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Alterations in corneal epithelial 
dendritic cell in Sjogren’s syndrome 
dry eye and clinical correlations
Ran Hao1,2, Yi Ding3 & Xuemin Li 1,2*

We aimed to investigate the density and morphology of corneal dendritic cells (DCs) in dry eye (DE) 
patients with or without Sjogren’s syndrome (SS). This study included 28 patients with Sjogren’s 
syndrome dry eye (SSDE), 33 patients with non-Sjogren’s syndrome dry eye (NSSDE), and 30 age and 
sex matched healthy volunteers. In vivo confocal microscopy (IVCM) was used to investigate density 
and morphology (size, dendrites, and field) of DC. Compared with NSSDE and healthy group, SSDE 
showed significantly higher DC density, larger DC size, more DC dendrites with larger DC field (all 
P < 0.001). Comparison between NSSDE and healthy group demonstrated that DC density, dendrites 
and field were significantly higher in NSSDE. However, there was no significant difference in DC 
size (P = 0.076). DC density and morphological parameters showed significant associations with the 
systemic severity (salivary gland biopsy and serum antibodies) and ocular surface damage. The corneal 
epithelium DC density and morphological alterations were obvious in SSDE, which reflected higher 
level of immune activation and inflammatory response in SS. Marked correlations were found between 
DC density/morphology and systemic/ocular severity. Dynamic assessment of corneal DC may 
facilitate to clarify pathogenesis, stratify patient, and tailor treatment in SS patients.

Dry eye disease (DED) is one of the most frequent ophthalmic multifactorial disorders, which is assigned to 
aqueous tear deficient dry eye (DE) and evaporative DE by  mechanism1. Additionally, the most common form, 
aqueous tear deficient DE, can be subdivided into Sjogren’s syndrome dry eye (SSDE), associated with a progres-
sive autoimmune disease characterized by chronic lymphocyte infiltration of the salivary and lacrimal glands, 
and non-Sjogren’s syndrome dry eye (NSSDE), tear deficiency by other  causes1,2. The SSDE patients typically 
have been suffering terrible xerophthalmia and ocular surface injury for a long time, with multiple organ dys-
function and even under the threat of blindness and death (because of multiple organ failure and non-Hodgkin’s 
lymphoma)1,3,4. Therefore, early diagnosis and appropriate treatment play important roles in SSDE management.

DED is characterized by tear film instability, visual disturbance, inflammation and damage of the ocular 
 surface1,4,5. Recent researches have shown that immune and inflammation play key roles in the pathogenesis of 
 DED4,6, especially in SSDE and lead to severe xerophthalmia and ocular surface  damage6,7. There is an increas-
ing evidence that antigen-presenting cells (APCs), especially corneal dendritic cells (DCs) which are equipped 
to induce T-cell activation and inflammatory cascade, are crucial for the DED  pathogenesis8–11. With the help 
of in vivo confocal microscopy (IVCM), the density and morphology of DCs in DED have been identified and 
provide a better insight to the pathogenesis of clinical  manifestations6,7.

In patients with Sjogren’s syndrome (SS), DCs have been found to infiltrate into the lacrimal and salivary 
glands in an ex vivo  study12. Some studies also demonstrated increased DCs in the central corneal epithelium 
of  SSDE6,7. Besides quantity, DCs morphology changes (such as size, dendrites number and length) are other 
biomarkers in response to inflammation and  immunity13–15. Nevertheless, these studies have limitations such 
as small sample sizes and non-detailed DC parameters. Moreover, the correlations between the DC parameters 
and systematic/ocular characteristics may aid in the pathogenesis elucidation and severity assessment of SS. But 
there was no study has clarified the associations between the DC and serum antibodies/salivary gland biopsy 
in SS. We aimed to evaluate the DC density and morphology (including size, dendrite and field) of the central 
corneal epithelium in normal subjects and DE patients with or without SS. Such a determination was made to 
clarify whether there was an association among these parameters and the pathogenesis and severity of SS.
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Materials and methods
Participants and clinical study. Sixty-one consecutive patients with aqueous tear deficient DE, including 
28 with SSDE and 33 with NSSDE, and 30 healthy volunteers were enrolled. Only the right eye was evaluated. 
The study was performed according to the principles of the Declaration of Helsinki and was approved by the 
Human Research and Ethics Committee, Peking University Third Hospital (No. M2019236). Written informed 
consent was obtained from each study participant.

