
The extent to which embryonic development in wildlife and
human populations is affected by contaminants has been a
growing concern over the last decade, since the realization
that various environmental chemicals can alter endocrine
functioning (Guillette and Crain, 2000; McLachlan, 2001).
Documented disruptions or alterations in reproductive
activity, morphology or physiology in wildlife populations
have been correlated with contaminant-induced modifica-
tions in endocrine system functioning. Thus, a great deal of
the current focus on environmental pollution is on the
potential endocrine-altering actions of various chemical
contaminants (Knobil et al., 1999; Guillette and Crain,
2000; McLachlan, 2001). 

Initial research on wildlife populations exposed to
sewage or pesticides demonstrated disrupted endocrine
activity and altered reproductive biology after exposure to
various classes of contaminant, including pesticides, sewage
effluent and pulp mill effluent (for reviews, see Van der
Kraak, 1998; Guillette and Crain, 2000). Studies examining
public health concerns associated with the endocrine
disruptive effects of environmental contaminants have often
used human embryonic exposure to diethylstiboestrol (DES)

as a model (Knobil et al., 1999; McLachlan, 2001). Concern
about endocrine disruption has increased because of the
historical use of DES and current use of other hormones in
the animal sciences industry (see McLachlan, 2001). This
concern has been extended to chemicals released from
many industrial activities, sewage treatment works,
domestic activities and animal feedlots (for examples, see
Blount et al., 2000; Gray et al., 2001). The developmental
effects of exposure to environmental contaminants that
have the potential to alter endocrine activity in adult
animals, including humans, are of particular interest and
have been reviewed in detail (for example, see Knobil et al.,
1999; Naz, 1999; Guillette and Crain, 2000; McLachlan,
2001).

Several synthetic chemicals as well as some naturally
occurring plant compounds have been shown to mimic
naturally occurring hormones, to act as anti-hormones or to
alter the enzymes responsible for hormone synthesis and
degradation (Fig. 1) and have been defined as endocrine-
disrupting contaminants (EDCs). Endocrine disruption can
occur via multiple mechanisms in adults as well as in
developing embryos. Alterations of the endocrine system
can be complex, and not necessarily limited to a particular
organ or molecular mechanism. For instance, contaminants
have been shown to alter: (1) hormone production at its
endocrine source; (2) the release of stimulatory or inhibitory
hormones from the pituitary or hypothalamus; (3) hepatic
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enzymatic biotransformation of hormones; and (4) the
concentration or functioning of serum-binding proteins,
altering free hormone concentrations in serum (Guillette et
al., 2000). All of these mechanisms must be examined if
contaminant-induced endocrine disruption is suspected.

Much of the current literature on EDCs has focused on
alterations arising from embryonic exposure (Guillette and
Crain, 2000). For example, alterations in sex differentiation,
modifications of gonadal steroidogenesis, abnormally
increased testicular aromatase activity and alterations in
hepatic biotransformation of steroids have all been
demonstrated after embryonic exposure to EDCs. These
findings may be due, in part, to the apparent sensitivity of
the developing embryo to chemical signals (Bern, 1992).
Radical modification of embryonic structure and function,
and thus adult form and function, can be induced by
epigenetic influences that produce organizational responses
(Guillette et al., 1995). It remains unclear what the long-
term effects of these embryonic modifications are on the
health and reproductive potential of adults, but they appear
to be persistent. Consequently, the influences of such
embryonic modifications on populations are difficult to
predict and are generally unknown. Current studies of
development examine two primary pathways: (1) genetic
modifications, such as genetic drift during species isolation
or homeosis; and (2) modifications in the timing, presence
or amount of chemical signalling. In general, alterations in
embryonic development create flexibility in both the form
and function of phenotypes and it is this phenotypic
variation in body structure and function that allows species
to persist and evolve in constantly changing environments.
Thus, phenotypic plasticity, a requirement of evolutionary

change, provides the framework for possible changes in
embryonic form and function resulting from exposure to
man-made chemicals. The susceptibility of embryos to
phenotypic alteration makes the identification of EDCs and
descriptions of their endocrine actions critically important. 

