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Among cells present in the tumor microenvironment, activated fibroblasts termed 

cancer-associated fibroblasts (CAFs), play a critical role in the complex process of 

tumor-stroma interaction. CAFs, one of the prominent stromal cell populations in most 

types of human carcinomas, have been involved in tumor growth, angiogenesis, cancer 

stemness, extracellular matrix remodeling, tissue invasion, metastasis, and even chemo-

resistance. During the past decade, these activated tumor-associated fibroblasts have 

also been involved in the modulation of the anti-tumor immune response on various 

levels. In this review, we describe our current understanding of how CAFs accomplish 

this task as well as their potential therapeutic implications.
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INTRODUCTION

It is now well admitted that tumor progression and metastasis formation do not only depend on can-
cer cell genetic and epigenetic defects but are also controlled by the tumor microenvironment (TME) 
(1, 2). �e TME or stroma is composed of cells from endothelial, mesenchymal, and hematopoietic 
origins embedded in a complex extracellular matrix (ECM), which enter into a dynamic crosstalk 
with tumor cells, suitable for tumor growth. Consequently, di�erent elements such as angiogenesis, 
hypoxia, ECM remodeling, interstitial pressure, metabolism changes have received recent attention 
as key determinants of the TME modifying cancer cell behavior and disease progression, with poten-
tial clinical applications (2, 3). Moreover, the TME is also clearly involved in shaping the cellular 
fate of tumor-in�ltrating lymphocytes and the e�cacy of the anti-tumor immune response. Indeed, 
during tumor progression, tumor cells proliferate under adverse host conditions and use several 
survival strategies to block the action of key regulators/e�ectors of the immune response and to 
circumvent anti-tumor defenses (4–6). Besides the several known classical strategies used by tumor 
cells to escape immune surveillance (such as down regulation of antigen expression, resistance to 
cell-mediated lysis or expression/secretion of immunosuppressive molecules), it should be noted 
that tumor cell evasion from immunosurveillance is also under the control of the TME complexity 
(7–9). �e ability of tumors to orchestrate an immunosuppressive microenvironment is dependent 
on several mechanisms ultimately leading to the inhibition of various immune e�ector cells [such as 
cytotoxic T cell (CTL) or natural killer (NK) cells] or to the recruitment and stimulation in the TME 
of immunosuppressive cells [such as regulatory T cells (Tregs), type II macrophages or myeloid-
derived suppressor cells (MDSCs)]. In particular, among the stromal cells, activated �broblasts that 
share similarities with �broblasts stimulated by acute or chronic in�ammatory signals, activated 
during a wound healing process and observed during tissue �brosis, also known as myo�broblasts, 
play a critical role in the complex process of tumor cell-stroma interaction (10–13) and have emerged 
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as important regulators of the anti-tumor immune response 
(14–16). Here, we will discuss the di�erent mechanisms involved 
in the immuno-suppressive capabilities of activated �broblasts 
in the TME, as well as their potential application for therapeutic 
intervention, especially in the �eld of cancer immunotherapy.

ORIGIN OF ACTIVATED FIBROBLASTS IN 

THE TME AND ROLE IN CANCER 

PROGRESSION

Fibroblasts are spindle-shaped, non epithelial (cytokeratin−, 
E-cadherin−), non endothelial (CD31−) and non-immune 
(CD45−) cells of a mesenchymal lineage origin (vimentin+). 
In normal tissue, �broblasts are usually considered as resting/
quiescent cells with negligible metabolic and transcriptional 
activities (11), but with the ability to respond to growth factors 
to become activated. During this activation process, �broblasts 
exhibit contractile activity, exert physical forces to modify tissue 
architecture, acquire proliferation and migration properties and 
become transcriptionally active leading to the secretion of several 
factors (cytokines, chemokines, etc.) and ECM components (17–
19). �e ability of resting �broblasts to become activated was �rst 
observed in the context of wound healing (20) and subsequently 
in pathologic conditions such as acute or chronic in�ammation 
or tissue �brosis (a chronic wound healing response) (17, 21). 
�is chronic tissue repair response also occurs in the context of 
cancer, considered as a “wound that never heals” (22). Indeed, 
emergence and/or accumulation of cancer cells in a given tissue 
represent a tissue injury, imitating a chronic wound healing 
response toward the tumor cells, also known as tumor �brosis or 
desmoplastic reaction (23). Consequently, major players in tumor 
�brotic microenvironment include activated �broblasts, termed 
cancer-associated �broblasts (CAFs), which represent one of the 
most abundant stromal cell types of several carcinomas including 
breast, prostate, pancreatic, esophageal, and colon cancers while 
CAFs are less abundant, but still present, in other neoplasias 
including ovarian, melanoma, or renal tumors (24). For example, 
in pancreatic cancer, 60–70% of the tumor tissue is composed of a 
desmoplastic stroma characterized by extensive collagen deposi-
tion and activated CAFs (25).