DED was defined according to the following international diagnostic criteria by the Dry Eye WorkShop II 
(DEWS II) of the Tear Film and Ocular Surface Society (TFOS): ocular surface disease index (OSDI) ≥ 13 and 
tear break-up time (TBUT) < 10 s or ocular surface staining (> 5 corneal spots and > 9 conjunctival spots)1,16. The 
diagnosis of SS was made according to the American College of Rheumatology-European League Against Rheu-
matism (ACR-EULAR)  criteria3. The DED patients without SS were categorized to NSSDE  group1,16. The healthy 
controls were asymptomatic participants without any ocular injury and medication, with normal tear functions 
and negative ocular surface staining (OSS)16. The exclusion criteria included the systemic/ocular disease except 
for DE and SS, especially ocular inflammation (such as infection and allergy), rheumatoid arthritis, systemic 
lupus erythematosus and other diseases which might affect DC density and morphology, history of contact lenses 
wear and ocular surgery, diabetes mellitus, and pregnancy. Since the anti-inflammatory medications are likely 
affecting the ocular surface, the patients enrolled in the study have not been treated with these medications.

A careful case history and the OSDI were recorded for each participant. Schirmer-I test (ST), tear meniscus 
height (TMH), TBUT and OSS score were performed to evaluate aqueous production, tear film stability and 
ocular damage using standard  protocols1,16. The TMH was recorded with a Keratograph 5 M (OCULUS, Wetzlar, 
Germany) and repeated three times, then the average value was analyzed. The OSS score (0–12) for each eye was 
the summation of the fluorescein score for the cornea and the lissamine green score for the nasal and temporal 
bulbar  conjunctiva16. Serum levels of anti-SSA52, anti-SSA, anti-SSB antibodies and salivary gland biopsy were 
assessed in DE patients according to the diagnostic  criteria3. All salivary gland biopsies were performed by an 
experienced dentist and evaluated by the same experienced pathologist. Salivary gland biopsies were collected 
as  follows3,17: (1) evert the lower lip to visualize the minor salivary glands; (2) inject 0.5–1.0 mL 1:100,000 1% 
lidocaine:epinephrine solution into the submucosa; (3) make a 1.0–1.5 cm linear incision, parallel to the ver-
milion border; (4) Blunt dissect on a plane perpendicular to the mucosal incision and parallel to the direction 
of the sensory nerve fibers; (5) recover 4–7 glands from each patient and store them in 10% formaldehyde; (6) 
close the incision with simple interrupted 4–0 chromic sutures. The salivary gland biopsies were stained with 
hematoxylin–eosin (HE) and analyzed under microscope. The result was considered positive if the focus score 
(defined as the number of mononuclear infiltrates containing ≥ 50 lymphocytes/4  mm2 of glandular tissue) 
was ≥  13,17. All examinations were carried out in the same examination room under the same conditions. The 
eye and systemic measurements were performed by the same masked observers.

In vivo confocal microscopy. All participants had undergone imaging with a digital corneal confocal 
laser-scanning microscope of the central cornea using Heidelberg Retina Tomograph 3 with the sequence mode 
(HRT II RCM Heidelberg Engineering Inc, Heidelberg, Germany, Rostock Cornea Module). After topical anes-
thesia with 0.4% oxybuprocaine hydrochloride (Oftan Obucain, Santen Oy, Tampere, Finland). A drop of car-
bomer (Viscotears, CIBA Vision Europe Ltd., Southampton, UK) was served as a lubricant gel both in ocular 
surface and the disposable sterile polymethylmethacrylate cap (Tomo-Cap; Heidelberg Engineering GmbH, 
Dossenheim, Germany). Then advanced the cap manually until the gel contacted the central corneal surface as 
previously  dsecribed14,18. The corneal sub-basal nerves shift centripetally and form a corneal vortex just inferior 
to the nose of the corneal  apex19,20. The corneal vortex is a land mark of central cornea and easy to identify with 
 IVCM20. At least 100 images of corneal sub-basal layer (approximately at a depth of 50–70 μm) were obtained 
in each eye by the same masked professional technician. According to previous literature, three non-overlap-
ping images with optimal quality in the central cornea were chosen for corneal sub-basal  nerve21–23 or DCs 
 analysis6,7,14,24. Therefore, three images with the best focused and contrast, without motion or folds were chosen 
for analysis. DC density and morphology were determined for each image, the morphology parameters includ-
ing DC size (represented the DC activation and scored based on the cell body area with processes number), 
number of dendrites per DC and DC field (area bounded within cell span and the length of dendritic processes).