Developmental alterations due to embryonic
exposure to endocrine-disrupting contaminants

Alterations in sexual differentiation

In mammals, steroid hormones have important roles in
the development of the internal reproductive ducts and
external genitalia. In non-mammalian vertebrates, such as
some species of fish, amphibians and reptiles, sex steroids
also play a major role in the development of the gonads. For
example, in some lizards and turtles and all crocodilians,
temperature is a major factor in the determination of
gonadal differentiation. In American alligators, incubation
temperature during a critical developmental window,
midway through development, determines whether it is a
testis or ovary that forms (Lang and Andrews, 1994).
Pharmaceutical anti-oestrogens and anti-androgens or
enzyme blockers (for example, aromatase inhibitors) have
been used to show that oestrogens stimulate the formation
of an ovary. Given these observations, it is possible that
contaminants with agonistic and antagonistic hormonal
activity influence the sex determination processes in a wide
range of species.

The observations in wild populations are supported by
laboratory-based experimental studies demonstrating the
ability of various contaminants to alter sexual development
in non-mammalian species. Exposure of mosquito fish
(Gambusia holbrooki) fry to 4-nonylphenol (50 µg l–1)
within 3 days of birth resulted in 100% females on the basis
of external morphology, but the sex ratio, on the basis of
gonadal sex, was close to 1:1 and did not differ from that of
controls (Dreze et al., 2000). However, the response to
contaminants with endocrine activity varies depending on
the species and chemical studied, for example, in studies
examining sexual development in salmonids exposed to
various environmental contaminants (Carlson et al., 2000).

Ecologically relevant concentrations of some pesticides
or their metabolites can induce altered sex determination
mechanisms in reptiles with temperature-determined sex.
Contaminants reported to alter sex determination (female to
male) in alligator or turtle embryos include o,p’-
dichlorodiphenyledichloroethylene (o,p’-DDE), p,p’-DDE,
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), indole-3-
carbinol, trans-nonachlor, p,p’-dichlorodiphenyledichloro-
ethane (p,p’-DDD) and various hydroxylated
polychlorinated biphenyls (PCBs) (Bergeron et al., 1994;
Matter et al., 1998; Willingham and Crews, 1999).
Competitive binding assays, using partially purified
oestrogen receptors from alligator uterus, indicate that o,p’-
DDE, p,p’-DDE, trans-nonachlor, p,p’-DDD and various
PCBs exhibit binding (Vonier et al., 1996). These
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Fig. 1. Endocrine disruption can occur at several sites in the
reproductive system: hypothalamo–pituitary function, gonadal
hormone synthesis, hepatic biotransformation or serum binding
can be altered.
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compounds are important in ecological systems as they
readily bioaccumulate and biomagnify in the food chain. A
commonly bioaccumulated metabolite of the pesticide
dichlorodiphenyltrichloroethane (DDT), p,p’-DDE, exhibits
a variety of actions depending on the species and endpoint
examined. p,p’-DDE has been reported to have oestrogenic
activity, no oestrogenic activity and anti-androgenic
activity, depending on the species examined (Guillette et
al., 2000). Kelce et al. (1995) reported potent anti-
androgenic activity, both in vitro and in vivo, for p,p’-DDE
in mammalian systems. Similar studies at the molecular and
organism levels have not been performed in other
vertebrate species, but data indicate the presence of similar
anti-androgenic actions (Gray et al., 2001).

