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Abstract 32 

Schizophrenia (SZ) is a complex psychiatric disorder that is currently defined by symptomatic 33 

and behavioral, rather than biological, criteria. Neuroimaging is an appealing avenue for SZ 34 

biomarker development, as several neuroimaging-based studies comparing individuals with SZ 35 

to healthy controls (HC) have shown measurable group differences in brain structure, as well as 36 

functional brain alterations in both static and dynamic functional network connectivity (sFNC 37 

and dFNC, respectively). The recently proposed filter-banked connectivity (FBC) method 38 

extends the standard dFNC sliding-window approach to estimate FNC within an arbitrary 39 

number of distinct frequency bands. The initial implementation used a set of filters spanning the 40 

full connectivity spectral range, providing a unified approach to examine both sFNC and dFNC 41 

in a single analysis. Initial FBC results found that individuals with SZ spend more time in a less 42 

structured, more disconnected low-frequency (i.e., static) FNC state than HC, as well as 43 

preferential SZ occupancy in high-frequency connectivity states, suggesting a frequency-specific 44 

component underpinning the functional dysconnectivity observed in SZ. Building on these 45 

findings, we sought to link such frequency-specific patterns of FNC to covarying data-driven 46 

structural brain networks in the context of SZ. Specifically, we employ a multi-set canonical 47 

correlation analysis + joint independent components analysis (mCCA + jICA) data fusion 48 

framework to study the connection between grey matter volume (GMV) maps and FBC states 49 

across the full connectivity frequency spectrum. Our multimodal analysis identified two joint 50 

sources that captured co-varying patterns of frequency-specific functional connectivity and 51 

alterations in GMV with significant group differences in loading parameters between the SZ 52 

group and HC. The first joint source linked frequency-modulated connections between the 53 

subcortical and sensorimotor networks and GMV alterations in the frontal and temporal lobes, 54 
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while the second joint source identified a relationship between low-frequency cerebellar-55 

sensorimotor connectivity and structural changes in both the cerebellum and motor cortex. 56 

Together, these results show a strong connection between cortico-subcortical functional 57 

connectivity at both high and low frequencies and alterations in cortical GMV that may be 58 

relevant to the pathogenesis and pathophysiology of SZ. 59 

1 Introduction 60 

Neuroimaging has become a valuable tool for noninvasively studying the human brain. 61 

Several neuroimaging tools now exist that are capable of capturing brain structure and tissue type 62 

at various anatomical levels (e.g., structural MRI [sMRI] and diffusion MRI [dMRI]), as well as 63 

indirectly estimating brain function or activity through characteristic source signals of the 64 

underlying neuronal, metabolic, or hemodynamic activity (e.g., electroencephalography/ 65 

magnetoencephalography [EEG/MEG], positron emission tomography [PET], functional MRI 66 

[fMRI], respectively). While each of these imaging modalities is powerful and useful in its own 67 

right, each provides a unique yet incomplete picture of the brain. Furthermore, each modality is 68 

accompanied by its own inherent limitations on spatial and temporal resolution, imposed by the 69 

technical specifications of each image acquisition type. To gain a more complete picture of an 70 

individual’s neural landscape and overcome the limitations of any single imaging modality, 71 

multimodal analyses can be utilized to combine and leverage the rich and complementary 72 

information available across various neuroimaging types.  73 

Multimodal data fusion represents a class of analytical approaches that aim to integrate 74 

data across complementary neuroimaging modalities. Simpler approaches to data fusion may 75 

connect results from separate unimodal analyses through post-hoc correlations or use the results 76 
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from one modality to constrain the model for another modality (i.e., asymmetric data fusion). 77 

Such multimodal approaches can provide useful insights but ultimately do not take full 78 

advantage of the available joint (i.e., cross-modal) information, which is the key aim of the so-79 

called "symmetric” multimodal fusion approaches (Calhoun & Sui, 2016; Sui et al., 2012). This 80 

family of data fusion approaches considers each imaging modality equally to estimate a final 81 

joint result and can be further broken down into two categories: model-based vs. data-driven 82 

approaches. While model-based approaches can be valuable when there is sufficient a priori 83 

knowledge about the problem being studied, data-driven fusion approaches are often 84 

advantageous because they impose fewer assumptions on the interrelationships between the data 85 

types and enable exploration of the entire voxel space rather than limiting to only those 86 

interrelationships that were explicitly modeled prior. For this reason, data-driven approaches are 87 

especially useful for studying complex psychiatric disorders such as schizophrenia, where there 88 

is still much to be learned about the etiology (Ayano, 2016; Misiak et al., 2018). 89 

Existing data-driven approaches often use blind or semi-blind variations of linear mixture 90 

models to reveal hidden linkages between feature spaces derived from two or more imaging 91 

modalities. These approaches include, but are not limited to, joint independent component 92 

analysis (jICA) (Calhoun et al., 2006), linked ICA (Groves et al., 2011), partial least squares 93 

(PLS) (Martínez-Montes et al., 2004), and multimodal/multiset canonical correlation analysis 94 

(mCCA) (Correa et al., 2007, 2010) for blind approaches, and coefficient constrained ICA (cc-95 

ICA) (Sui et al., 2009) and parallel ICA (Liu et al., 2009) for semi-blind approaches. Each of 96 

these multivariate approaches differ in their optimization procedures and basic limitations, but 97 

just as multimodal analyses can combine complementary data types to overcome the limitations 98 
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of each, combining multiple multivariate fusion algorithms has been shown to mitigate the 99 

limiting effects of the individual methods (Sui et al., 2011). 100 

One example of a combined approach is the mCCA + jICA fusion framework (Sui et al., 101 