A semiautomatic Java-based image processing software (ImageJ, National Institutes of Health, Bethesda, 
MD) dedicated to the tracing and quantification of elongated image structures, such as dendrites and neurons, 
were used to evaluate the density and morphologic parameters of DC in IVCM images. The Cell Count tool 
was used to count DC density and the average for three images was recorded. The 10 most representative DCs 
(the largest cell body with more dendrites) in three images were selected for morphologic analysis according to 
Kheirkhah et al.  study6. The DC size was further scored based on a 3-point grading scale (1–3): 1 (globular cell: 
hyperreflective cell body without dendritic process), 2 (small cell body with two or fewer processes), 3 (large cell 
body with more than two processes)25–27. The number of dendrites per cell was calculated manually. The DC field 
was measured using a polygon joining the dendrite tips around each cell according to Kheirkhah et al.  study6. 
Two masked observers assessed all parameters and the averaged values were calculated for further analysis. A 
third observer is needed if more than 10% difference between the two observers and the average of three values 
was recorded for analysis.

Statistical analysis. Statistical analysis was performed using SPSS version 26.0 (IBM Corp., Armonk, New 
York, USA). The normality of the data distribution was verified by the Kolmogorov–Smirnov test. Continuous 
variables were described as the mean ± standard deviation (SD) or median with interquartile range. Categorical 
variables were expressed as frequencies and percentages. Continuous variables were compared with ANOVA 
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or Kruskal–Wallis tests among three groups. Continuous data between two groups were compared using Least 
Significant Difference (LSD) tests or Mann–Whitney nonparametric U-tests. Categorical variables were com-
pared with the Chi Square test. Spearman’s rank order correlation was performed to identify the potential factors 
related to the density and morphologic parameters of DC from the variables of age, sex, systemic characteristics, 
as well as dry eye symptoms and signs. Logistic regression analysis and multiple linear regression analysis were 
used to evaluate the validity of DC density and morphology (size, dendrites and field) compared with salivary 
gland biopsy/serum antibodies and ocular parameters (OSDI, ST, TMH, TBUT and OSS) in SSDE patients, 
respectively. Since the OSS did not show a continuous distribution, normality transition (a logarithmic transfor-
mation) was performed before regression analysis. A P value < 0.05 was considered significant for all compari-
sons. The sample size was calculated by Stata/SE 15.0 (Stata Corp., USA). According to previous  literature7, the 
DC density in the central corneal epithelium of SSDE, NSSDE and healthy controls were 127.9 ± 23.7 cells/mm2, 
89.8 ± 10.8 cells/mm2, and 34.9 ± 5.7 cells/mm2, respectively. The sample size of each group was determined to 
be 12 eyes (α = 0.05 and β = 0.10). However, small sample size may be difficult to further clarify the associations 
among these parameters and pathogenesis and severity of SS. Therefore, we enrolled 28 eyes in SSDE group, 30 
eyes in NSSDE group and 30 eyes in healthy group.

Results
Clinical data. This study included 28 eyes of 28 patients with SSDE (26 females and 2 males), 33 eyes of 33 
patients with NSSDE (23 females and 10 males) and 30 eyes of 30 healthy controls (21 females and 9 males). The 
mean age was 56.61 ± 15.01 years (range, 30–80 years) in the SSDE group, 50.41 ± 13.53 years (range, 27–75 years) 
in the NSSDE group, and 57.73 ± 8.42 years (range, 32–83 years) in the control group. The demographic data and 
systematic/ocular characteristics of the three groups have been presented in Table 1. There was no significant dif-
ference in age and sex among the three groups (P = 0.052 and P = 0.088, respectively). Compared with the NSSDE 
patients and the healthy controls, the participants in the SSDE group showed higher OSDI (67.88 ± 12.25) and 
OSS [4 (2, 9)] scores, and lower ST (1.43 ± 0.92), TMH (0.09 ± 0.02) and TBUT (1.94 ± 0.72) (all P < 0.001). The 
NSSDE patients also showed more serious OSDI score (35.12 ± 11.23 vs. 8.61 ± 1.71) and signs (ST, TMH, TBUT 
and OSS score) than the healthy controls (all P < 0.001).