The concentrations of contaminants reported to cause
sex reversal in reptiles are within the range of concentra-
tions measured in alligator eggs (Guillette et al., 2000). p,p’-
DDE, trans-nonachlor, mirex and endrin are present at
p.p.b. (µg kg–1) concentrations in the serum of juvenile
alligators from a contaminated lake, Lake Apopka in Florida
(Guillette et al., 1999a). These concentrations are capable
of altering sexual differentiation of alligator and turtle
embryos (Matter et al., 1998; Willingham and Crews,
1999). In contrast to the DDT metabolites and other
compounds, the herbicides atrazine and 2,4-D are not
directly oestrogenic (or at least they do not induce male-to-
female sex reversal) in studies in which eggs were exposed
to various doses of these chemicals (Guillette et al., 2000).
Atrazine, like p,p’-DDE, exhibits a low affinity for the
alligator oestrogen receptor (Vonier et al., 1996). Atrazine,
however, applied to the egg shell topically at p.p.m. doses
can induce increased testicular expression of aromatase in
male alligators (Crain et al., 1997). Studies in a range of
species (Gerstenberger et al., 2000; Sanderson et al., 2000)
indicate that aromatase activity is a major target of endo-
crine-disrupting chemicals, as hypothesized by Crain et al.
(1997) after their observation of the response in atrazine-
treated alligator embryos. 2,4-D does not influence
aromatase activity in alligators at the treatment doses used
(Crain et al., 1997). It is clear from these studies that
contaminants that affect endocrine activity can alter sex
determination in a variety of species via a variety of
mechanisms.

Alterations in gonadal steroidogenesis

As reported above, a number of studies have documented
altered plasma concentrations of sex steroids in organisms
exposed to contaminants with endocrine disruptive activity.
Alterations in plasma sex steroids have been reported for
fish exposed to pulp mill effluent (Van der Kraak, 1998),
sewage effluent (Folmar et al., 1996, 2001) and industrial
effluents (Orlando et al., 1999). The mechanisms by which
these alterations in plasma hormones occur are not known,
but may involve alterations in synthesis, storage or hepatic
biotransformation. For example, various pesticides can
inhibit the expression of steroidogenic acute regulatory
(StAR) protein in Leydig cells in vitro and consequently

reduce testosterone synthesis (Walsh et al., 2000). This is
one of many potential mechanisms that could alter
steroidogenesis in the contaminant-exposed gonad.

Skewed sex hormone ratios (E:A) have been observed in
alligators exposed to chemicals from normal agricultural
activity, municipal runoff and, on one lake, a pesticide spill
containing dicofol, DDT and DDE (for a review, see Guillette
et al., 2000). Male alligators from a highly contaminated
lake, Lake Apopka, in Florida (Fig. 2) had reduced plasma
testosterone concentrations that were comparable with
female plasma testosterone concentrations and three times
lower than those of males from a reference lake, Lake
Woodruff. Oestradiol concentrations of juvenile female
alligators from Lake Apopka were almost twofold greater
than those of females from Lake Woodruff (Guillette et al.,
1994). These alterations in plasma sex steroid concentra-
tions are present for years after birth (Fig. 3) and occur in
lakes, such as Lake Okeechobee, that do not have a history
of pesticide spills like that of Lake Apopka (Crain et al.,
1998; Guillette et al., 1999b). The steroidogenic capacity in
vitro of gonads taken from juvenile alligators from Lake
Apopka and Lake Woodruff have been investigated and it
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Fig. 2. The endocrine disruptive actions of environmental
contaminants have been examined in alligator populations from
various sites in Florida, USA, especially lakes Apopka (288379N
818379W), Woodruff (298069N 818259W) and Okeechobee
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has been found that the pattern of steroidogenic activity of
the gonads did not match the circulating plasma sex steroid
concentrations observed in the same individuals. Circulating
plasma oestradiol in vivo was greater in female alligators
from Lake Apopka compared with that in controls but
oestradiol ovarian synthesis in vitro was lower than normal.
The testes of male alligators from Lake Apopka produced
more oestradiol in vitro than did testes from males from
Lake Woodruff. However, a similar rate of synthesis of
testosterone was observed, which was in contrast to the
circulating plasma concentrations. On the basis of these
observations, it was hypothesized that the differences in sex
steroid concentrations observed in vivo and in vitro could
be due, in part, to modifications in hepatic biotransforma-
tion.