2011, 2013). In jICA the objective is to estimate sources that are maximally independent from 102 

one another, but the shared mixing matrix across the datasets assumes a strong correlation 103 

between the distinct modalities. Conversely, mCCA maximizes the correlations of inter-subject 104 

mixing profiles, thus allowing for varying correlations between the joint sources, but may result 105 

in spatial maps for the joint sources that are not sufficiently different from one another. 106 

However, the combined mCCA + jICA model is designed to allow for the identification of both 107 

strongly and weakly correlated joint components that are also independent from one another by 108 

employing mCCA in the first step to generate flexible linkages between the modalities and 109 

subsequently applying jICA on the associated maps in the second step.   110 

The mCCA + jICA framework has been utilized for several neuroimaging data fusion 111 

studies of complex disorders, including schizophrenia (SZ). SZ is a chronic and debilitating 112 

neuropsychiatric syndrome marked by a variety of mental and behavioral symptoms including 113 

positive symptoms such as delusions, hallucinations, disorganized speech and/or behavior, 114 

negative symptoms such as diminished emotional expression and avolition, and cognitive deficits 115 

impacting on an individual’s professional life and interpersonal relationships (American 116 

Psychiatric Association, 2013). There is considerable evidence that functional, structural, 117 

genetic, and epigenetic alterations are associated with SZ; however, none yet have proven to be 118 

sufficiently reliable for use as clinical biomarkers, especially at an individual level (Fornito et al., 119 

2012; Khavari & Cairns, 2020; Kraguljac et al., 2021; Pantelis et al., 2009; Pickard, 2015; 120 

Rodrigues-Amorim et al., 2017). While this can be due to the substantial heterogeneity of SZ and 121 
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imperfections in current defining diagnostic criteria, it has also been suggested that this lack of 122 

clinically relevant diagnostic markers can be attributed, at least in part, to the oversaturation of 123 

unimodal analyses and the lack of effective multimodal studies, thus missing important 124 

neurobiological components of SZ that can only be partially detected by individual modalities 125 

(Calhoun & Sui, 2016). As the importance of multimodal fusion analyses continues to be 126 

recognized, the number of multimodal studies of SZ has increased, the results of which show 127 

evidence for strong linkages between structural, functional, and even genetic factors of the 128 

disease (Acar et al., 2019; DeRamus et al., 2022; Lottman et al., 2018; Y. Zhang et al., 2022).  129 

The increasing interest in studying “time evolving” or dynamic FNC and how these 130 

dynamics may relate to psychiatric syndromes like SZ has begun to be incorporated into 131 

multimodal studies of disease (Abrol et al., 2017; Calhoun et al., 2014). Currently, dFNC is the 132 

object of much debate in the field. However, much of the skepticism surrounding dFNC is based 133 

on the embedded assumptions of the common sliding window Pearson correlation (SWPC), 134 

namely issues with assuming the timescale of the dynamics by imposing a static and somewhat 135 

arbitrarily chosen window size (Hindriks et al., 2016; Shakil et al., 2018), resulting in a low-pass 136 

filtered view of the connectivity time series (Hutchison et al., 2013; Leonardi & Van De Ville, 137 

2015; Sakoğlu et al., 2010; Thompson & Fransson, 2015). A recent method termed filter-banked 138 

connectivity (FBC) extends the SWPC and provides a unified approach for estimating FNC that 139 

includes the information of both static and dynamic FNC simultaneously (Faghiri et al., 2021). 140 

Furthermore, by employing frequency-tiling (i.e., decomposition of the original signal within 141 

various frequency ranges) via filter banks the FBC enables estimation of changing FNC in 142 

specified frequency bands, effectively providing estimates of dFNC at various timescales in a 143 

single approach. What distinguishes the FBC from other frequency-based dFNC approaches that 144 
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have been implemented in the past (e.g., cross wavelet coherence (Chang & Glover, 2010; 145 

Yaesoubi et al., 2015)) is that the frequency tiling occurs directly in the connectivity domain, 146 

rather than in the functional activity domain. This detail is key because the relationship between 147 

the activation and connectivity domains is possibly non-linear, and since the final inference is 148 

based on connectivity it is critical that all frequency tiling steps be also performed in the 149 

connectivity domain to prevent misinterpretation of the frequency information. Initial results 150 

demonstrated that FBC was indeed capable of identifying dFNC states in high-frequency ranges 151 

that were missed by SWPC (Faghiri et al., 2021). Further analysis of a SZ and control cohort 152 

with the FBC approach identified a relatively unstructured and disconnected low-frequency (i.e., 153 

close to static) FNC state predominantly occupied by SZ subjects, in contrast to an organized and 154 

highly connected low-frequency state that was predominantly occupied by controls. This study 155 

also showed preferential SZ occupancy in high-frequency connectivity states (Faghiri et al., 156 

2021). These results are consistent with previous frequency-based studies of the activity domain 157 

that reported higher power at higher frequencies in individuals with SZ compared to controls 158 

(Alonso-Solís et al., 2017; Calhoun et al., 2011; Garrity et al., 2007); however care must be taken 159 

when comparing results from the activity vs. connectivity domain analyses. Taken together, 160 

these results suggest there may exist an important frequency-specific functional component 161 

underpinning the pathophysiology of SZ.  162 

Here, we sought to extend this line of work by investigating the relationship between 163 

frequency-specific functional connectivity patterns and structural brain features that are 164 

associated with SZ. Specifically, we link frequency-specific connectivity states derived with 165 