DCs density and morphology among SSDE, NSSDE and Controls. Table 2 and Fig. 1 showed the 
IVCM parameters for DC in three groups. The DC density (202.34 ± 43.25 cells/mm2), DC size [3 (2, 3)], num-
ber of dendrites (3.84 ± 0.44), and DC field (393.21 ± 57.13 μm2) in the SSDE group (Fig. 1 and 2C1–C2) were 
significantly higher as compared with the NSSDE (Figs. 1 and 2B1–B2) and healthy control group (Figs. 1 and 
2A1–A2) (all P < 0.001). Compared with the healthy control group, the patients with NSSDE had a higher DC 
density (20.25 ± 8.44 vs. 67.74 ± 15.53 cells/mm2, respectively, P < 0.001), higher number of dendrites per cell 
(2.15 ± 0.08 vs. 3.23 ± 0.19, respectively, P = 0.043), and larger DC field (128.48 ± 19.61 vs. 196.11 ± 69.45 μm2, 
respectively, P = 0.023). However, the difference in DC size between the healthy controls and NSSDE group was 
not statistically significant [2 (1, 2) vs. 2 (1, 3), respectively, P = 0.076].

Correlation between Clinical Manifestation and DC Density and Morphology. To determine 
whether there is a correlation between DC density/morphology and systematic/ocular manifestations of SS, we 
performed Spearman’s rank order correlation analysis of clinical data and IVCM parameters. The correlation 
coefficients (r) and P values were shown in Table 3. The results showed that there were positive correlations 

Table 1.  The demographics and clinical data of the three groups. SSDE Sjogren’s syndrome dry eye, NSSDE 
non-Sjogren’s syndrome dry eye, OSDI ocular surface disease index, ST Schirmer test, TMH tear meniscus 
height, TBUT tear film breakup time, OSS ocular staining score, anti-SSA anti-Sjogren’s syndrome A, anti-SSB 
anti-Sjogren’s syndrome B. # Mean ± standard deviation; $Median (25% quantile, 75% quantile). *P < 0.05 among 
the three groups; †P < 0.05 between SSDE and NSSDE.

Item SSDE (n = 28) NSSDE (n = 33) Control (n = 30) P

Sex

Male, n (%) 2 (7.14%) 10 (30.30%) 9 (30%)
0.052

Female, n (%) 26 (92.86%) 23 (69.70%) 21 (70%)

Age (years)# 56.61 ± 15.01 50.41 ± 13.53 57.73 ± 8.42 0.088

OSDI# 67.88 ± 12.25 35.12 ± 11.23 8.61 ± 1.71  < 0.001*†

ST (mm)# 1.43 ± 0.92 3.44 ± 1.59 16.97 ± 2.68  < 0.001*†

TMH (mm)# 0.09 ± 0.02 0.16 ± 0.05 0.21 ± 0.07  < 0.001*†

TBUT(s)# 1.94 ± 0.72 4.08 ± 2.20 6.56 ± 3.13  < 0.001*†

OSS$ 4 (2, 9) 0 (0, 3) 0 (0, 0)  < 0.001*†

Salivary gland biopsy, n (%) 26 (92.85%) 0 (0%) /  < 0.001†

Anti-SSA52, n (%) 17 (60.71%) 0 (0%) /  < 0.001†

Anti-SSA, n (%) 24 (85.71%) 0 (0%) /  < 0.001†

Anti-SSB, n (%) 13 (46.43%) 0 (0%) /  < 0.001†



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11167  | https://doi.org/10.1038/s41598-022-15537-4

www.nature.com/scientificreports/

between salivary gland biopsy and DC density (r = 0.499), DC size (r = 0.402), DC dendrites (r = 0.465) as well as 
DC field (r = 0.473) (all P < 0.001). Positive correlations were also noted among anti-SSA52, anti-SSA, anti-SSB 
and DC dendrites (r = 0.384, r = 0.399, r = 0.329); anti-SSA52, anti-SSA and DC size (r = 0.332, r = 0.357); as well 
as anti-SSA and DC field (r = 0.302) (all P < 0.001). OSDI scores correlated positively with DC density (r = 0.336, 
P = 0.007), DC dendrite (r = 0.311, P = 0.001) and DC field (r = 0.306, P = 0.001). Meanwhile, ST, TMH, and 
TBUT showed inverse correlations with the DC density (r = − 0.405, P = 0.004; r = − 0.386, P = 0.006; r = − 0.576, 
P = 0.018) and DC field (r = − 0.331, P = 0.007; r = − 0.286, P = 0.035; r = − 0.431, P = 0.004). Moreover, TBUT also 
demonstrated an inverse correlation with DC dendrites (r = − 0.386, P = 0.007). The OSS score showed marked 
positively correlations with DC density (r = 0.524, P = 0.032), DC dendrites (r = 0.587, P = 0.001), and DC field 
(r = 0.589, P = 0.001), however, a weak positive correlation with DC size (r = 0.234, P = 0.006).

