peculiarity was also revealed in Ref. 7 for water molecules,
whose transfer from gas to liquid state was shown to be ac-
companied with a large amplification of their average dipole
moment. In Sec. III B, it will be shown that a similar hydra-
tion mechanism is present as well in ionic liquids.

Moreover, in Fig. 3(c), one sees that the effective intrin-
sic polarizability bvi exhibits in turn a monotonic decrease
upon hydration, until it reaches in the fully hydrated state al-
most half of its gas phase value bpi. This indicates that upon
hydration, the electronic cloud of the polarizable molecule in-
creases in size, but also reaches an enhanced rigidity. In other
words, the hydration opposes the electronic cloud deforma-
tion resulting from thermal fluctuations. Interestingly, com-
parison of Figs. 3(a) and 3(c) shows that the increase of the
electron cloud rigidity manifests itself at considerably lower
concentrations than its expansion. Furthermore, in Figs. 3(a)
and 3(b), one notices that a significant departure from the
MF behavior with bm = 0 and btot, i = bpi is observed above
the characteristic solvent concentration ρsb � 10−3M. This
shows that in Fig. 3(c), the hardening of the electronic cloud
takes place already in the weak electrostatic coupling regime.
Finally, in Figs. 3(a)–3(c), we note that although ions with
a higher valency are clearly better solvated, the ionic dipole
moment and polarizabilities exhibit weaker sensitivity to the
molecular charge than the hydration energy in Eq. (13) char-
acterized by a linear dependence on the charge |eici|.

In order to characterize the scaling of the hydrated po-
larizabilities with the gas phase polarizability bpi, we first
consider the electrostatic weak coupling regime of dilute sol-
vents. By evaluating in the dilute solvent regime the averages
in Eqs. (20) and (22) at the order O((κsa)2
B/a), one obtains
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FIG. 3. (a) Enhancement of the ionic dipole moment bmi introduced in Eq. (20), (b) the total polarizability btot, i defined in Eq. (22), and (c) the reduction of
the effective intrinsic polarizability bvi of Eq. (21) with increasing solvent density. The ion in the polar solvent has gas phase polarizability bpi = 0.20 Å, and
different ionic valencies from |eici| = 1 to 3 are considered. The results obtained from the numerical solution of the self-consistent equations (10)–(13) at a
fixed dipole moment p0 = 1 Å are displayed by solid curves for the solvent molecular size a = 1 Å and ion valencies |eici| = 1 to 3, and by dashed-dotted
black curves for a = 3 Å and divalent molecules with |eici| = 3. Dotted curves in (a) and (b) denote for divalent molecules the point dipole results of Eq. (35)
obtained in the limit a → 0 of Eqs. (10)–(13) at fixed dipole moment, and circles mark the asymptotic equations (36) and (37) derived in the same point dipole
limit for large solvent concentrations. Dashed horizontal curves correspond to the complete ionic hydration state of Eqs. (28)–(30). (d) Dielectric permittivity
profile around a point ion at r = 0 for the solvent density ρsb = 55M.

for the ionic dipole moment and the total polarizability

b4
mi

b4
pi

= 12|eici |√
π


B

a
(κsa)2 f

(
a

bpi

)
, (23)

btot,i

bpi

= 1 + |eici |
3
√

π


B

a
(κsa)2 g

(
a

bpi

)
, (24)

where we introduced the auxiliary functions

f (x) = x−1[1 − e−x2/4], (25)

g(x) = x−1 − x−2√π erf
(x

2

)
. (26)

In Fig. 4(a), we compare the prediction of these asymptotic
laws (circles) with the numerical solution of Eqs. (10)–(13)
(continuous curves) for a dilute liquid with density ρsb = 2.0
× 10−4M. One notices that the behavior of the polarizabili-
ties is characterized by two regimes separated by a peak lo-
cated at bpi � a/3. Indeed, the asymptotic limit of Eqs. (23)
and (24) indicates that the average electronic cloud radius and
total polarizability grow with the gas phase polarizability as
bmi ∼ b

5/4
pi and btot,i − bpi ∼ b2

pi for bpi � a/3 (left branch of

the curves in Fig. 4(a)), and bmi ∼ b
3/4
pi and btot, i − bpi ∼ cst

for bpi 
 a/3 (right branch of the curves). Thus, the transi-
tion between these two regimes results from a competition

between the solvent molecular size and the gas phase polariz-
ability.