FBC to sMRI grey matter volume (GMV) maps using the mCCA + jICA framework introduced 166 

above. Through this work we aim to further uncover the role that both slow (low-frequency) and 167 
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rapid (high-frequency) changes in FNC may play in the pathophysiology of SZ by identifying 168 

group-discriminative structure-function relationships that exist within distinct spectral ranges. 169 

2 Methods 170 

2.1 Data Description 171 

We utilized an age- and gender- matched dataset (Keator et al., 2016) including 310 172 

individuals, 150 with SZ (114 male, avg. age = 38.8 years) and 160 healthy controls (HC; 115 173 

male, avg. age = 37.0 years) that met our subject inclusion criteria of high-quality registration to 174 

EPI template and head motion translation of less than 3° rotation and 3 mm translation in all 175 

directions (Fu et al., 2021). Informed consent was obtained from each participant prior to MRI 176 

scanning and all studies were approved by the Institutional Review Boards of institutions 177 

involved in data collection (Keator et al., 2016). Detailed demographics of the SZ group are 178 

presented in Table 1. 179 

Table 1. Demographic description of the SZ group.  180 
 SZ Male Female 

Age (years) 38.82 ± 11.66 38.75 ± 11.79 39.06 ± 11.40 

Years Since Onset 17.36 ± 11.45 17.20 ± 11.17 17.89 ± 12.46 

PANSS Positive Score 14.08 ± 5.47 14.96 ± 5.59 14.35 ± 5.15 

PANSS Negative Score 13.71 ± 5.90 14.33 ± 6.19 11.88 ± 4.54 

CMIND Composite Score -1.59 ± 1.22 -1.61  ± 1.29 -1.50 ± 0.99 

On Antipsychotics 146/150 111/114 35/36 

 181 
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 Resting state fMRI (rsfMRI) data were collected with 3-Tesla MRI scanners with a 182 

repetition time (TR) of 2 seconds, voxel size of 3.44 x 3.44 x 4.00 mm, a slice gap of 1 mm, and 183 

a total of 162 volumes (~ 5 minutes). Subjects were instructed to keep their eyes closed during 184 

the resting state scan but not to fall asleep. Preprocessing included brain extraction, slice-timing 185 

and motion correction steps. Preprocessed data were then registered into structural MNI space, 186 

resampled to 3 mm3 isotropic voxels, and spatially smoothed using a Gaussian kernel with 6 187 

mm full-width at half-maximum (FWHM) on a per-subject basis. The first ten timepoints were 188 

trimmed from the time course and all voxel time courses were subsequently z-scored. Finally, 189 

we applied spatially constrained ICA (scICA) using the NeuroMark pipeline (Du et al., 2020) in 190 

the GIFT toolbox (http://trendscenter.org/software/gift & (Iraji et al., 2021)) to extract subject-191 

level spatial maps for each of the 53 intrinsic connectivity networks (ICNs) of the 192 

NeuroMark_fMRI_1.0 template (http://trendscenter.org/data), as well as the respective 193 

activation time courses for each of the ICNs.  194 

 Structural MRI (sMRI) data were preprocessed using statistical parametric mapping 195 

(SPM 12) under the MATLAB 2019 environment. Structural images were segmented into grey 196 

matter, white matter, and cerebral spinal fluid (CSF) using a unified segmentation approach 197 

followed by modulation with the Jacobian of the transform (Penny et al., 2006), resulting in 198 

outputs as grey matter volume (GMV). Finally, the GMV maps were smoothed using a 3D 199 

Gaussian kernel with FWHM = 6 mm. 200 

2.2 Filter-Banked Connectivity 201 

As described in (Faghiri et al., 2021), the SWPC centered at each time point, rx,y(t), for two 202 

time series x(t) and y(t) can be approximated by the following convolution, gx,y(t): 203 

                                      𝑟!,#(𝑡) ≈ 𝑔!,#(𝑡) = ℎ(𝑡) ∗ 𝑤(𝑡) = 	∑ ℎ(𝑡 − 𝑖)𝑤(𝑖)$%
&%                         (1) 204 
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=	 / ℎ(𝑡 − 𝑖)𝑤(𝑖) +	
'&∆

)*&%

/ ℎ(𝑡 − 𝑖)𝑤(𝑖) +	
'$∆

)*'&∆

/ ℎ(𝑡 − 𝑖)𝑤(𝑖)	
$%

)*'$∆

	205 

=	 / 0×𝑤(𝑖) +	
'&∆

)*&%

/ 1×𝑤(𝑖) +	
'$∆

)*'&∆

/ 0×𝑤(𝑖)	
$%

)*'$∆

= / 𝑤(𝑖)	
'$∆

)*'$∆

	206 

= /
[𝑥(𝑖) − 𝜇!(𝑖)]8𝑦(𝑖) − 𝜇#(𝑖):

𝜎!(𝑡)𝜎#(𝑡)

'$∆

)*'&∆

	207 

Where: 208 

ℎ(𝑡) = <1, −∆< 𝑡 < ∆
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (2) 209 