The associations between DC density/morphology and systematic manifestations (salivary gland biopsy 
and serum antibodies) in SSDE are shown in Fig. 3. After multivariable adjustment, DC density showed an odd 
ratio (OR) 2.292 [95% confidence interval (CI) 1.446–4.055, P = 0.046] for positive salivary gland biopsy. DC 
size had an OR 1.319 (95% CI 1.081–2.252, P = 0.011) for positive anti-SSA. DC dendrites had an OR 1.980 (95% 

Table 2.  The in vivo confocal microscopy parameters for dendritic cell among three groups. DC dendritic 
cell, SSDE Sjogren’s syndrome dry eye, NSSDE non-Sjogren’s syndrome dry eye; # Mean ± standard deviation; 
$Median (25% quantile, 75% quantile).

Group DC density, cells/mm2# DC  size$ DC dendrites, number/cell# DC field, μm2#

SSDE (n = 28) 202.34 ± 43.25 3 (2, 3) 3.84 ± 0.44 393.21 ± 57.13

NSSDE (n = 33) 67.74 ± 15.53 2 (1, 3) 3.23 ± 0.19 196.11 ± 69.45

Control (n = 30) 20.25 ± 8.44 2 (1, 2) 2.15 ± 0.08 128.48 ± 19.61

Difference between SSDE and NSSDE P < 0.001 P < 0.001 P < 0.001 P < 0.001

Difference between SSDE and control P < 0.001 P < 0.001 P < 0.001 P < 0.001

Difference between NSSDE and control P < 0.001 P = 0.076 P = 0.043 P = 0.023

Difference among three groups P < 0.001 P < 0.001 P < 0.001 P < 0.001

Figure 1.  Dendritic cell density and morphologic parameters in SSDE, NSSDE and healthy controls. Compared 
with NSSDE patients and healthy controls, Dendritic cell density and all morphologic parameters were 
significantly higher in SSDE group. Dendritic cell density and morphologic parameters, except for dendritic 
cell size, were significantly higher in NSSDE as compared with the controls. SSDE Sjogren’s syndrome dry eye, 
NSSDE non-Sjogren’s syndrome dry eye.
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CI 1.229–3.008, P = 0.043) for positive salivary gland biopsy and OR 1.473 (95% CI 1.059–3.471, P = 0.032) for 
positive anti-SSA. DC field presented an OR 2.073 (95% CI 1.189–4.171, P = 0.034) for positive salivary gland 
biopsy. No significant association of DC parameters with anti-SSA52 and anti-SSB was observed (all P > 0.05).

The effects of DC parameters on ocular features in SSDE patients are shown in Table 4. Significant associations 
were found between higher OSDI scores and increased DC density [β = 0.316 (95% CI 0.186–0.519), P = 0.049, 
per 1 cells/mm2 increase], increased DC dendrites [β = 0.144 (95% CI 0.072–0.315), P = 0.037, per 1 number/cell 
increase], and increased DC field [β = 0.053 (95% CI 0.021–0.086), P = 0.004, per 1 μm2 increase]. Significant asso-
ciations were shown between increased OSS and higher DC density [β = 0.260 (95% CI 0.146–0.475), P = 0.016], 
DC dendrites [β = 0.259 (95% CI 0.117–0.598), P = 0.042], and DC field [β = 0.015 (95% CI 0.010–0.018), 
P = 0.003]. Higher DC density was also associated with decreased ST [β = -0.170 (95% CI − 0.387 ~ − 0.054), 
P = 0.002] and TBUT [β = − 0.125 (95% CI − 0.392 ~ − 0.072), P = 0.045]. Higher DC field was associated with 
decreased ST [β = − 0.012 (95% CI − 0.018 ~ − 0.010), P = 0.001] and TMH [β = − 0.008 (95% CI − 0.011 ~ − 0.004), 
P = 0.023].