Several studies have clearly demonstrated that cancer cells 
can recruit and activate tissue resident �broblasts in the stroma 
(26, 27). �is phenomenon is mainly dependent on growth fac-
tors released by the cancer cells and also by in�ltrating immune 
cells. In particular, transforming growth factor-β (TGF-β), 
platelet-derived growth factor (PDGF), epidermal growth 
factor (EGF), and �broblast growth factor (FGF) secreted by 
tumor cells are key determinants of �broblast activation and 
proliferation within the TME (28–31). Moreover, the secretion 
of interleukin (IL)-1β (IL-1β) by immune cells in early neoplasia 
has emerged as an initiator of nuclear factor-κB signaling in 
�broblasts involved in their education and production of pro-
tumorogenic and pro-in�ammatory factors (32). Furthermore, 
emerging data suggest that the irreversible activation of CAFs 
might be driven by epigenetic alterations (33–36). Nevertheless, 
CAFs can also originate from other cell populations than 

resident �broblasts through di�erent mechanisms and depend-
ing on the tissue analyzed. Several other local sources of CAFs 
have been thus suggested. In breast, kidney, lung, and liver 
carcinomas, a portion of CAFs have been shown to potentially 
di�erentiate from epithelial cells via an epithelial-to-mesen-
chymal transition (EMT) (37, 38). A related process, termed 
endothelial-to-mesenchymal transition has been involved in 
the trans-di�erentiation of endothelial cells to a cell population 
with a CAF-like phenotype (39). Other cells linked to blood 
vessels, named pericytes, can trans-di�erentiate into CAFs in 
a PDGF-dependent manner (40). Moreover, in breast cancer, 
adipocytes were shown to di�erentiate in CAFs (41, 42). Finally, 
in liver and pancreas tumors, stellate cells, normally involved in 
organ regeneration, are involved in �brosis preceding the occur-
rence of tumors, making them a possible source of CAFs (43, 44). 
Beyond these local sources, more distant one can be involved 
in CAFs recruitment/di�erentiation in the TME. In particular, 
mesenchymal stem cells, normally residing in the bone marrow, 
can be attracted in the TME to become an important source of 
CAFs (42, 45–48). Similarly, �brocytes, a circulating mesenchy-
mal cell population arising from monocytes precursors which 
are recruited to sites of chronic in�ammation, can di�erentiate 
into CAFs a�er their recruitment into the TME (46, 49).

�ese various sources represent an important determinant that 
contributes to the heterogeneity of CAFs (Figure 1) and makes 
them di�cult to distinguish from other cell types present in TME. 
In this context, morphology and spatial distribution are key deter-
minants in order to identify �broblasts in a resting or activated 
state (11). Di�erent markers, which are lower or not expressed by 
their normal counterparts, can also be used to identify activated 
�broblasts such as α-smooth muscle actin (α-SMA), �broblast-
speci�c protein-1 (FSP-1; also called S100A4), �broblast-activa-
tion protein (FAP), PDGF receptors (PDGFR) α or β, neuron-glial 
antigen-2 (NG2), periostin (POSTN), podoplanin (PDPN), 
tenascin-C (TNC), desmin, CD90/THY1, or discoidin domain-
containing receptor 2 (DDR2) (24, 50–57). However, it is crucial to 
note that none of these markers is speci�c for normal or activated 
�broblasts, and that many activated �broblasts may not express all 
of these markers at the same time, most likely re�ecting the high 
degree of heterogeneity of CAFs in the TME, as well as possible dif-
ferent and opposite functions in the context of speci�c TMEs (24).  
It is indeed conceivable that, depending of the context, quiescent 
�broblasts or the other cell types mentioned above might be 
capable of di�erentiating into distinct subsets of functional CAFs, 
with possible diverse functions, either pro- or anti-tumorigenic, 
as observed for type I and type II macrophages (11, 58). In other 
words, even if a large body of literature currently supports the 
tumor-promoting e�ect of CAFs, some evidence also suggests 
that CAFs might also restrain tumor growth. For example, the 
depletion of α-SMA+ CAFs in pancreatic cancer accelerates tumor 
growth, induces immunosuppression by increasing the number of 
CD4+Foxp3+ Tregs in tumors and reduces survival (59). Similarly, 
the deletion of sonic hedgehog, a soluble ligand overexpressed 
by neoplastic cells in pancreatic ductal adenocarcinoma which 
drives the formation of a �broblast-rich desmoplastic stroma, 
increases the aggressiveness of tumors (60). Nevertheless, for 
simplicity, we will focus the following part of this review on the 
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FIGURE 1 | Origins of cancer-associated fibroblasts in the tumor microenvironment (TME) and role in cancer progression. CAFs can originate from diverse cell 

populations through different mechanisms and depending on the tissue analyzed. Local sources of CAFs include activated tissue resident fibroblasts, trans-

differentiated epithelial or endothelial cells resulting from an epithelial-to-mesenchymal transition (EMT) or an endothelial-to-mesenchymal transition (EndMT), 

trans-differentiated pericytes, adipocytes or stellate cells. Beyond those local sources, more distant one can be involved in CAFs recruitment/differentiation in the 

TME, including mesenchymal stem cells, normally residing in the bone marrow, and fibrocytes. The acquisition of a CAF phenotype is associated with the potential 

expression of a variety of CAF-related markers as indicated. In the TME, CAFs can affect several processes leading to tumor growth, as indicated, including 

immuno-suppression.
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tumor-promoting and immunosuppressive capabilities of CAFs, 
unless otherwise stated.