𝑤(𝑡) = 	 [!
(')&.!(')]0#(')&."(')1

2!(')2"(')
 (3) 210 

𝜇!(𝑡) =
3

4∆$3
∑ 𝑥(𝑖)'$∆
)*'&∆  (4) 211 

𝜎!(𝑡) = C∑ (𝑥(𝑖) − 𝜇!(𝑡))4'$∆
)*'&∆  (5) 212 

 Per the system and signal theorem (Oppenheim & Schafer, 2010) the gx,y(t) series, and 213 

thus the SWPC that it approximates, can be seen as the output of a system with an impulse 214 

response h(t) (a rectangular window) and input an of w(t) (connectivity time series), resulting in 215 

a low-pass signal examining the low frequency range of w(t) (Fig. 1A). In the FBC approach, the 216 

h(t) of the SWPC formulation is replaced with a filter bank, i.e., an array of systems used to filter 217 

a time series into different frequency bands, usually non-overlapping spanning the entire 218 

frequency spectrum of the series. Each filter in the filter bank is defined by a response function 219 

hm(t), where m is the filter index, resulting in M time series, each estimating the connectivity in a 220 

given frequency band (Fig. 1B). The filter bank design is fully flexible and can be tailored to best 221 

accommodate the spectral range of the data or aims of the analysis at hand. Thus, the FBC of two 222 

time series x(t) and y(t), rm,x,y(t), is defined as: 223 
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𝑟5,!,#(𝑡) = ℎ5(𝑡) × 𝑤(𝑡)					𝑚 = 1,… ,𝑀 (6) 224 

 We calculated w(t) using a window w = 10 TR (22 s) for each pair of ICNs, resulting in 225 

1378 (53 ´ (53 – 1)/2) w(t) time series. The filter bank was applied to each w(t) series separately 226 

using a forward-backward approach to achieve zero-phase filtering. We designed our filter bank 227 

to contain 10 Chebyshev type-2 infinite impulse response filters, the orders of which were 228 

obtained using cheb2ord as implemented in MATLAB to obtain at least 30 dB attenuation in 229 

the stopband and at most 3 dB in the passband (Rabiner & Gold, 1975). The 10 filters evenly 230 

cover the full frequency spectrum of the fMRI time series (0.00 – 0.25 Hz) as follows: 231 

• Band 1: 0.000–0.025 Hz 232 

• Band 2: 0.025–0.050 Hz 233 
• Band 3: 0.050–0.075 Hz 234 

• Band 4: 0.075–0.100 Hz 235 
• Band 5: 0.100–0.125 Hz 236 

• Band 6: 0.125–0.150 Hz 237 
• Band 7: 0.150–0.175 Hz 238 

• Band 8: 0.175–0.200 Hz 239 
• Band 9: 0.200–0.225 Hz 240 

• Band 10: 0.225–0.250 Hz 241 
 242 

 We applied k-means clustering to the FBC series stacked across all subjects and frequency 243 

bands to identify distinct states with unique connectivity signatures and spectral occupancy 244 

across frequency bands. Finally, we computed the subject-level mean connectivity for each state 245 

and concatenated them along with state-wise spectral occupancy to define the feature space for 246 

the fMRI modality for each subject. (Fig 2).  247 
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 248 
Figure 1. SWPC (A) and FBC (B) systems. While subsystem 1 is shared between both SWPC and FBC, in 249 
subsystem 2, SWPC uses a low-pass filter to examine the low-frequency range of w(t) (A) while FBC uses an array 250 
of filters to examine connectivity across various frequency bands (B). Thus, FBC is more flexible as it effectively 251 
combines both sFNC and dFNC, does not make assumptions about the connectivity frequency, and effectively spans 252 
a wide range of window sizes.  253 

2.3 Data Fusion: mCCA + jICA Framework 254 

We used mCCA + jICA to perform fusion of the feature spaces generated from two imaging 255 

modalities, fMRI (processed using FBC) and sMRI (GMV maps) (Fig. 2). The mCCA + jICA 256 

framework is defined under the assumption that a multimodal dataset, Xk, is a linear mixture of m 257 

sources (Sk) mixed by non-singular matrices (Ak), here, k = (1,2).  The framework consists of two 258 

phases. The first mCCA phase begins with a dimensionality reduction step on the feature space 259 

of both modalities using principal components analysis (here PC = 100). Next, the canonical 260 

variates, Dk, are estimated by maximizing the sum of squared correlations cost in m columns of 261 
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the canonical variates (here m = 10).  Last, the canonical correlation coefficients (CCCs) are 262 

estimated as association maps, Ck, by inverting the Xk = DkCk model.  263 

 In the second phase of the joint framework, the estimated CCCs are concatenated [C1, …, 264 

Ck] and input into the jICA linear mixing model, [C1, …, Ck] = W[S1, …, Sk]. This 265 

decomposition reveals m maximally independent joint sources S, each of which contains a 266 

concatenation of co-varying modality-specific components. Thus, the effective mCCA + jICA 267 

framework can be defined as Xk = (DkW-1)Sk, where the modality-specific mixing matrices are 268 

defined as Ak = DkW-1. Further details can be found in (Abrol et al., 2017; Sui et al., 2011, 2013). 269 

270 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.05.547840doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.05.547840
http://creativecommons.org/licenses/by-nc-nd/4.0/


 271 
Figure 2. Filter-banked fusion pipeline. We applied FBC to fMRI data to extract subject specific FBC states, then 272 
applied the mCCA + jICA framework to extract joint sources, S1 & S2, from the fMRI FBC states (X1) and sMRI 273 
grey matter volume (X2). 274 

3 Results 275 

3.1 Filter-Banked Connectivity States 276 

 Using the elbow criterion on the within-cluster distance, we found six clusters to be 277 

optimal in the k-means analysis, each corresponding to a distinct connectivity state with a unique 278 

connectivity signature and spectral occupancy across the 10 frequency bands (Fig. 3). These 279 

states can be broadly split into low-pass (states 1-2), band-pass (states 3-5), and high-pass (state 280 