Discussion
Corneal epithelial APCs, particularly DCs, play an essential role in corneal immune surveillance and homeo-
stasis, including the initiation and induction of ocular surface immune reactivity and  tolerance13,28,29. Develop-
ment of IVCM made it feasible to investigate and quantify DCs alterations in various ocular surface diseases, 
such as  DED7,14,24,30–33,  keratitis18, contact lens  wear34,35, and corneal graft  rejection36, both in DC density and 
morphology. This study showed significant increases in DC density and morphologic parameters (size, dendrite 
number, and field) in aqueous tear-deficient DE patients with or without SS. Furthermore, as compared with 
NSSDE patients, increased DC density with higher activation state (higher DC size scores) and larger DC fields 
with more dendrites were noted in patients with SSDE. Additional, DC density and morphologic parameters 

Figure 2.  Representative in vivo confocal microscopic images of corneal epithelial dendritic cell (DC) in three 
groups. (A) Central cornea of a healthy volunteer, showing without DC (A1) and small DCs with two processes 
(white arrow) (A2). (B) Central cornea of a 39-year-old female patient with non-Sjogren’s syndrome dry eye 
(NSSDE), showing hyperreflective DCs without dendritic process (black arrow in B1 and B2) and a higher 
density of DCs (B2) with two processes (white arrow). (C1 and C2) Central cornea of a 43-year-old female 
patient with Sjogren’s syndrome dry eye (SSDE), showing a great number of DCs with two (white arrow) and 
longer processes (arrowhead).
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showed marked correlations with systemic severity (salivary gland biopsy and anti-SSA antibody) and ocular 
surface discomfort (OSDI) as well as damage (ST, TMH, TBUT and OSS). Those results may contribute to stratify 
patient and evaluate treatment effect.

In our study, the SSDE and NSSDE patients demonstrated differential degrees of increased DC parameters 
(Table 2, Figs. 1 and 2). Compared with the healthy controls, eyes with both SSDE and NSSDE had significant 
increases in DC density. The result is consistent with the notion that hyposecretion and immunoinflammatory 
response are similar in both SS and  NSS1,4. However, it should be bear in mind that SS is a chronic inflammatory 
disease with more severe clinical manifestations than  NSS1,4. Furthermore, comparison of SSDE and NSSDE 
revealed that DC density was higher in the SSDE subtype (P < 0.001). Therefore, corneal immune and inflamma-
tory responses were seen in both subtypes of aqueous tear-deficient DE and were more severe in SSDE. This was 
in accordance with previous reports, increased DC density was found in eyes with SS compared with non-SS31. 
Furthermore, it was reported by Lin et al. that the density and size of DC increased in the central cornea of DED 
with and without SS, whereas higher DC density and larger DC size in peripheral corneas were only found in 
SS  patients7. In addition, Wakamatsu and coworkers demonstrated that increased DC number was found both 
in cornea and conjunctiva of patients with SSDE compared with  NSSDE37.

Corneal DCs will increase and mature throughout the cornea on inflammatory stimulation, with the increased 
expression of major histocompatibility complex (MHC) class II and co-stimulatory  molecules13,38. Notably, the 
upregulation of MHC-II DC has been verified in patients with SS and implicated in this complex autoimmune 
 disorder39,40. Interestingly, human leukocyte antigen (HLA)-DR, encoded specific MHC II DC, is upregulated 
in SSDE and NSSDE  patients41,42. However, the levels of HLA-DR are significantly higher in  SSDE39,42. These 

Table 3.  Correlations between DCs density/morphology and clinical characteristics. DC dendritic cell, anti-
SSA anti-Sjogren’s syndrome A, anti-SSB anti-Sjogren’s syndrome B, OSDI ocular surface disease index, ST 
Schirmer’s test, TMH tear meniscus height, TBUT tear film breakup time, OSS ocular staining score. r is shown 
for all significant correlations in bold. *P < 0.05; **P < 0.01.