In the tumor stroma, CAFs interact with tumor cells and 
other cell types and as a sign of their activation secrete several 
factors such as ECM proteins (e.g., collagens), ECM-remodeling 
enzymes such matrix metallo-proteinases (MMPs), proteoglycans  
(e.g., laminin, �bronectin), chemokines [e.g., C-X-C motif 
chemokine ligand 2 (CXCL2), CXCL12/SDF1, chemokine ligand 
2 (CCL2/MCP-1), and CCL5/Rantes], vascularization promoting 
factors [e.g., vascular endothelial growth factor (VEGF)] and other 
factors/proteins which a�ect tumor cells proliferation, invasive-
ness, survival, cancer cell metabolism, and stemness [e.g., TGF-β, 

EGF, FGF, hepatocyte growth factor (HGF)]. Consequently, 
CAFs have been involved in tumor growth, cancer cell survival, 
angiogenesis, maintenance of cancer stemness, ECM remodeling, 
tissue invasion, metastasis, metabolic reprograming of the TME 
and even chemoresistance [see Ref. (10–13, 24, 61) for review] 
(Figure  1). During the past few years, these activated tumor-
associated �broblasts have also been involved in the modulation 
of the anti-tumor immune response by the secretion of immu-
nosuppressive and pro-in�ammatory factors, chemokines, and 
chemical mediators in the TME. As such, CAFs can potentially 
a�ect both innate and adaptive antitumor immune response and 
consequently tumor progression.
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FIGURE 2 | Influence of cancer-associated fibroblasts on the regulation and function of immune cells involved in the antitumor immune response. Due to their 

secretion of the indicated cytokines, chemokines, or other soluble factors, cancer-associated fibroblasts (CAFs) shape the tumor microenvironment and influence 

both the innate and adaptive anti-tumor immune response. CAFs favor the recruitment of innate immune cells, such as tumor-associated macrophages (TAM) or 

potentially tumor-associated neutrophils (TAN), and their acquisition of an immunosuppressive phenotype (M2 and N2, respectively), affect cytotoxic function and 

cytokine production of natural killer (NK) cells, as well as the susceptibility of tumor cells to NK-mediated lysis, and activate mast cells with a potential 

immunosuppressive phenotype. CAFs favor the recruitment and differentiation of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) and 

interfere with the maturation and function or dendritic cells. CAFs have also the potential ability to influence CD4+ Helper T (TH) lymphocytes, favoring tumor-

promoting TH2 and TH17 responses, and reduce the activation, functions, and survival of CD8+ cytotoxic T cells.
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CAF-MEDIATED REGULATION OF THE 

INNATE ANTI-TUMOR IMMUNE 

RESPONSE

As mentioned above, several studies including gene signature 
or mass spectrometry analysis (62–66) have shown that CAFs 
exhibit a particular immunomodulatory secretome including, 
but not limited to, CXCL1, CXCL2, CXCL5, CXCL6/GCP-2, 

CXCL8, CXCL9, CXCL10, CXCL12/SDF1, CCL2/MCP-1, CCL3, 
CCL5/Rantes, CCL7, CCL20, CCL26, IL-1β, IL-6, IL-10, VEGF, 
TGF-β, indoleamine-2,3-dioxygenase (IDO), prostaglandin (PG) 
E2 (PGE2), tumor necrosis factor (TNF) or nitric oxide (NO). 
�is secretion pro�le is thought to be a major player in shaping 
the TME, with multiple roles in tumor progression, but beyond its 
role on tumor cells, this CAFs-related secretome can potentially 
regulate the innate immune response in several ways (Figure 2).
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In particular, CAFs are important players a�ecting another 
major stromal component within tumors, known as tumor-
associated macrophages (TAMs) (67). Macrophages are mainly 
classi�ed into two distinct types: “classically” activated (M1 or 
type I) and “alternatively” activated (M2 or type II) macrophages. 
M1 macrophages produce high amounts of pro-in�ammatory 
cytokines and reactive oxygen species and have the capacity 
to orchestrate a TH1 anti-tumor immune response. On the 
opposite, M2 macrophages play a signi�cant role in tumor 
progression, promote tissue repair and angiogenesis, and are 
characterized by the production of immuno-suppressive factors 
such as IL10, Arginase, IDO and TGF-β, which inhibit cytotoxic 
CD8+ T  cell-mediated immune response in the TME (67). At 
least in some settings, CAFs actively promote the recruitment 
of monocytes to the TME and their di�erentiation toward M2 
macrophages (68). In particular, the secretion of CXCL12/SDF1, 
macrophage colony-stimulating factor (M-CSF also known as 
CSF-1), IL-6, and CCL2/MCP-1 by CAFs actively promotes the 
recruitment of monocytes to the TME and their di�erentiation 
into a M2 immunosuppressive phenotype (69–74). It was also 
recently shown that Chitinase-3-like-1 (Chi3L1; YKL-40 in 
humans), a secreted glycoprotein involved in several diseases 
including chronic in�ammatory conditions, �brotic disorders 
and various types of cancer, is highly expressed in CAFs isolated 
from mammary tumors and pulmonary metastases in mice, and 
in the stromal compartment of human breast carcinomas, and 
enhances macrophage migration in the TME and their expres-
sion of an M2-like gene signature (75). Finally, the expression 
of both CAF (α-SMA+, FSP1+, and FAP+) and M2 macrophages 
(CD163+ and DC-SIGN+) markers is associated with the poor 
clinical outcome of colorectal cancer and oral squamous cell 
carcinoma patients (76, 77), suggesting an association between 
these two cell types.