6) frequency ranges. Significant group differences in subject-level fractional occupancy (i.e., 281 

percentage of all time points across all bands assigned to that state) were found in all six states. 282 

For example, we found the two low-frequency states could be further separated into a control-283 

dominant (state 1) low-frequency state and a SZ-dominant (state 2) low-frequency state. The 284 

control-dominant low-frequency state was highly organized and characterized by integration of a 285 
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sensory block comprised of the sensorimotor, visual, and auditory subdomains, which exhibited 286 

strong positive connectivity within the block and strong anticorrelations between the sensory 287 

block and the rest of the brain. In contrast, the SZ-dominant low-frequency state exhibited less 288 

complex functional organization, as it was characterized mainly by inter-domain connectivity 289 

only, as well as comparatively lower connectivity strength overall. At the other end of the 290 

spectrum, we found that the SZ group spent significantly more time in the high-frequency state 6 291 

then the control group, which was consistent with the results reported in the original FBC work 292 

(Faghiri et al., 2021). This high-frequency state was marked by interesting cross-domain 293 

synchrony between the subcortical domain and the auditory and sensorimotor domains, as well 294 

as between the default mode domain and the cerebellum, with additional strong anticorrelation 295 

observed between these two blocks of cross-domain synchrony (i.e., SC/AUD/SM block 296 

anticorrelated with DM/CB block). Finally, we found that the two states with the lowest SZ 297 

fractional occupancy (states 1 and 3) have nearly opposing connectivity signatures, both marked 298 

by strong correlation (or anti-correlation) within the sensory domain block as well as strong 299 

anticorrelation (or correlation) between the sensory domain block and all other functional 300 

domains, with the strongest FC antagonism seen between the sensory block and the subcortical 301 

domain. 302 
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 303 
Figure 3. Summary of FBC States. State centroids shown as z-scored connectomes in the top row, spectral profiles 304 
are shown as stacked fractional occupancy histograms across the ten frequency bands in the middle row, and group-305 
level state occupancy is shown in the boxplots on the bottom row. States 1-2 are predominantly identified in low-306 
frequency bands, states 3-5 are predominantly identified in mid-frequency bands, and state 6 is predominantly 307 
identified in high-frequency bands. All p-values corrected for multiple comparisons (FDR). 308 

  309 
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3.2 Joint Sources 310 

 Of the ten joint sources (determined by the chosen model order) that were extracted, two 311 

had significant group differences (after FDR correction) in loadings for both the structural and 312 

functional components of the joint source. Summaries of these joint sources are presented in the 313 

following sections. 314 

3.2.1 Joint Source 1 315 

 A summary of the first joint source is shown in Fig. 4. The structural component for this 316 

joint source showed peaks in grey matter volume alterations in the middle temporal gyrus, 317 

precentral gyrus, insula, right inferior frontal gyrus, left inferior parietal lobule and anterior 318 

cingulate cortex (Fig. 4B). The linked functional component of the joint source showed 319 

frequency-specific connectivity patterns across each of the FBC states, however significant edges 320 

involving the subcortical domain were commonly identified across all six states. All significant 321 

edges (|z| > 2.5) across all states are shown in Fig. 4A, but here we highlight a few patterns of 322 

interest. In the low-frequency states, the functional components contained opposing patterns of 323 

connectivity within the subcortical domain, as well as between the subcortical and sensorimotor 324 

domains, where the control-dominant state 1 component contained anticorrelation within the 325 

subcortical domain and positive correlation between the subcortical and sensorimotor domains 326 

while the SZ-dominant state 2 component was marked by within-domain subcortical synchrony 327 

and cross-domain anticorrelation between the subcortical and sensorimotor networks. 328 

Interestingly, the components of the two lower-frequency control-dominant states (1 and 3) also 329 

shared distinctive connectivity features–functional correlation between cerebellar regions and the 330 

cuneus in the visual domain as well as anticorrelation between subcortical regions and regions in 331 

the cognitive control domain, namely the middle cingulate cortex and the left inferior parietal 332 
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lobule. The SZ-dominant high-frequency state 6 component map showed an opposing pattern of 333 

strong positive correlation between the subcortical domain, specifically the precuneus, and the 334 

middle cingulate cortex and the left inferior parietal lobule within the cognitive control domain. 335 

In addition, the state 6 component map was marked by strong positive correlations between the 336 

subcortical domain and the sensorimotor domain, which mirror patterns from the state 1 337 

component, within-domain anticorrelation of the subcortical domain, which mirror patterns seen 338 

in state 2, as well as strong anticorrelations between the cerebellum and default mode domains, 339 

which are not seen in any other state component of the joint source.  340 

 We found significant group differences in the loading parameters (derived from mixing 341 

matrix Ak) for both the functional (p = 1.10×10-16) and structural (p = 1.26×10-9) components 342 

(Fig. 4C), with the SZ group exhibiting significantly lower loadings than the control group in 343 

both cases, indicating the SZ group had significantly reduced expression of the structural and 344 

functional patterns represented by the respective structural and functional component maps. 345 

There was also a significant correlation (r = 0.416; p = 1.01×10-13) between the loading 346 

parameters of the structural and functional components; however, the joint histograms of the 347 

structural and functional loadings in Fig. 4D suggest the relationship between the structural and 348 

functional components is more complex than a simple linear correlation, and in fact, this 349 

relationship differs significantly between the SZ and control groups, as evidenced by the 350 