DC density DC size DC dendrites DC field

Age

r 0.195 0.178 0.196 0.120

P 0.123 0.068 0.073 0.165

Sex

r − 0.048 − 0.017 − 0.060 − 0.057

P 0.576 0.838 0.483 0.504

Salivary gland biopsy

r 0.499** 0.402** 0.465** 0.473**

P 0.000 0.000 0.000 0.000

Anti-SSA52

r 0.271** 0.332** 0.384** 0.291**

P 0.001 0.000 0.000 0.001

Anti-SSA

r 0.268** 0.357** 0.399** 0.302**

P 0.001 0.000 0.000 0.000

Anti-SSB

r 0.227** 0.296** 0.329** 0.284**

P 0.007 0.000 0.000 0.001

OSDI

r 0.336** 0.289** 0.311** 0.306**

P 0.007 0.001 0.001 0.001

ST

r − 0.405** − 0.177 − 0.152 − 0.331**

P 0.004 0.069 0.078 0.007

TMH

r − 0.386** − 0.129 − 0.163 − 0.286*

P 0.006 0.074 0.075 0.035

TBUT

r − 0.576* − 0.164* − 0.386** − 0.431**

P 0.018 0.035 0.007 0.004

OSS

r 0.524* 0.234** 0.587** 0.589**

P 0.032 0.006 0.001 0.001
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researches suggested that HLA-DR upregulation and MHC II DC overexpression played essential roles in the 
pathophysiology of aqueous tear-deficient DE, especially in SSDE. Clinically, upregulated HLA-DR has been 
acted as an active marker in SSDE, and reduced HLA-DR expression could be observed in experimental testing 
of the treatment  efficacy43,44. Since the visibility of DC density and morphology with IVCM, which reflected the 
corneal immune and inflammatory changes. It may be possible to evaluate the activity of the immune system 
and the severity of the inflammatory response using IVCM, and help to stratify patient and tailor treatment.

Morphologic parameters of corneal DC are associated with their functional  forms6,7,45. It is well known that 
mature DCs are larger with longer processes, whereas immature DCs are smaller ones and lack  dendrites46. In 
our study, we found that small DCs with lacked dendritic extensions often seen in healthy controls (Fig. 2A2). 
Moreover, in the NSSDE group, larger DCs in the central corneal epithelium with more processes increased 
(Fig. 2B2), and even more so in the SSDE group (Fig. 2C1–C2). However, compared with the healthy controls, 

Figure 3.  Logistic regression models: associations between DC parameters and anti-SSA52 (a), anti-SSA (b), 
anti-SSB (c) and salivary gland biopsy (d). OR (95% CI) indicates the risk of positive anti-SSA antibody and 
salivary gland biopsy enhanced when DC density, size, dendrites and field increased. DC dendritic cell, anti-SSA 
anti-Sjogren’s syndrome A, anti-SSB anti-Sjogren’s syndrome B, OR odds ratio, CI confidence interval; *P < 0.05.

Table 4.  Multivariate linear regression models: associations between DC parameters and ocular features in 
SSDE. DC dendritic cell, SSDE Sjogren’s syndrome dry eye, OSDI ocular surface disease index, ST Schirmer’s 
test, TMH tear meniscus height, TBUT tear film breakup time, OSS ocular staining score, CI confidence 
interval. The Estimate (95% CI) is shown for all significant correlations in bold. *P < 0.05.

DC density (per 1 cells/mm2) DC size (per 1 grade)
DC dendrites (per 1 
number/cell) DC field (per 1μm2)

Estimate (95% CI) P Estimate (95% CI) P Estimate (95% CI) P Estimate (95% CI) P

OSDI 0.316 (0.186–0.519)* 0.049 3.035 (0.206–10.319) 0.300 0.144 (0.072–0.315)* 0.037 0.053 (0.021–0.086)** 0.004

ST − 0.170 
(− 0.387 ~ − 0.054)** 0.002 0.650 (− 0.243–1.544) 0.140 0.015 (− 0.019–0.049) 0.357 − 0.012 

(− 0.018 ~ − 0.010)** 0.001

TMH 0.001 (− 0.001–0.003) 0.147 − 0.004 (− 0.054–
0.047) 0.873 0.012 (− 0.029–0.052) 0.550 − 0.008 

(− 0.011 ~ − 0.004)* 0.023

TBUT − 0.125 
(− 0.392 ~ − 0.072)* 0.045 0.118 (− 1.911–1.947) 0.891 0.007 (− 0.063–0.077) 0.835 0.001 (− 0.002–0.003) 0.751

OSS 0.260 (0.146–0.475)* 0.016 3.078 (− 3.102–9.258) 0.302 0.259 (0.117–0.598)* 0.042 0.015 (0.010–0.018)** 0.003
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eyes with NSSDE group had no significant increase in DC size. This result also suggested that immune and 
inflammatory responses were more prominent in SS. Our study provided further evidence that DCs participated 
in aqueous tear deficient DE pathogenesis, especially in SSDE.