Alteration in hepatic biotransformation of steroids

Steroid hormone profiles and the liver

The liver plays an important role in maintaining
homeostasis in all vertebrates. In addition to metabolizing
toxins, the liver plays a key role in hormone homeostasis, as
it metabolizes both peptide and steroid hormones. Hepatic
metabolism of many steroids and toxins can occur in a
sexually dimorphic pattern and thus can serve as a bio-
marker for exposure to both naturally occurring and
synthetic hormones (see below). The control of steroid
hormone profiles involves several variables, including 
rate of hormone synthesis, interactions among hormones,
and rates of secretion, transport, biotransformation and

elimination. One route through which normal control could
be disrupted is xenobiotic induction of sex steroid
metabolizing cytochrome P-450 enzymes. Inducing or
blocking these enzymes conceivably alters the natural
balance of circulating sex steroids. Several mechanisms are
used for hormone biotransformation in the liver. Direct
conjugation, in which the steroid is conjugated to
glucuronic acid or sulphate, produces a more water-soluble
product that can then be excreted in urine (de Bethizy and
Hayes, 1994). Steroid hydroxylation accomplishes the same
goal by stereo-selectively and regio-specifically attaching
hydroxyl groups to a steroid (Wilson et al., 1998). Oxido-
reduction of testosterone to androstenedione, dihydro-
testosterone and androstanediols is another hepatic
biotransformation pathway that influences circulating
concentrations of testosterone and other androgens.

Sexual dimorphism and androgen imprinting

Sexually dimorphic expression of sex steroid metabolizing
enzymes has been well documented. Gustaffson (1994)
summarized findings on sexual dimorphism of enzyme
profiles in liver and reported that, in rats, there is
considerable hepatic sexual dimorphism that could be
linked to the pulsatile secretions of growth hormone from
the pituitary gland under feedback control from oestrogens
and testosterone. A hypothalamo–pituitary–hepatic axis
that controls liver enzyme activity in a sexually dimorphic
manner under the influence of oestrogens and testosterone
has been proposed. It is thought that neither the amplitude
nor frequency of the growth hormone pulses is recognized
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Fig. 3. Juvenile alligators (Alligator mississippiensis) from Lake Apopka, a lake contam-
inated with pesticides, pesticide metabolites and nutrients, exhibit altered plasma sex
steroid concentrations compared with animals from a reference lake, Lake Woodruff. (j)
Males from Lake Apopka; (h) males from Lake Woodruff; ( ) females from Lake Apopka;
( ) females from Lake Woodruff. Males have significantly lower plasma testosterone and
DHT concentrations and higher plasma oestradiol concentrations than reference males.
Females exhibit high plasma DHT concentrations compared with reference females. (Data
from Guillette et al., 1999b, Pickford et al., 2000.)
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as male or female but rather it is the prolonged suppression
of the GH pulse in males and the persistence of circulating
concentrations of GH in females that stimulate the sexually
dimorphic pattern. Sex-specific forms of hepatic cyto-
chrome P-450 in rats have been reported by Chao and
Chung (1982) and Waxman et al. (1985). Chao and Chung
(1982) demonstrated that sexual differences in hepatic
microsomal drug and steroid metabolism in adult rats are
imprinted by androgenic steroids during the neonatal
period. Androgen imprinting, as defined by Gustafsson
(1994), is neonatal androgen exposure that influences
hepatic enzyme responsiveness to androgens in adult life.
Cytochrome P-450 from rats imprinted neonatally expresses
imprintable testosterone 16α-hydroxylase activity (Chao
and Chung, 1982). In contrast, testosterone 7α–hydroxylase,
6β-hydroxylase and benzphetamine N-demethylase ac-
tivity did not show a relationship between imprintability
and neonatal androgen exposure (Chao and Chung, 1982).
The enzyme 15β-hydroxylase, found primarily in female
rodents, provides a good example of the masculinizing
influence of testosterone. Treatment of a female rat with
testosterone propionate decreases 15β-hydroxlase activity
(Gustafsson, 1994). However, if a male rat is treated with
oestrogen, would the reverse be true? Would 15β-
hydroxylase be induced? Would a xeno-oestrogen produce
a similar effect? Neonatal castration of male rats resulted 
in complete feminization (that is, an increase) of
15β–hydroxylase concentrations. This effect was inhibited
by administering testosterone propionate on the day after
neonatal castration. This finding supports the contention
that androgen has a role in masculinizing the rat liver.
Administration of oestradiol benzoate to postpubertally
castrated male rats (that is, rats with livers imprinted as
male) led to transient 15β-hydroxylase activity (that is,
feminization) (Gustafsson, 1994). These examples demon-
strate that: (1) androgens and oestrogens influence steroid
metabolizing hepatic enzymes; and (2) there is a degree of
specificity in neonatal imprinting of particular steroid
metabolizing cytochrome P-450 enzymes in rats that could
be susceptible to alterations through neonatal exposure to
endocrine-active compounds such as anti-androgenic p,p’-
DDE or oestrogenic o,p’-DDT. This induction–alteration of
specific steroid-metabolizing enzymes by xenobiotics
might then disrupt hormone homeostasis in the circulating
plasma by altering the inactivation, and ultimately the
removal, of hormones from the circulation.