Kullback-Leibler divergence (KLD) = 1.636 between the two group joint histograms.   351 
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 352 

Figure 4. Summary of Joint Source 1. (A) Significant edges (i.e., functional connections with connectivity strength 353 
|z| ≥ 2.5) in each FBC state for the functional component of the joint source. Colors of nodes show network 354 
affiliation and colors of edges denote positive (red) or negative (blue) connectivity. Stacked bar graphs of the 355 
spectral profiles as well as the full component maps as connectome matrices are also shown for each state. (B) 356 
Spatial map of the significant (|z| ≥ 2.5) regions of the structural component of the joint source. (C) Loading 357 
parameters show strong group differences for both the functional (p = 1.10×10-16) and structural (p = 1.26×10-9) 358 
components. (D) Joint histograms of the fMRI and sMRI loadings show that the relationships between the structural 359 
and functional components of the joint source are strongly group-specific (Kullback-Leibler divergence = 1.636). 360 

  361 
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3.2.2 Joint Source 2 362 

 A summary of the second joint source is shown in Fig. 5. The structural component map 363 

for this joint source contained a pattern of higher GMV in regions within the motor cortex, as 364 

well as lower GMV within the cerebellum (Fig. 5B). Again, the linked functional component of 365 

the joint source contained unique connectivity patterns within each of the frequency-specific 366 

states, however functional connections involving the sensorimotor and cerebellar domains were 367 

prominent across all FBC state functional component maps.  All significant edges (|z| > 2.5) 368 

across all states are shown in Fig. 5A, but here we highlight a few patterns of interest. The low-369 

frequency state 1 functional component was highly organized and mostly defined by strong 370 

functional integration (i.e., positive connectivity) between the cerebellar domain with nearly all 371 

regions of the sensorimotor and visual domains, as well as anticorrelation of sensorimotor 372 

networks with regions in the cognitive control domain, specifically the supplementary motor 373 

area, inferior frontal gyrus and the superior medial frontal gyrus. Conversely, the SZ-dominant 374 

low-frequency state 2 showed largely opposing patterns of cerebellar connectivity, characterized 375 

mainly by anticorrelation between the cerebellum and both sensorimotor and visual regions. 376 

State 2 also showed strong within-domain connectivity in the visual domain, as well as some 377 

positive correlation of the visual domain with the superior parietal lobule and postcentral gyrus 378 

in the sensorimotor domain. The mid-frequency state 3 was dominated by connections involving 379 

regions within the sensorimotor domain to nearly all other domains in the brain, with the notable 380 

exception being the absence of connections between the sensorimotor and cerebellar domain 381 

above our significance threshold. The mid-frequency state 4 functional component included a 382 

connectivity pattern that was not seen in any of the other state components–strong positive 383 

correlations between the visual domain and several regions in the cognitive control domain, 384 
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mainly encompassing the inferior parietal lobule, the middle frontal gyrus and inferior frontal 385 

gyrus, as well as some negative correlations between visual domain networks and the 386 

hippocampus, also of the cognitive control domain. Lastly, the SZ-dominant high-frequency state 387 

6 was defined by strong anticorrelations of the subcortical networks with sensory domains 388 

including auditory, sensorimotor and visual domains, paired with strong integration within the 389 

sensorimotor domain and between the sensorimotor and auditory domain. There was no 390 

significant integration of the sensorimotor and visual domains in the state 6 functional 391 

component, however both the sensorimotor and visual domains did exhibit strong positive 392 

correlation with specific cognitive control networks, the former with the supplemental motor 393 

area and the latter with the superior frontal gyrus.   394 

 Similar to the first joint source, we found significant group differences in the loading 395 

parameters for both the functional (p = 5.01×10-9) and structural (p = 2.99×10-4) components 396 

(Fig. 5C), with the SZ group again exhibiting significantly lower loadings than the control group 397 

in both cases, indicating reduced overall expression of these functional and structural patterns 398 

within the SZ group. We again found a significant correlation (r = 0.474; p = 9.15×10-19) 399 

between the loading parameters of the structural and functional components; however, the joint 400 

histograms of the structural and functional loadings in Fig. 5D provide evidence that again the 401 

relationship between the structural and functional components is more complex than a simple 402 

linear correlation. We find a high density of SZ subjects fall within a small region of the joint 403 

histogram, and a more diffuse dispersion of control individuals in their group joint histogram that 404 

suggests an anticorrelation relationship between structural and functional loadings within the 405 

controls. We found the KLD = 0.602 between the two group joint histograms.   406 
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 407 

Figure 5. Summary of Joint Source 2. (A) Significant edges (i.e., functional connections with connectivity strength 408 
|z| ≥ 2.5) in each FBC state for the functional component of the joint source. Colors of nodes show network 409 
affiliation and colors of edges denote positive (red) or negative (blue) connectivity. (B) Spatial map of the 410 
significant (|z| ≥ 2.5) regions of the structural component of the joint source. (C) Loading parameters show strong 411 
group differences for both the functional (p = 5.13×10-9) and structural (p = 3.01×10-) components. (D) Joint 412 
histograms of the fMRI and sMRI loadings show that the relationships between the structural and functional 413 
components of the joint source are strongly group-specific (Kullback-Leibler divergence = 0.602). 414 