In the opposite regime of concentrated solvents, the ex-
pansion of Eqs. (10) and (13) for κsa 
 1 and bp/a � 1 yields
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19
26

b
pi
(A)

b
mi

/b
pi

b
tot,i

/b
pi
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FIG. 4. Rescaled ionic dipole moment (dashed red curves) and total polar-
izability (solid black curves) against the gas phase polarizability bpi for the
solvent densities (a) ρsb = 2.0 × 10−4M and (b) ρsb = 55.0M, molecular
charge |eici| = 2, and solvent molecular size a = 1 Å. The curves are from
the full numerical calculation, the black and red circles, respectively, corre-
spond to the limiting laws (23) and (24), and the black and red squares are
from the expressions (28) and (30) for the fully hydrated state.
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for the hydration energy the asymptotic limit

ψip(b) � −|eici |
B

b

[
e−κsb + κsb − 1

]
. (27)

Neglecting the exponential term and expanding the total dis-
tortion potential Ui(b) = hi(b) + ψ ip(b) around the equi-
librium position, we are left with the gaussian distribution
Ui(b) = (b − bmi)

2 /
(
4b2

vi

)
, with the average electronic cloud

radius and effective intrinsic polarizability

bmi

bpi

=
(

2|eici |
B

bpi

)1/3

, (28)

b2
vi

b2
pi

= 1

3
. (29)

Substituting these relations into Eq. (21), the total ionic polar-
izability follows as

b2
tot,i

b2
pi

= 1

3

[
1 + 1

2

(
2|eici | 
B

bpi

)2/3
]

. (30)

Figures 3(a)–3(c) show that the closed form expressions in
Eqs. (28)–(30) accurately reproduce the saturation values of
the ionic dipole moment and the polarizabilities (dashed hor-
izontal curves). First of all, in Eq. (29), one notes that regard-
less of the ion charge, transferring the ion from the gaseous
phase into the liquid environment reduces its intrinsic polar-
izability by a factor of three. Moreover, Eqs. (28) and (30)
indicate that in the fully hydrated state, the ionic dipole mo-
ments and total polarizability grow as the cubic root of the ion
charge, which explains the weak dependence of the solvation
on the molecular charge strength in Figs. 3(a)–3(c).

We compare in Fig. 4(b) the limiting laws (28) and (30)
with the full numerical solution of the self-consistent equa-
tions for the solvent concentration ρsb = 55.0M. These equa-
tions indicate that in the range bpi = 0.1–1.0 Å, the dipole
moment and polarizability of the fully hydrated ion grow with
the gas phase polarizability according to the b

2/3
pi power law.

We also note that interestingly, the hydrated polarizabilities in
Eqs. (28)–(30) are independent of the solvent molecular size.
This peculiarity stems from the fact that the complete hydra-
tion takes place in the parameter regime κs 
 a−1, where the
part of the dielectric susceptibility function associated with
the rotation of solvent molecules (i.e., the third term on the
rhs of Eq. (11)) makes no contribution to the hydration en-
ergy ψ ib(b) in Eq. (13).

In our previous work on the MF theory of polar liquids
at charged interfaces, it was shown that the non-local charac-
ter of electrostatic interactions in the solvent results from the
finite size of solvent molecules.20 The effect of non-locality
on the hydration mechanism can be estimated by varying the
solvent molecular size a at fixed dipole moment p0 = Qa. To
this aim, we reexpress the dielectric permittivity function (11)
in the form

ε̃(q) = 1 + (κsp0)2

(Qqa)2

[
1 − sin(qa)

qa

]
, (31)

and calculate the total polarizabilities (20)–(22) with the
above permittivity function by varying a with the dipole mo-

ment fixed at p0 = 1 Å. In Figs. 3(a) and 3(b), the comparison
of the curves with a = 1 Å and 3 Å shows that the increase of
the solvent molecular size at fixed dipole moment lowers the
average electronic cloud radius and the total ionic polarizabil-
ity. Hence, non-locality weakens the hydration of the polariz-
able ion.