Xenobiotics and hepatic biotransformation of hormones

Baldwin and LeBlanc (1994) demonstrated that
xenobiotic exposure was correlated with altered accumula-
tion of exogenously administered steroid hormone and
toxicity to steroid-dependent processes in an invertebrate
model, Daphnia magna. In mice, endosulfan, a common
organochlorine pesticide in widespread use today, caused
an increase in total testosterone hydroxyl metabolite
formation in females and increased the rate of 16β-, 6α- and

16α-hydroxytestosterone metabolite production (Wilson et
al., 1999). However, a coincident decrease in circulating
serum hormone concentrations was not demonstrated and
Wilson et al. (1999) suggested that other homeostatic
processes were able to compensate for the changes in
steroid metabolism induced by exposure to endosulfan. The
fungicide ketoconozole lowers serum testosterone concen-
tration, lowers gonadal steroid synthesis, and alters hepatic
biotransformation of testosterone in CD-1 mice. The
lowered serum testosterone concentrations were shown to
be due to altered gonadal synthesis, and hepatic inactiva-
tion apparently did not play a significant role (Wilson and
LeBlanc, 2000). This finding was of interest to the present
authors as altered plasma steroid concentrations were
observed in juvenile alligators from Lake Apopka but the
differences were not easily explained by altered gonadal
steroidogenesis (Guillette et al., 2000). A possible ex-
planation for this observation is that wild animals are
exposed to a mixture of compounds that might act at many
points in the steroid synthesis–degradation pathway during
development and throughout the maturational process 
(Fig. 1). The ratio of 6α-hydroxylase:15α-hydroxylase
(masculinized < feminized) has been proposed as a
biomarker for the androgen status of an animal because of
the influence androgen has on the presence of these
enzymes (Wilson et al., 1999). A dose-dependent decrease
in serum testosterone coincided with a dose-dependent
increase in the 6α-hydroxylase:15α-hydroxylase ratio after
neonatal exposure to indole-3-carbinol (Wilson et al.,
1999). In another study, ketoconozole differentially inhibited
15α-hydroxylase activity, leading to the increase in the 6α-
hydroxylase:15α-hydroxylase ratio (Wilson and LeBlanc,
2000). These studies demonstrate that altered plasma
testosterone concentrations can be induced by xenobiotics
in a laboratory setting and that a lowered plasma
testosterone concentration can be linked either to altered
hydroxylase enzyme activity in the liver (which is imprinted
during development through oestrogen and androgen
exposure) or to altered synthesis taking place in the gonads.