Furthermore, the density and morphology of DCs in the central corneal epithelium showed marked positive 
correlations with ocular surface damage (OSS score), whereas inverse correlations with hyposecretion conditions 
(ST and TMH) and tear film instability (TBUT). In other words, there were positive correlations between the 
density and morphology of the DC and eye severity in SS patients. The presence of DCs as the immune sentinel 
and biomarker of the corneal immune response has been identified both in animal and human  studies13,14,24,47. 
The multivariate linear regression analysis of DC parameters with ocular factors also found that OSDI and OSS 
were independently associated with DC density, DC dendrites and DC field, while ST and TBUT were indepen-
dently associated with DC density. A recent study by Yang et al.48 found a correlation of ocular surface staining 
with inflammatory cytokines in DED patients, which in agreement with our study that vital dye staining may 
result in underlying immune activation or vice versa. Aggarwal et al.24 also found TBUT was associated with 
DC dendrites, however, there was no association between DC parameters and OSDI/ST in DED patients. These 
discrepancies may be due to the different participants enrolled and SSDE patients showed more serious ocular 
discomfort and injury than NSSDE. These findings demonstrate that DC parameters may be a useful biomarker 
to help make an objective assessment of the corneal immune response in DED, especially in SSDE.

In addition, it is worth noting that the associations between salivary gland biopsy and DC density 
(OR = 2.292), DC dendrites (OR = 1.980) as well as DC field (OR = 2.073), between anti-SSA antibody and DC 
size (OR = 1.319) as well as DC dendrites (OR = 1.473). These results demonstrated that increased DC density and 
morphology changes could result in higher risks of positive salivary gland biopsy and anti-SSA antibody in SS. 
Previous studies have identified that DCs were significantly increased in the central corneal  epithelium13,47, and 
simultaneously MHC class II molecules were also upregulated in salivary gland in SS  patients7,49. With continu-
ous injury to the system and ocular surface in SS patients, the cycle of antigen recognition, immune response, 
and inflammatory damage are perpetuating and  exacerbating39. Thus, the density and the morphologic features 
of DCs may provide an index for evaluating immunoinflammatory status in SS patients. Since the salivary gland 
biopsy and serum antibody tests are not feasible during repeated follow-ups in SS patients, the observation of DC 
density and morphologic parameters with IVCM may be used as an approach to assess the activity and severity of 
immune and inflammation in SS and may also facilitate to early diagnose as well as monitor the therapeutic effect.

Resident corneal immune cells are considered long-lived and can maintain corneal  homeostasis38,47. With 
immune and inflammatory stimuli, corneal DCs, which at least in part recruited from the blood, are increased 
and  activated38,47,50. The blood-derived DCs initially reach the limbus and later migrate to peripheral and cen-
tral  cornea20,38,47. Both in humans and rodents, the DCs have been reported to reside very close to the corneal 
 nerves47,51. According to the neuro-immune interaction, corneal nerves play an important role in DCs mor-
phological changes and kinetic  alterations47. In this present study, there was a clear difference on corneal nerve 
density and morphology among SSDE, NSSDE and healthy controls (shown in Fig. 2). Our study provided 
further evidence that there was a possible relationship between nerves and DCs. The impacts of corneal nerves 
on the initiation and regulation of DCs both in health and disease, and the underlying mechanisms warrant 
further in-depth researches.

Inevitably, our study has several limitations. First, the evaporative DE was not included in this study, which 
also showed DC alterations in previous  study6. Moreover, the meibomian gland may also affect the DC density 
and morphology and should be demonstrate in further research. Second, only the central cornea was investi-
gated in our study since previous research has found that DC changes were more obvious in the central than the 
peripheral cornea in  SSDE7. The DC parameters in the peripheral cornea/conjunctiva cannot be extrapolated. 
Currently a study with larger patients is underway to assess the DC changes both in central and peripheral 
cornea. Third, further larger sample investigations are needed to determine the efficacy of using DC density and 
morphology to evaluate the therapeutic effects of DED.

Nevertheless, this present study provides a quantitative description of DC density and morphology in DE 
patients with or without SS. Moreover, DC parameters showed significant correlations with activity and severity 
of SS and DED. Additionally, the demonstration of differential responses in DC parameters may further elucidate 
the pathogenesis of this complex disease.

In summary, the SSDE are characterized by increased DC density, higher DC activation, more dendrites and 
larger fields. Such DC alterations could contribute to activity and severity of SS and can be detected and quanti-
fied by IVCM objectively, allowing its use in evaluating pathogenesis and guiding clinical treatment.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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