To explain this peculiarity, we note that in the dilute
ion regime, the inverse Fourier transform of the potential in
Eq. (10) is given by a generalized Coulomb law, v0(r)
= 
B/[rε(r)], with the local dielectric permittivity
function

ε(r) = π

2

/∫ ∞

0

dk

k

sin(kr/a)

ε̃(k)
, (32)

and the adimensional wavevector k = qa. The dielectric per-
mittivity profile of Eq. (32) is shown in Fig. 3(d). First of all,
it is seen that the close vicinity of the ion at r = 0 is char-
acterized by a dielectric void. Then, one notes that the di-
electric permittivity function in Eq. (32) depends solely on
the rescaled distance r/a. This means that an increase of the
solvent molecular size amplifies the dielectric void around a
polarizable molecule, and consequently reduces its hydration
energy in Eq. (13). We also note that the oscillatory shape of
the permittivity profile in Fig. 3(d) characterized by a high di-
electric increment peak was shown in Ref. 20 to result from
the formation of hydration layers around the charge source.
Indeed, despite the different solvent model used in our work,
this theoretical permittivity profile qualitatively agrees with
the oscillatory transverse permittivities obtained in molecular
dynamics simulations with explicit solvent (see, e.g., Fig. 2 of
Ref. 26 corresponding to the TIP4P/2005 water site model).

In the opposite point-dipole limit of solvent molecules
a → 0, the permittivity function (31) tends to the bulk per-
mittivity, ε̃(q) → εb = 1 + 4π
Bp2

0ρsb/3, and the hydration
PMF (13) takes the simple form27

ψip(b) = ψip(b → ∞) + 4�bpi

b
, (33)

with the adimensional parameter

� = (κsa)2

6 + (κsa)2

|eici |
B

4bpi

. (34)

Evaluating the integrals in Eq. (12) with the PMF (33), the
moments of the electronic cloud oscillations can be expressed
in terms of Meijer G-functions:28

〈b2n〉
b2n

pi

= (2�)2n
G30

03

(−n − 3
2 ,−n − 1, 0

∣∣�2
)

G30
03

(− 3
2 ,−1, 0

∣∣�2
) . (35)

The ionic dipole moment and total polarizability obtained
from Eq. (35) are shown in Figs. 3(a) and 3(b). One notices
that the point dipole result is very close to the case with finite
solvent molecular size a = 1 Å. Thus, for the model parame-
ters chosen in this work, non-locality plays a minor role in the
hydration process. It is interesting to note that in this param-
eter regime, the hydration of the polarizable ion can be solely
described by the single coupling parameter �.

By Taylor-expanding Eq. (35) in the regime � 
 1, one
obtains for the ionic dipole moment and total polarizability
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the following expressions:

bmi

bpi

= 2�1/3 + 2

3
�−1/3 + O(�−1), (36)

btot,i

bpi

=
√

2

3
�1/3 + 7

6
√

6
�−1/3 + O(�−1). (37)

In Figs. 3(a) and 3(b), it is shown that the asymptotic laws (36)
and (37) can accurately reproduce the increase of the ionic
dipole moment and total polarizability from ρsb = 10−3M to
complete hydration. These equations indicate that the fully
hydrated state of the polarizable ion is reached with increas-
ing solvent concentration through the gradual saturation of
the parameter � in Eq. (34). We consider next the counter-
part of this hydration process in ionic liquids without solvent
molecules.

B. Cooperative solvation in ionic liquids

Ionic liquids are promising salt solvents that gradually re-
place water in new generation energy storage devices such as
graphene based capacitors.29 The accurate knowledge of the
dielectric permittivity of ionic liquids is needed to predict the
charge storage ability of these devices. In ab initio calcula-
tions of ionic liquids composed of small ions with negligible
dipole moments,8 it was found that the contribution from elec-
tronic and orientational polarization of individual ions cannot
alone explain the large dielectric permittivities measured in
experiments.30 Based on this observation, it was also argued
that an additional polarization effect induced by the surround-
ing ions must be present to explain the high dielectric permit-
tivity values.