Cancer-associated �broblasts are also potentially involved in 
the recruitment of neutrophils into the TME, notably through 
the secretion of CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, and 
CCL2. Tumor-associated neutrophils (TANs) have been linked to 
a poorer prognosis for patients with renal and pancreatic cancer; 
gastric, hepatocellular, colorectal, head and neck carcinomas, 
and melanoma (78). TAN-derived factors promote tumor cell 
proliferation, migration, and invasion, and also induce tumor 
vascularization by the production of pro-angiogenic factors. 
Moreover, the production of Arginase 1 (Arg 1) and NO by TANs 
in response to CXCL8 signaling has been linked to the inhibition 
of T  cell functions (79, 80). Nevertheless, recent studies have 
suggested that TANs can be polarized to an N1 anti-tumoral or 
N2 pro-tumoral phenotype in the TME, as observed for TAMs. 
N1 neutrophils are induced upon TGF-β blockade and express 
immuno-activating cytokines and chemokines, low levels of 
Arg 1, and are able to kill cancer cells. On the opposite, N2 neu-
trophils are characterized by expression of CXCR4, VEGF, and 
MMP9 and are induced following exposure to high TGF-β levels 
(81) and inhibit CD8+ T cell function by several mechanisms (82). 
At this point, it is thus uncertain whether CAFs can recruit TANs 
and drive them to an N2 phenotype in the TME, and whether this 
recruitment/polarization of TANs participates to the immuno-
suppressive activity of CAFs.

Another cell population has also been implicated in the com-
plex CAFs-TME interaction. Mast cells, derived from CD34+/
CD117+ pluripotent hematopoietic stem cells, are tissue resident 
sentinel cells that, upon activation, release a wide spectrum of 
chemokines and cytokines (83). Interestingly, it was demon-
strated in pancreatic tumors that a complex interaction between 
mast cells and stellate cells (o�en described as CAF precursors) 
is able to activate mast cells, which in turn enhance CAF 
proliferation by their secretion of IL-13 and tryptase, favoring 
tumor growth (84). Of note, activated mast cells could not only 
increase tumor progression but might also alter the anti-tumor 
immune response. For example the release of free adenosine 
(85) or IL-13 by mast cells might, respectively, inhibit T  cell 
function and promote M2 polarization (83, 86, 87). Mast cells 
can also promote the generation of highly suppressive MDSCs 
and Tregs in the TME (88, 89). However, whether CAF-mast 
cell interactions are linked to the immuno-suppressive capabili-
ties of CAFs is also not clearly established and requires further 
investigations.

Finally, CAFs can also affect the activity of major innate 
effector cells, NK cells, which participate to the early immune 
response through their cytotoxic activity and contribute to 
the adaptive immune response by the secretion of cytokines 
and by the promotion of antigen-presenting cell maturation. 
As previously mentioned, CAFs are thought to be an impor-
tant source of TGF-β in the TME (90, 91). TGF-β has been 
involved in the decrease of NK  cell activation and cytotoxic 
activity (92). In this regard, TGF-β-induced miR-183 inhibits 
DAP12 transcription (a key accessory protein for relaying 
signals by NK cell receptors) and reduces the expression of the 
NK-activating receptor NKp30 and NK Group 2D (NKG2D) 
(93–95), resulting in a weak NK cell cytotoxic activity in the 
TME. TGF-β also reduces IFN-γ secretion by NK cells, which 
is important for stimulating effector CD4+ TH1 cells that are 
required for clearing tumors, notably by repressing T-bet expres-
sion through Smad 3 (96–98). Moreover, studies involving 
melanoma, hepatocellular, and colorectal carcinoma-derived 
fibroblasts have shown that CAFs can decrease the expression 
of several NK activating receptors (including NKp30, NKp44, 
and NKG2D) on the NK cell surface, as well as perforin and 
granzyme B expression, through the secretion of PGE2 and/
or IDO (99–101) leading to an attenuated cytotoxic activity 
of NK cells against their tumor target cells. We also recently 
demonstrated that CAFs isolated from melanoma decrease the 
susceptibility of melanoma tumor cells to NK  cell-mediated 
lysis through the secretion of active MMPs which cleave two 
ligands of the NK-activating receptor NKG2D, MHC class 
I-related chain (MIC)-A and MIC-B, at the surface of the 
tumor cells and consequently decrease the NKG2D-dependent 
cytotoxic activity of NK cells against melanoma tumor cells, as 
well as their secretion of IFN-γ (102).

In conclusion, due to their secretion of cytokines, chemokines, 
or other soluble factors, CAFs shape the TME and favor the 
recruitment of innate immune cells, such as monocytes or neu-
trophils, and their acquisition of an immunosuppressive pheno-
type, but also a�ect cytotoxic function and cytokine production 
of NK cells.
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CAF-MEDIATED REGULATION OF THE 

ADAPTIVE ANTI-TUMOR IMMUNE 

RESPONSE

Based on the immunomodulatory secretome mentioned above, 
CAFs might also interfere with the adaptive anti-tumor immune 
response at di�erent levels, leading to a disruption of T cell func-
tion in the TME (Figure 2).

In the TME, dendritic cells (DCs), the most important 
antigen-presenting cell population, have a pivotal role for the 
activation of T  cell-mediated anti-tumor immunity (103). DC 
biology can potentially be a�ected by the CAF secretome in 
several ways. In particular, CAF-derived TGF-β can a�ect DC 
function (96). In response to TGF-β, DCs downregulate the 
expression of MHC class II molecules and of the co-stimulatory 
molecules CD40, CD80, and CD86, which are necessary for e�-
cient antigen presentation, and of TNF-α, IFN-γ, and IL-12, that 
promote T cell recruitment and survival. �e resulting immature 
or tolerogenic DCs alter CD8+ cytotoxic T cell activation and the 
TH1 polarization of CD4+ helper T (TH) cell populations and also 
promote the formation of CD4+FoxP3+ Treg cells that potently 
inhibit the function of other T  cells (104, 105). CAFs can also 
secrete IL-6 and could a�ect DC functions through this way. 
Indeed, IL-6-mediated activation of the STAT3 pathway has been 
involved in the alteration of the DC maturation, disabling T cell 
activation and inducing T  cell anergy and immune tolerance 
(106–108). Fibroblast-produced IL-6 was also reported to favor 
the emergence of TAMs from monocytes at the expense of DCs 
(69). Expression of tryptophan 2,3-dioxygenase (TDO2) by CAFs 
isolated from lung cancer also promotes tryptophan degradation 
in kynurenines (Kyn) that inhibits DCs di�erentiation and func-
tions (109). Finally, CAF-derived VEGF, in addition to its pro-
angiogenic e�ect, has multiple immunoregulatory roles (110). 
In particular, VEGF inhibits DC generation and maturation 
(111–114), notably by reducing their MHC class II expression 
and their ability to take up antigens.