Comparative view of hepatic sexual dimorphism

Sexual dimorphism in cytochrome P-450 enzymes has
not only been observed in rodents. Fish, reptiles, birds and
marine mammals are among the other classes examined,
although far fewer data have been collected than in rodents.
For example, CPP1A1 in Beluga whales (Delphinapterus
leucas) is correlated with chlorobiphenyl residues and has
proved useful as a biomarker for exposure to chemical
inducers, as it has been in other species (White et al., 1994).
In Beluga whales, 7-ethoxyresorufin O-deethylase (EROD),
pentoxyresorufin O-deethylase (PROD), and aryl hydro-
carbon hydroxylase (AHH) activities are sexually dimorphic,
that is, higher in males than in females (White et al., 1994).
Furthermore, CYP1A1 activity is sexually dimorphic and
correlated with EROD, PROD and AHH activities,
indicating that CYP1A1 is a key catalyst in these reactions.
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A possible explanation for the apparent CYP1A1 sexual
dimorphism is the size and age groups sampled for each
sex. The six males (highest CYP1A1) sampled also had the
highest body fat loads of non-ortho and mono-ortho PCBs,
whereas concentrations of these chemicals in the body fat
of the five female and two smaller male whales were lower
(White et al., 1994). These findings illustrate an important
problem for wildlife toxicologists: that, in sampling
populations of wild animals, a researcher has little control
over what the animals have been exposed to in the past.
This is a major problem for investigations of ecologically
relevant problems in which mixtures are always present.
Furthermore, it is difficult to establish ‘normal’ standards for
comparison with ‘exposed’ populations.

A number of comparative studies have been performed
in fish. Cytochrome P-450 enzymes in scup (Stenotomus
chrysops) and other marine fish apparently exhibit catalytic
activity similar to that associated with mammalian cyto-
chromes P-448 activity (Stegeman and Binder, 1978).
Stegeman and Woodin (1984) investigated sex differences
in hepatic microsomal cytochrome P-450 content in several
fish species and reported that male fish with mature gonads
exhibited five- to tenfold greater enzyme content than did
female fish with mature gonads. Suppression of cytochrome
P-450 in female fish with mature gonads also accounted for
the differences observed between mature and immature
killifish (Fundulus heteroclitus) and flounder (Pseudo-
pleuronectes americanus) of similar sex and size (Stegeman
and Binder, 1978). Activity of 6β- and 16β-testosterone
hydroxylase was sexually dimorphic, and activity was
higher in female killifish and winter flounder. In brook trout
(Salvelinus fontinalis), 6β-testosterone hydroxylase activity
exhibited the opposite pattern to that seen in the marine
species, with activity higher in males. In contrast, testo-
sterone 16β-hydroxylase activity in brook trout was similar
to that in marine species, and concentrations were higher in
females than in males (Stegeman and Woodin, 1984).
Oestradiol can both increase and decrease specific hepatic
P-450 forms in flounder but other factors are involved in
differentially regulating hepatic enzyme activity (Snowberger
Gray et al., 1991). For example, oestradiol suppresses
CYP1A1 in reproductively active female flounder and scup
(Snowberger Gray et al., 1991). EROD activity per nmol P-
450 l–1 is sexually dimorphic in both species investigated,
although the patterns vary seasonally. In scup, for example,
EROD-specific activity was not sexually dimorphic in May,
was significantly greater in males in June, and was
increased in both sexes in September (Snowberger Gray et
al., 1991). Snowberger Gray et al. (1991) hypothesize that
the apparent seasonal change may be due to migrations to
and from more contaminated sites. However, these
alterations may also be due to seasonal hormonal changes
or changes in diet.

A few studies have investigated the sexual dimorphism of
hepatic enzyme profiles in reptiles. Reptiles contain the
normal mixed function oxidase system, although alligators
(among other reptiles) exhibit a lower and different response

to classic inducers than is observed in mammals (Ertl and
Winston, 1998). No sexual dimorphism in CYP1A–EROD
activity was observed in turtles (Chrysemys picta) from Cape
Cod (MA), although sex differences were observed in the
seasonal changes in activity. Males from the non-impacted
site demonstrated peak activities in May, whereas females
from the same site demonstrated peak activity in August (Rie
et al., 2000). A different pattern was observed in turtles
collected from an impacted site where both males and
females demonstrated peak activity in June (Rie et al.,
2000).