In order to shed light on this point, we consider in this
part the closure equations (10)–(13) for an ionic liquid free
of solvent molecules, and composed of two species of po-
larizable ions with the same bare polarizability bpi and bulk
density ρ ib. Furthermore, the point charges on the polarizable
molecules are e1, 2 = ±1 and c12 = ±n, which correspond to
the net molecular charges q1, 2 = ±(n − 1) (see Fig. 1(b)).
The dielectric permittivity of the medium at large separation
distances from a central ion is obtained from the IR limit of
Eq. (11), εb = ε̃(q → 0), and it is given by

εb = 1 +
∑

i

κ2
ipb2

tot,i , (38)

where the total ionic polarizability defined in Eq. (22) has
to be computed from the numerical solution of Eqs. (10)–
(13). Indeed, for an ionic liquid where the hydration of the
polarizable ion affects the polarization of the surrounding
medium in a self-consistent way, the solution of these equa-
tions is more tricky. Our numerical scheme consisted in solv-
ing these equations by iteration on a discretized Fourier lat-
tice. Namely, at the first iterative level, the MF permittivity
of Eq. (16) was used as the input function in the potential
Eq. (10) in order to evaluate the hydration PMF in Eq. (13),
and the latter was injected at the next step into Eq. (12) to ob-
tain the updated dielectric permittivity function from Eq. (11).
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FIG. 5. Effective dielectric permittivity of ionic liquids with bare polarizabil-
ity bpi = 0.2 Å and valency n. Solid curves are from the numerical solution of
Eqs. (10)–(13), dotted curves denote the full solvation limit in Eq. (46), and
square symbols are from the approximative scheme of Eqs. (44) and (45).
The black dashed curve is the MF dielectric permittivity εb = 1 + ξp for
n = 3. Inset: Total ionic polarizabilities (solid curves) and their saturation
values from Eq. (30) (dashed horizontal curves).

This procedure was continued until self-consistency was
achieved.

We illustrate in Fig. 5 the ionic polarizability (inset) and
the dielectric permittivity of the liquid (main plot) obtained
from the numerical solution of Eqs. (10)–(13) (solid curves).
First of all, it is seen that the increase of the ion density is
accompanied with a strong amplification of the total ion po-
larizability, which in turn results in a rise of the dielectric per-
mittivity of the medium. Then, in the inset of Fig. 5, we note
that unlike the case of a polarizable ion in a polar solvent (see
Fig. 3(a)), the ionic polarizability and the full hydration
density exhibit a pronounced dependence on the molecular
charge.

These effects can be shown to be driven by the self-
consistent solvation of polarizable ions by their own field. To
this aim, we introduce, respectively, the charge and dipolar
screening parameters

κ2
c = 4π
B

∑
i

ρibq
2
i = 8π
B(n − 1)2ρib, (39)

κ2
p =

∑
i

κ2
ip = 16π
Bnρib, (40)

and the corresponding coupling parameters ξ c = (κcbpi)2 and
ξ p = (κpbpi)2. In the dilute liquid regime, by expanding the
closure relations (10) and (13) up to the order O(ξ c) and
O(ξ p), one obtains for the solvation PMF

ψip(b) = −|eici |
B

2bpi

[
ξc

b

bpi

+ ξpF

(
b

bpi

)]
, (41)

where we introduced the auxiliary function

F (x) = 1 + √
π

x

4
− 1

2
e−x2/4 − √

π
x2 + 2

4x
erf

(x

2

)
. (42)

One sees in Eq. (41) that the solvation energy is composed
of a contribution from the charge screening (the first term on
the rhs), and a part resulting from the polarizability induced
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FIG. 6. Drude oscillator potential Eq. (1) (blue curve), the first (charge
screening) and second term (dielectric screening) of the ionic solvation en-
ergy in Eq. (41) denoted, respectively, by the red dotted and dashed curves,
and the total distortion potential (black curve) for an ionic liquid composed
of polarizable ions only, with ionic density per species ρib = 5 × 10−5M, gas
phase polarizability bpi = 1 Å, and molecular charge |eici| = 2.

dielectric screening of the ion by the surrounding ionic liquid
(the second term on the rhs). We display in Fig. 6 the PMF of
Eq. (41) for a monovalent ionic solution (n = 2) with concen-
tration ρ ib = 5 × 10−5M. It is seen that in this dilute liquid
regime, the charge and dielectric screening effects indepen-
dently lower the bare distortion energy hi(b) with an equal
weight, thus favoring the expansion of the electronic cloud.
Then, we note that as in the case of a polarizable ion in a
polar solvent considered in Sec. III A, the total distortion po-
tential exhibits a minimum. In other words, in the liquid envi-
ronment, the polarizable ion acquires a finite dipole moment.
We emphasize that this effect has been previously observed in
ab initio calculations of ionic liquids composed of charges
with fluctuating geometry.8