�e role of CAFs in regulating T  cell activity and function 
in the TME has also been suggested by several studies. As 
mentioned earlier, CAFs can be an important source of TGF-β 
in the TME, which may act on both CD8+ and CD4+ T  cells 
(96, 105). For example, TGF-β promotes cell death of e�ector 
CD8+ T cells by inhibiting expression of the pro-survival protein 
Bcl-2 (115). TGF-β also directly alters cytotoxic CD8+ T  cell 
function by inhibiting the expression of key genes involved in 
their cytototoxic activity, including perforin, granzymes A and 
B, Fas ligand, and IFN-γ (116, 117). Furthermore, CAFs could 
also impair T  cell proliferation and e�ector function through 
other mechanisms (118), notably depending on their production 
of metabolic reprogramming factors. �e secretion by CAFs 
of IDO1 (119, 120), an immuno-regulatory enzyme, might 
contribute to immuno-suppression, tolerance, and tumor escape 
by catabolizing tryptophan degradation into kynurenines (Kyn), 
creating an immunosuppressive TME resulting in T-cell anergy 
and apoptosis through depletion of tryptophan and accumula-
tion of immunosuppressive tryptophan catabolites (121, 122). 
Similarly, the secretion by CAFs of Arginase 2 (Arg 2), an 

enzyme metabolizing l-Arginine to l-Ornithine and urea, might 
participate to the deprivation of Arginine in the TME, which is 
in normal conditions important for T cell proliferation and func-
tions (123). In this regard, pancreatic cancer su�ering patients 
with CAFs expressing high levels of Arg 2, especially in hypoxia-
inducible factor (HIF)-1α positive hypoxic zones, demonstrate a 
poor clinical outcome (124). CAFs can also secrete galectins, a 
class of carbohydrate binding proteins that have a high a�nity 
for β galactosides (125, 126), which possess immunoregulatory 
properties (127) such as, for Galectin-1, induction of apoptosis 
of activated T cells by binding the glycoprotein receptors CD7, 
CD43, and CD45 on the cell surface (128, 129). Finally, the secre-
tion of CXCL12/SDF-1 by CAFs from lung and pancreatic tumors 
can contribute to the exclusion of T  cells from the cancer cell 
proximity (130).

Cancer-associated �broblasts have also the potential ability to 
in�uence CD4+ Helper T (TH) lymphocytes, switching them from 
anti-tumor to pro-tumor cells. CD4+ TH cells can di�erentiate 
into multiple sublineages with di�erent functions and cytokine 
secretion pro�les, which in turn can induce, maintain or regulate 
antitumor immune responses (131). Schematically, naïve CD4+ 
T cells can di�erentiate into TH1 cells mainly secreting IFN-γ and 
promoting CD8+ T cell-dependent immune response, or into TH2 
cells mainly secreting IL-4 and orchestrating humoral immunity. 
In terms of antitumor immune responses, the superior e�ects of 
TH1 cells are thought to be the result of the production of large 
amounts of IFN-γ, as well as chemokines, which enhance the 
priming and expansion of antitumor CD8+ cells and help to recruit 
NK cells and type I macrophages to tumor sites. A third major 
e�ector population of CD4+ T cells that could be derived from 
naïve CD4+ T cells was also shown to exist. �ese cells, designated 
TH17 cells (132, 133), are characterized by the production of IL-17 
and IL-22 and might have, at least under some circumstances, 
pro-tumor and immunosuppressive functions in the TME (134), 
even if this particular point remains highly controversial. Finally, 
under tolerogenic conditions, naïve CD4+ T cell precursors can 
di�erentiate into inducible Tregs that upregulate the expression 
of the FoxP3 transcription factor (135). Depending on the tumor 
type, Tregs can be highly enriched in the TME, limiting antitumor 
immune responses and promoting immunological ignorance of 
cancer cells, especially through the secretion of immunosuppres-
sive cytokines (TGF-β, IL-10…) (136). In the TME, the presence 
of CAFs and their secretion of CCL2, CCL5, and CCL17 as well 
as the polarizing cytokines IL-1, IL-6, IL-13, and IL-26 can favor a 
tumor promoting TH2 and TH17 immune response, as the expense 
of tumor protective TH1 response (32, 137–139). For example, in 
a murine model of breast tumor, the elimination of CAFs in vivo 
by a DNA vaccine targeting FAP resulted in a shi� of the immune 
TME from a TH2 to a TH1 polarization. �is shi� was character-
ized by an increased expression of IL-2 and IL-7, an increased 
of CD8+ T  cell population, and a diminished recruitment of 
TAM, MDSC, and Tregs (139). Moreover, in pancreatic cancer, 
the secretion of thymic stromal lymphopoietin (TSLP) by CAFs 
has been associated with a TH2 cell polarization through myeloid 
DC conditioning (140). As a main source of TGF-β in the TME, 
CAFs can also promote Tregs recruitment and di�erentiation 
(141). Of note, it has been suggested that CAFs and Tregs enter to 
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a cross-talk via their reciprocal expression of TGF-β, increasing 
both CAFs activation and Tregs activity. In this regard, FoxP3+ 
Tregs coexisting with CAFs are correlated with a poor outcome 
in lung adenocarcinoma (142). Moreover, it was shown that 
the expression of cyclo-oxygenase-2 (COX-2) by CAFs in lung 
or pancreatic cancers leads to their secretion of PGE-2, which 
plays an essential role in Tregs functionality by inducing FoxP3 
expression (143, 144).