 415 

4 Discussion 416 

 In this work, we investigated the relationship between frequency-specific patterns of 417 

functional connectivity and structural measures of GMV to elucidate key structure/function 418 

relationships implicated in schizophrenia. Specifically, we utilized the newly proposed FBC 419 

approach to estimate dFNC across ten non-overlapping frequency bands and ultimately derive 420 

six distinct FBC states, each defined by its own unique frequency range. We then utilized the 421 

mCCA + jICA symmetric multimodal data fusion framework to identify hidden linkages 422 
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between the connectivity patterns of these frequency-specific FBC states and grey matter volume 423 

maps from sMRI in the form of jointly co-varying functional and structural components, here 424 

called joint sources. 425 

 The FBC analysis identified six connectivity states characterized by unique spectral 426 

profiles as well as connectivity patterns. The most interesting group differences in fractional 427 

occupancy of these states were found at the lowest and highest frequency ranges. Of the two 428 

low-frequency FBC states, one was defined by strong synchrony within the somatosensory block 429 

(sensorimotor, auditory, and visual domains) that was anticorrelated with the rest of the brain 430 

(most strongly with subcortical regions), and was primarily occupied by healthy controls, and the 431 

other was characterized by strictly within-domain synchrony as well as overall lowered 432 

connectivity strength, which was significantly dominated by SZ occupancy. This result is in line 433 

with previous works that report generalized lower connectivity in SZ compared with controls 434 

(Bluhm et al., 2007; Dong et al., 2018; Erdeniz et al., 2017; Liang et al., 2006; Lynall et al., 435 

2010; Meda et al., 2012; Skudlarski et al., 2010) and conforms with the dysconnectivity 436 

hypothesis of SZ (Friston & Frith, 1995), which posits that dysfunctional integration of brain 437 

networks and generally disconnected or misconnected neural circuitry might contribute to the 438 

pathophysiology of SZ. The identification of this dichotomy in connectivity strength and 439 

functional organization between SZ subjects and controls in the low frequency range in our 440 

results is not unexpected, as this phenomenon has been reported in studies of largely static FNC 441 

or SWPC-based dynamic FNC, which we have established miss the higher frequency states the 442 

FBC approach is capable of extracting (Faghiri et al., 2021).  443 

 We also identified one state in the high frequency spectral range, which had the highest 444 

SZ occupancy of all six states, as well as the most significant group difference in occupancy 445 
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between SZ and HC. This result is in line with the prior FBC work which found that individuals 446 

with SZ spend more time in high frequency states than control individuals (Calhoun et al., 2008; 447 

Faghiri et al., 2021; Turner et al., 2013). (Yaesoubi et al., 2017) similarly reported SZ subjects 448 

were more likely to occupy the highest frequency state; however their method was based on 449 

frequency analysis in the activity domain rather than the connectivity domain like in the FBC 450 

approach, which resulted in vastly different connectivity profiles for the high frequency states 451 

between their work and ours. This discrepancy again underscores the fact that the relationship 452 

between the activity and connectivity domains is not clear. There is evidence from fMRI studies 453 

of increased power spectra of certain ICNs (e.g., default mode) at higher frequencies in 454 

individuals with SZ (Calhoun et al., 2011; Garrity et al., 2007) as well as EEG/MEG studies that 455 

show an association between aberrant neural oscillations in the high frequency beta and gamma 456 

bands and SZ (Moran & Hong, 2011; Roach et al., 2013; Tan et al., 2013; Uhlhaas & Singer, 457 

2013). While these studies also apply frequency-based analyses on the activity domain of the 458 

functional neuroimaging signal, this convergence of evidence across a range of methodologies 459 

heavily implicates altered high frequency brain function in SZ. 460 

 The role of subcortical (particularly thalamic) and somatosensory connectivity in SZ has 461 

often been reported in the literature (Anticevic et al., 2014; Cao et al., 2022; DeRamus et al., 462 

2022; Ferri et al., 2018; Skåtun et al., 2017, 2018; Welsh et al., 2010). Sensory regions including 463 

auditory, visual, and sensorimotor networks have been implicated in possible “bottom-up” 464 

processes that may contributing to a range of emotional and cognitive symptoms associated with 465 

SZ (Javitt, 2009; Revheim et al., 2014). Furthermore, the sensory gating hypothesis (Cromwell et 466 

al., 2008) suggests the process the brain uses to filter and assign importance to external stimuli is 467 

abnormal in SZ, strongly implicating both thalamic dysfunction, as well as aberrant functional 468 
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synchronization between the thalamus and frontal/somatosensory networks. A recent pharmaco-469 

FMRI study using the NMDA receptor (NMDAR) antagonist, ketamine, implicated NMDAR 470 

hypofunction as a mediator of this thalamo-cortical dysconnectivity pattern across the illness 471 

course of schizophrenia, including the psychosis-risk syndrome that sometimes progresses to full 472 

schizophrenia (Abram et al., 2022). Though there is mounting evidence that 473 

somatosensory/subcortical dysfunction plays a role in SZ pathophysiology, conflicting results 474 

have been published on the nature of this dysfunction–some reporting higher connectivity (or 475 

hyperconnectivity) between subcortical and sensory regions (Damaraju et al., 2014; Fu et al., 476 

2018; Yaesoubi et al., 2017; D. Zhang et al., 2012), while others report lower connectivity (or 477 

hyperconnectivity) between these networks (Skåtun et al., 2017; Welsh et al., 2010; Y. Zhang et 478 

al., 2021). In our work, three of our six FBC states are characterized by strong connectivity 479 