In order to determine the relative weight of the dielec-
tric and charge screening mechanisms in the renormalization
of the background dielectric permittivity beyond the dilute
regime, we will introduce an approximative solution scheme
of Eqs. (10)–(13). To this aim, we first redefine the hydra-
tion PMF of Eq. (13) by subtracting the constant energy in
the dissociated state, ϕip(b) = ψ ip(b) − ψ ip(b → ∞). Intro-
ducing the dimensionless wavevector k = bpiq and separation
distance x = b/bpi, this PMF can be expressed as

ϕip(x) = |eici |
B

bpi

2

π

∫ ∞

0
dk

ξp

〈
1 − sin(kx ′)

kx ′

〉
sin(kx)

kx

k2 + ξc + ξp

〈
1 − sin(kx ′)

kx ′

〉 ,
(43)

where the statistical average of the functions inside the brack-
ets is still evaluated according to Eq. (12) with the adimen-
sional electronic cloud radius x′ = b′/bpi as the integration
variable. We now assume that the hydration PMF affects the
electron cloud mainly at small separations x < 1. This implies
that in Eq. (43), only small wavevectors k < 1 make a signif-
icant contribution to the integral. Based on this assumption,
by expanding the sinusoidal functions inside the bracket of
Eq. (43) at the order O(k2), the integral can be evaluated
exactly. Within this approximation, the complicated integral
equations (10)–(13) for the dielectric permittivity are reduced

to a simpler non-linear equation,

εb = 1 + ξp

6

∫ ∞
0 dxx4e−x2/4−ϕip(x)∫ ∞
0 dxx2e−x2/4−ϕip(x)

, (44)

ϕip(x) = εb − e−x
√

ξc/εb

εb

|eici |
B

bpix
, (45)

where we made use of Eqs. (12) and (38).
In Fig. 5, it is shown that the numerical solution of

Eq. (44) can accurately reproduce the dielectric permittivity
obtained from the closure equations (10)–(13) over the whole
density range. We now note that in the solvation PMF of
Eq. (45), the contribution from the dielectric and charge
screenings correspond, respectively, to the first constant term
εb and the second exponential function in the numerator. This
equation indicates that while increasing the ion concentration
from the dilute regime, the exponential term is gradually dom-
inated by the constant term in the numerator and becomes
negligible for εb 
 1. Thus, charge screening makes a sig-
nificant contribution to the dielectric permittivity exclusively
at low ion concentrations.

To ascertain the latter point, we now consider the strict
limit of large liquid densities with κpbpi 
 1. By evaluat-
ing the PMF of Eq. (13) in this limit, we found that the total
ionic polarizability is still given by the expression (30) (see
the horizontal lines in the inset of Fig. 5). Substituting this re-
lation into Eq. (38), one obtains the dielectric permittivity of
the ionic liquid at the fully solvated state:

εb = 1 + ξp

3

[
1 + 1

2

(
2|eici | 
B

bpi

)2/3
]

. (46)

In the main plot of Fig. 5, it is shown that this closed form ex-
pression is a very good approximation for the dielectric per-
mittivity of the ionic liquid beyond the dilute regime. One
can note that in Eq. (46), the dependence of the permittivity
on the charge screening parameter ξ c has disappeared. This
shows that close to the full solvation state, the collective sol-
vation mechanism is solely driven by the dielectric screening
induced by polarizable ions.

We also compare in Fig. 5 the MF level bulk dielectric
permittivity εb = 1 + ξ p for the ion valency n = 3 with the
self-consistent result. The MF theory that neglects the collec-
tive ionic solvation is shown to strongly underestimate the di-
electric permittivity of the ionic liquid. This observation is in
line with Ref. 2 where the rotational polarizability associated
with the gas phase dipole moment of ions was shown to be
insufficient to explain the high dielectric permittivity of ionic
liquids. This suggests that the cooperative hydration mecha-
nism scrutinized in this part brings the main contribution to
the dielectric permittivities of ionic liquids. Hence, correla-
tion effects cannot be neglected in polarizable liquids.

IV. CONCLUSION

We have introduced in this article a classical electrostatic
theory of polarizable ions in high dielectric liquids. Within
this theoretical framework, we have scrutinized the physical
mechanism behind the ionic solvation properties observed in
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ab initio calculations of polar solvents4, 5 and ionic liquids.2, 8

In Sec. II, we presented the electrostatic formulation of polar-
izable ions immersed in polar solvents composed of dipolar
molecules with finite size. Then, we derived from the Dyson
equation the electrostatic self-consistent relations accounting
for the electrostatic correlations between the particles in the
liquid.