Cancer-associated �broblasts in the TME can also interfere 
with the T  cell-dependent immune response by modulating 
MDSCs. MDSCs are a heterogeneous population of immature 
myeloid cells that accumulate during pathologic conditions, 
such as cancer (145, 146). �e main factors involved in MDSC-
mediated immune suppression include the secretion of Arginase, 
iNOS, TGF-β, IL-10, PGE2 and IDO, regulating DC and T cell 
functions, as well as NK  cells and macrophages. It has been 
demonstrated that CAFs isolated from pancreatic tumors drive 
monocyte precursors toward an MDSC phenotype, in a STAT3-
dependent manner, through their secretion of IL-6 (72, 147). 
Similarly, CAFs from hepatic carcinomas attract monocytes to 
the TME by their secretion of CXCL12/SDF1 and induce their 
di�erentiation into MDSCs through IL-6-mediated STAT3 activa-
tion (148), thus altering T cell proliferation and functions, as well 
as the patients overall survival. Pancreatic stellate cells (described 
as CAFs precursors) also produce MDSC-promoting cytokines 
(IL-6, VEGF, M-CSF) and chemokines (CXCL12/SDF1, CCL2/
MCP-1) and similarly promote di�erentiation of MDSCs in a 
STAT3-dependent manner (72). In a murine liver tumor model, 
it was also shown that FAP+ CAFs are a major source of CCL2 and 
that �broblastic STAT3-CCL2 signaling promotes tumor growth 
by enhancing the recruitment of MDSCs, which also predicts poor 
prognosis of patients with intrahepatic cholangiocarcinoma (149).

Finally, an interesting but still controversial point was recently 
raised based on the observation that CAFs from colon and lung 
cancers or from melanoma might express programmed death-
ligand-1 (PD-L1) and/or PD-L2 (150–152). PD-L1 and PD-L2 
are members of the B7 family of co-stimulatory/co-inhibitory 
molecules expressed by a wide range of cancer cells and engage 
their receptor programmed death receptor 1 (PD1) expressed 
on T-cells, strongly counteracting TCR signaling and CD28-co-
stimulation (153), resulting in the inhibition of T cell activation, 
proliferation, and functions. As such, therapeutic antibodies that 
block PD-L1/PD1 interactions between cancer cells and T cells 
have recently received great attention because of their capacity 
to reverse T  cell exhaustion in response to persistent antigen 
stimulation and to improve the immune control of cancer in a 
variety of tumor types, including melanoma, lung, and renal cell 
carcinomas (154). As mentioned above, it was shown that myo�-
broblasts/CAFs from colon cancer expressed PD-L1 and PD-L2 
and negatively regulate CD4+ TH cell proliferative response (152). 
Similarly, CAFs isolated from lung carcinoma were shown to 
constitutively express PD-L1 and PD-L2, which can be upregu-
lated by IFN-γ, and negatively regulate tumor-associated CD8+ 
T cell activation (151). In melanoma, PD-L1 expression on CAFs 
seems to be dependent of IL-1α/β secreted by melanoma tumor 
cells and melanocytes and could participate to the suppression of 
melanoma-speci�c CD8+ T cells (150). However, most of these 

discoveries rely on CAFs isolation and in vitro experiments, with 
potential artifacts (155), and clearly require further investigations 
to determine the physiological relevance of potential PD-L1/L2 
expression by CAFs on their immunosuppressive capabilities 
in vivo.

In conclusion, the CAF secretome can shape the T cell-depend-
ent antitumor immune response by a�ecting several populations 
such as DCs, MDSCs, by switching CD4+ TH lymphocytes from 
a TH1 to a TH2 phenotype, by a�ecting Tregs and TH17 cells, by 
a�ecting CD8+ T cell functions or eventually by expressing some 
ligands of immune checkpoint receptors.