Avian hepatic imprinting by oestrogens and androgens
has yet to be studied, although sexual dimorphism has been
demonstrated. Great blue herons (Ardea herodias) exposed
to TCDD were able to hydroxylate testosterone at the 2β,
6β, 15α, 16α and 16β sites. The activities of these hydro-
xylase enzymes were influenced by age and sex, and 2β-
testosterone hydroxylase and 15α-testosterone hydroxylase
were specifically induced in adult female herons, 15α-
testosterone hydroxylase was induced in adult male herons,
and 6β-testosterone hydroxylase was induced in adult
females and hatchlings (Sanderson et al., 1997). When great
blue herons were compared with chickens, in which 6β-
testosterone hydroxylase, 16α-testosterone hydroxylase and
2α-testosterone hydroxylase are found (Pampori and
Shapiro, 1993), differences in specific concentrations were
observed but the same patterns of sexual dimorphism exist
(lower in females and higher in males), with the exception
of 2α-testosterone hydroxylase, which was detected in
chickens but was not found in great blue herons.

Endocrine disruption and hepatic biotransformation in
alligators

Altered hepatic biotransformation of testosterone
provides a plausible explanation for the differences
observed in plasma concentration of steroids in juvenile
alligators in Florida (Guillette et al., 2000). Given the fact
that the hypothalamus–pituitary axis functions in a sexually
dimorphic manner and is imprinted by steroids during
development in rodents (Gustafsson, 1994), it is a logical
suggestion that this system is susceptible to xenobiotic
EDCs. DDT, an organochlorine compound present in the
1980 spill on Lake Apopka, modulates sexual dimorphism
by affecting regulatory sites of hepatic metabolism through
preferential induction of cytochrome P-450 enzymes in
Wistar rats (Sierra-Santoyo et al., 2000). Alligators in other
lakes in Florida also have altered circulating plasma
testosterone concentrations (Crain et al., 1998; Guillette et
al., 1999b). Sexual dimorphisms in hepatic enzyme activity
are present in juvenile alligators collected from a reference
site (Gunderson et al., in press). Alligators from Lake
Woodruff (a reference site) exhibited sexually dimorphic
patterns of total testosterone hydroxylase activity, and
activity of testosterone hydroxylase was higher in females
than in males. This pattern was not observed in juvenile
alligators collected from Lake Apopka and was reversed in
animals collected from a contaminated site located on the
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south shore of Lake Okeechobee (Gunderson et al., in
press). Furthermore, alterations in oxido-reductase and
glucuronosyltransferase activities are evident in alligators
collected from contaminated lakes when compared with
alligators from Lake Woodruff (Gunderson et al., in press).
As discussed above, sexual dimorphism, seasonal variation,
contaminant body burden, current contaminant exposure
and age must all be taken into account when using hepatic
enzyme activity as a biomarker for xenobiotic exposure as
well as a mechanism to explain altered steroid concentra-
ions in the plasma. Altered hepatic biotransformation may
play a role in the observed differences in alligators in
contaminated lakes in Florida, although more work is
needed to examine other points in the pathways in which
plasma steroid concentrations are regulated.

Conclusions

Environmental contaminants have the potential to alter the
development of the reproductive system and liver. Future
studies need to examine the endocrine-disruptive actions of
contaminants on the hypothalamo–pituitary axis of various
wildlife species, as well as the binding proteins that transport
these hormones. It is now clear that endocrine disruption is a
definite mechanism by which various systems of the
developing vertebrate embryo can be altered by exposure to
contaminants. Our studies demonstrate that exposed
embryos show alterations (both stimulatory and inhibitory) of
several systems. The fact that numerous systems can be
affected, coupled with the complex milieu of chemicals in the
environment, indicate that a great deal of interdisciplinary
research is needed to understand the long-term implications
of endocrine disruption for populations of wildlife species.
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