Section III A was devoted to the hydration of a single po-
larizable in a polar solvent such as water. It was shown that
the electrostatic energy release experienced by the polariz-
able ion upon hydration results in the expansion of its elec-
tronic cloud. As a result, the ion carrying zero dipole moment
in the gas phase acquires in the liquid environment an aver-
age dipole moment. However, the hydration also amplifies the
rigidity of the electronic cloud, thereby opposing its deforma-
tion induced by thermal fluctuations. In qualitative agreement
with quantum molecular calculations with PCM solvent,4, 5

the overall effect was shown to be an enhancement of the gas
phase polarizability upon hydration.

In Sec. III B, we have investigated a cooperative solva-
tion mechanism in ionic liquids free of solvent molecules.
We have found that similar to the case of a polarizable ion
in the polar solvent and in agreement with ab initio calcu-
lations of ionic liquids,8 each polarizable ion acquires in the
liquid a finite dipole moment and an increased polarizabil-
ity. This effect resulting from the polarization field generated
by the surrounding ions self-consistently amplifies the dielec-
tric permittivity of the medium. We note that this solvation
induced amplification of the dielectric permittivity is substan-
tial even in the weak electrostatic coupling regime of dilute
liquids. This suggests that the self-consistent solvation mech-
anism brings the dominant contribution to the dielectric per-
mittivity of ionic liquids composed of small ions with negli-
gible permanent dipole moment in the gas phase.2

We have introduced the first microscopic theory of ionic
hydration in explicit solvent, and we emphasize that the model
as well as the theoretical scheme need refinements. First of all,
it should be noted that our approach does not account for the
hydrogen bond formation in water solvent, which is believed
to amplify the dielectric permittivity of water.31 This compli-
cation expected to become significant beyond the dilute liq-
uid regime should be addressed in a future work by extending
our approach beyond the gaussian field approximation, i.e.,
by opting for a more sophisticated closure to solve Eq. (8).
An additional complication for solvents at physiological con-
centrations comes from the importance of excluded volume
effects associated with the finite size of the particles in the
liquid. The first step to generalize the model in this direction
consists in including simple hard-core or repulsive Yukawa
interactions between the particles as in Refs. 32–35. Then,
our theoretical scheme should be extended to a second-order
cumulant expansion of the grand potential around the refer-
ence Hamiltonian Eq. (9). This generalization would allow to
determine how much our results are quantitatively modified
beyond the dilute liquid regime. Indeed, we expect hard-core
interactions between solvent molecules and ions to reduce the
polarizability increase induced by the electrostatic hydration
mechanism. In this sense, the results presented in this article
beyond the dilute solvent regime should be considered as an

upper boundary for the actual ionic cloud expansion effect. A
different way to consider the modification of polarizabilities
upon hydration consists in modeling the solvent effects via an
additional Yukawa potential as in Ref. 36. This alternative for-
mulation would allow to identify model-dependent peculiari-
ties of the solvation mechanism presented in this work. Fur-
thermore, Monte Carlo simulations of polarizable ions mod-
eled as Drude oscillators in a bulk dipolar solvent would be
useful to determine the validity regime of the theoretical pre-
dictions. However, numerical simulations aimed at evaluating
the gas phase polarizabilities via Eqs. (20)–(22) should prop-
erly consider the subtraction of ionic self-energies in the gas
phase, as was done in our theoretical approach.

We finally emphasize that the consideration of the in-
duced polarizability with a classical Drude potential is an-
other limitation of the present model. Actually, it should be
noted that the ionic dipole moments in the solvated state pro-
vided by our theory are larger than the values observed in
ab initio calculations.4, 5, 8 For example, the Pauli exclusion
effect neglected by the classical approach is expected to par-
tially suppress the hydration induced expansion of the elec-
tron cloud. However, refinements at the quantum level are of
course beyond the scope and the main message of the present
work. Indeed, the ability of the theory to qualitatively cap-
ture ionic hydration effects observed in quantum molecular
calculations for both polar solvents and ionic liquids on the
one hand and the presence of these effects in the dilute liquid
regime where the complications discussed so far are not ex-
pected on the other hand confirm the physical consistency of
the model with real dielectric liquids.
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