INDIRECT EFFECT OF CAFs ON  

ANTI-TUMOR IMMUNE RESPONSE

As mentioned earlier, CAF activation in the TME results in a 
remodeling of the ECM through deposition of several compo-
nents and by proteolytic degradation, which in turn a�ect tumor 
behavior (18, 156, 157). For example, increased ECM rigidity 
resulting from thickening and linearization of collagen �bers has 
been shown to regulate tumor growth and metastasis (158, 159). 
�is modi�ed ECM protein network is also presumed to restrict 
access of immune cells to cancer cells, serving as a physical barrier 
at least in some models (160, 161). As such, CAF-modi�ed ECM 
might be involved in T cell exclusion from the proximity of cancer 
cells, which has been shown as a dominant immunosuppressive 
mechanism in multiple cancers and a predictor of patient clinical 
outcome (160). In this regard, in pancreatic tumor models, it has 
been proposed that when �brosis is extensive, the “scar-like” ECM 
may act as a barrier for CTL in�ltration into tumors (162). It was 
also found that focal adhesion kinase [FAK; a crucial signaling 
protein that is activated by numerous stimuli and functions as 
a biosensor to control cell motility (163)] activity is elevated in 
human pancreatic ductal adenocarcinoma tissues and correlates 
with high levels of �brosis and poor CD8+ CTL in�ltration (164). 
Similarly, in lung cancers, CAFs could restrict CD4+ and CD8+ 
T cells motility. Indeed, it was observed an active T cell motil-
ity in loose �bronectin and collagen regions, whereas T  cells 
poorly migrate in dense matrix areas. Furthermore, aligned 
�bers in perivascular regions and around tumor epithelial cell 
regions dictate the migratory trajectory of T cells and restricted 
them from entering tumor islets (165, 166). Finally, interac-
tions between tumor cells and the surrounding modi�ed ECM 
have been involved as primary forces driving the EMT process. 
Consequently, the imbalanced biomechanical force at the 
tumor-stroma interface is an important player initiating EMT 
(167), which can subsequently lead to tumor cells escaping from 
T cell-mediated lysis a�er their acquisition of a mesenchymal-
like phenotype (168–170). �us, in the region where the ECM 
has been extensively modi�ed by CAFs, an EMT process could 
protect tumor cells from T cell-mediated destruction.

�e CAF-mediated remodeling of the ECM might also a�ect 
other immune population than T cells. For example, CAFs have 
been identi�ed as an important source of hyaluronan, also called 
hyaluronic acid, a component of the ECM which promotes TAM 
recruitment, as the genetic ablation of the hyaluronan synthase 
strongly diminishes their presence within the TME (171). In 
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pancreatic and breast cancers, it was also found that extensive 
deposition of type I collagen, which can be highly secreted by 
CAFs, improves TAM in�ltration (172), with a potential e�ect 
of the ECM composition on their M2 polarization (173, 174). 
�e high levels of CAF-secreted collagen I in tumors could 
also activate leukocyte-associated Ig-like receptor (LAIR)-1, a 
collagen-receptor that inhibits immune cell function upon col-
lagen binding (175). Nevertheless, the regulation of macrophages 
polarization by the ECM composition, as well as its e�ect on, 
but not limited to, MDSC, neutrophils, or DCs is still poorly 
understood.

In addition to the extensive remodeling of the ECM, CAFs 
might also indirectly regulate the anti-tumor immune response 
by participating in the emergence of hypoxic stress within the 
TME. Indeed, in tumors with a high level of �brosis, tumor tissues 
are o�en poorly oxygenated, with a limited number of functional 
blood vessels, resulting in the presence of zones with a low oxygen 
pressure called “hypoxic zones” (16, 176, 177). Even if, as men-
tioned above, CAFs are described as regulators of angiogenesis 
through the secretion of pro-angiogenic factors, such as VEGF  
or through the recruitment of endothelial progenitors in the 
tumor through the release of SDF-1 in the TME (178), the blood 
vessels present in the TME are poorly functional and leaky. �e 
resulting leaky vessels not only trigger a high interstitial �uid pres-
sure in the TME which a�ect immune cell transmigration from 
the vessels to the TME (179), but also a�ect oxygen availability 
and acidi�cation of the TME (180). In other words, by their global 
action on the TME, the presence of CAFs might participate to 
abnormal angiogenesis and to the creation of hypoxic zones that 
contribute to the immunosuppressive network within the TME. 
Indeed, hypoxia has been found to impair the antitumor immune 
response by several mechanisms (181–184), such as alteration of 
NK and T  cell activation and e�ector functions, induction of 
PD-L1 expression on MDSCs via HIF-1α transcription factor, 
and attraction of TAMs or Tregs to the tumor bed. Furthermore, 
hypoxic tumor cells secrete factors including TGF-β and PDGF 
that promote conversion of precursor cell types into CAFs (185), 
and it was also shown that stromal �broblasts synergize with 
hypoxic stress to enhance melanoma aggressiveness (186). �is 
indicates a potential role of hypoxia in the CAFs activation, either 
by directly acting on CAFs or indirectly by acting on tumor 
cells, or in their function in the TME. �us, one may consider 
that hypoxia not only promotes CAFs activation but might also 
increase their immunosuppressive properties, even if this last 
particular point needs to be clari�ed.

Overall, CAFs might indirectly a�ect the anti-tumor immune 
response, with many described and not yet elucidated distinct 
possibilities, such as the modi�cation of the ECM, vasculature or 
architecture of the tumors, which make this �eld very challenging.

TARGETING CAFs TO IMPROVE ANTI-

TUMOR IMMUNE RESPONSE AND 

IMMUNOTHERAPY

Given the fact that CAFs impair the anti-tumor immunity 
(and more generally exert pro-tumorigenic e�ects) by several 

mechanisms, the design of pre-clinical or clinical studies in order 
to target these cells in the TME is very seductive to amplify the 
antitumor immune response and to develop “anti-CAF”-based 
immunotherapeutic approaches. Such studies can be envi-
sioned based on agents directly targeting CAF speci�c proteins  
(e.g., FAP…) and signaling pathways involved in CAF activation 
(e.g., TGF-β, PDGF, FGF…) or less speci�cally targeting CAF-
secreted factors. Potential therapies aiming at targeting CAFs or 
reversing the CAF “state,” as well as the ongoing clinical trials 
have been extensively reviewed in Ref. (18).

Recently, anti-CAF therapies have been mainly focused on 
FAP (187). A pioneer study has shown, in a transgenic mouse 
model in which FAP-expressing cells can be ablated, that the 
depletion of FAP-expressing cells cause rapid hypoxic necrosis 
of both Lewis lung carcinoma and stromal cells in immunogenic 
tumors by a process involving IFN-γ and TNF-α, which have 
previously been shown to be involved in CD8+ T cell-dependent 
killing of tumor cells (188). �e development of chimeric antigen 
receptor (CAR) T cells targeting FAP has also shown promising 
results in murine models (189–191) and in malignant pleural 
mesothelioma patient derived xenogra� models (192). A recent 
study has also demonstrated in two murine melanoma models 
that depleting FAP+ stromal cells from the TME upon vaccination 
with an adenoviral-vector reduced the frequencies and functions 
of immunosuppressive cells, resulting in prolonged survival of 
melanoma-bearing mice associated with a robust CD8+ T  cell 
response (193). Similarly, in LL2 (murine lung cancer), CT26 
(murine colon cancer), and B16F10 (murine melanoma) mod-
els, a whole-tumor cell vaccine modi�ed to express FAP seems 
to induce antitumor immunity against both tumor cells and 
CAFs and enhances the in�ltration of CD8+ T lymphocytes and 
decreases the accumulation of immunosuppressive cells in the 
TME (194). Nevertheless, it should be noted that, in addition 
to CAFs, FAP can be expressed by cells present in several tis-
sues, including multipotent bone marrow stem cells or skeletal 
muscles. As such, another study has shown that adoptive transfer 
of FAP-reactive CAR-T  cells into mice bearing a variety of 
subcutaneous tumors mediated limited antitumor e�ects and 
induced signi�cant cachexia (a syndrome of progressive weight 
loss, anorexia, and persistent erosion of body muscle mass) and 
lethal bone toxicities in two murine strains (195). �us, these 
lethal bone toxicity and cachexia observed a�er CAR T cell-based 
immunotherapy targeting FAP highlight cautions against its use 
as a universal target.

As such, targeting the CAF “secretome” or activation pathways, 
in order to revert the CAF “state,” might be a safer alternative 
to abrogate, at least partly and probably less speci�cally, their 
immunosuppressive role in the TME. In this regard, a recent 
publication demonstrated that targeting CXCL12 from FAP-
expressing CAFs with AMD3100 (Plerixafor) synergizes with 
anti-PD-L1 immunotherapy in pancreatic cancer (130). Similarly, 
other proteins secreted by CAFs could be also targeted in order to 
restrain the immunosuppressive capabilities of these cells, such as 
IL-6 or TGF-β, using multiple inhibitors (18). For example, tri-
hydroxyphenolic compounds were identi�ed as potent blockers 
of TGF-β1 in the presence of active lysyl oxidase-like 2 (LOXL2; 
a member of mammalian copper-dependent LOX enzymes only 
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expressed by �broblasts or cancer cells and involved in intra-  
and intermolecular covalent collagen cross-links), and induce 
potent blockade of pathological collagen accumulation in  vivo 
(196). �us, these compounds might interfere with the T  cell 
exclusion mediated by the CAF-dependent ECM remodeling 
previously mentioned, even if this particular point is still hypo-
thetical. �e use of Tranilast (Rizaben) (a known suppressor of 
�broblast proliferation and TGF-β secretion) has also demon-
strated a synergistic e�ect with a DC-based vaccine in C57BL/6 
mice bearing syngeneic E-G7 lymphoma, LLC1 Lewis lung 
cancer or B16F1 melanoma (197). Another example is retinoic 
acid, a small molecular derivative of vitamin A, which inhibits 
IL-6 and ECM production by CAFs (198), potentially a�ecting 
their immunosuppressive properties. Nevertheless, more studies 
are clearly needed to identify other potential therapeutic agents 
targeting CAFs and/or their immunosuppressive network, which 
might be use in combination with the current or future anti-
tumor immunotherapeutic approaches.

CONCLUDING REMARKS

Despite their relative abundance in tumors, �broblasts have been 
ignored over decades, but their crucial role has now emerged in 
the �elds of tumor biology and oncology. CAFs have pleiotropic 
functions in tumor growth and participate to the in�ammatory 
phenotype of the TME by releasing a variety of chemokines, 
cytokines, and other factors leading to the alteration of the antitu-
mor immune response. Nevertheless, this complex immunosup-
pressive network related to the “secretome” of CAFs is still poorly 
understood, even if extensive e�orts allowed apprehending their 
role in both the innate and the adaptive immune response. Of 
note, the notion that the CAF-speci�c secretome modulates the 

anti-tumor immune response o�en relies on studies limited to 
cells expanded in vitro. Future challenging studies using preclini-
cal models will be thus needed in order to de�ne more precisely 
the functional list of CAF-derived factors that exert an immu-
nomodulatory role in the context of the TME complexity in vivo. 
�is is crucial in order to fully understand the global regulation 
of the antitumor immune response and might also lead to the 
identi�cation of novel potential therapeutic targets with the abil-
ity to increase the e�ciency of anti-tumor immunotherapeutic 
approaches. In particular, targeting the CAFs or their secretome 
may probably not induce a complete tumor cell death by itself,  
but it will help to reduce immune e�ector cell dysfunctions as well 
as the recruitment of immunosuppressive cells, thus releasing the 
“brake” for a more e�ective immune response in combination 
with therapy targeting immune checkpoints (e.g., anti-CTLA4, 
anti-PD1/PD-L1 antibodies) or other mechanisms impairing the 
anti-tumor immune response in patients (199).
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