(defined by both strongly positive or strongly negative correlations) between subcortical and 480 

somatosensory regions: states 1, 3, and 6.  Interestingly, the states at the lower end of the 481 

frequency spectrum (states 1 and 3) with this functional relationship are the states in which we 482 

observed higher fractional occupancy of control individuals paired with the lowest fractional 483 

occupancy of SZ individuals among all the states, while the high frequency state 6 that shows 484 

evidence for strong subcortical-sensory synchrony was marked by significantly higher SZ 485 

occupancy. Thus, our results suggest that in SZ subcortical-sensory connectivity may be weaker 486 

or absent at lower frequencies while strong synchrony between these regions may exist when 487 

higher frequency functional connectivity fluctuations are considered.   488 

 We identified two joint sources that exhibited significant group differences in both 489 

structural and functional component loadings, indicating these joint sources do indeed encode 490 

structure-function relationships that are frequency-dependent and relevant to SZ. The first joint 491 
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source implicated regions in the middle temporal gyrus, precentral gyrus, insula, right inferior 492 

frontal gyrus, left inferior parietal lobule and anterior cingulate cortex. This component closely 493 

resembles the combinations of two structural components found to have the highest effect size 494 

between SZ and control groups via source based morphometry (SBM) analysis of structural MRI 495 

data alone (Gupta et al., 2015, 2017). Inspection of group differences in loading parameters 496 

revealed SZ subjects had significantly lower loading values than the controls, indicating a 497 

generally weaker expression of the component pattern of GMV in these areas related to SZ. The 498 

related functional component shows functional connectivity patterns that are clearly frequency-499 

specific across the six states, and we observed that many of the significant edges across the state-500 

level functional components involve subcortical-somatosensory connections. Opposing 501 

subcortical-sensory connectivity patterns were identified in the two low frequency states, with 502 

the SZ-dominant state 2 defined by synchrony within the subcortical domain but anticorrelation 503 

between subcortical/sensorimotor, while the control dominant state 1 was defined by 504 

anticorrelation within the subcortical domain as well as subcortical-sensorimotor synchrony. 505 

Importantly, the subcortical-sensorimotor synchrony was also a hallmark of the high-frequency 506 

and SZ-dominant state 6 component, further indicating that there may be frequency-based 507 

modulation of subcortical-somatosensory connectivity contributing to the functional 508 

pathophysiology of SZ.  509 

 In the second joint source, we identified structure/function linkages between GMV in the 510 

motor cortex and cerebellum with frequency-specific functional connections within the same 511 

domains. Lower GMV in the cerebellum and its link to the cerebellar motor module (connection 512 

between the cerebellum to the cortical sensorimotor network) has been previously reported in SZ 513 

(He et al., 2018). Again, the functional components of the low frequency states show opposing 514 
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connectivity signatures, where the low-frequency state 1 functional component was highly 515 

organized and mostly defined by strong functional integration between the cerebellar domain 516 

with nearly all regions of the sensorimotor and visual domains while the SZ-dominant low-517 

frequency state 2 was characterized mainly by anticorrelation between the cerebellum and both 518 

sensorimotor and visual regions. Evidence for stronger cerebellar-somatomotor connectivity in 519 

SZ compared to HC has been reported (Shinn et al., 2015), and our results suggest this 520 

hyperconnectivity linked to motor/cerebellar GMV alterations exists mainly at low-to-mid 521 

frequency ranges. In fact, the high frequency functional component (state 6) contains no 522 

cerebellar-sensorimotor linkages, but rather is largely characterized by subcortical-sensory 523 

edges, further suggesting the importance of these functional connections at high frequencies.  524 

 Beyond the structural and functional components themselves, our results provide 525 

evidence that the relationship between the identified structural and functional patterns differs 526 

between individuals with SZ and controls. Significant positive correlations were found between 527 

the structural and functional loading parameters of both joint sources (r = 0.416, p = 2.02×10-19; r 528 

= 0.474 ; p = 9.15×10-19, respectively). However, additional analysis of the joint sMRI/fMRI 529 

loading parameters revealed that the relationships between the structural and functional 530 

components required a more nuanced interpretation across our diagnostic groups than just linear 531 

correlation. For both joint sources there existed a significant difference in density and 532 

distribution of subjects within the joint histogram between the SZ and control groups, indicating 533 

that the association between the structural and functional components varied in a manner that 534 

was not completely linear. This was especially evident for the first joint source, where the KLD 535 

between groups was larger than that of the second joint source (KLD = 1.64 vs 0.60, 536 

respectively), indicating the distributions of structural/functional loadings between patients and 537 
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controls were even further apart. More work is needed to disentangle these exact relationships 538 

further.  539 

 Many of the regions identified in our joint sources have been previously implicated in 540 

SZ, supporting the results of prior work across both unimodal and multimodal methodologies. 541 

However, our investigation is distinguished from these prior studies as it is, to our knowledge, 542 

the first multimodal study to include frequency information, specifically frequency in the 543 

connectivity domain rather than the activity domain, in the fMRI feature space. Thus, our results 544 

help shed new light on the underlying nature of structure/function relationships characteristic of 545 

the SZ brain. For instance, our results suggest that cortico-subcortical connections, specifically 546 

those between subcortical and somatosensory regions, are of particular importance in high-547 

frequency ranges and do indeed co-vary with structural alterations in GMV across a variety of 548 

brain regions in SZ. These and other linkages reported here may have been missed, or the nature 549 

of the functional oscillations in connectivity not fully understood, as the typical SWPC method 550 

for estimating dFNC has been shown to miss high-frequency states like state 6 in our results 551 

(Faghiri et al., 2021). 552 

 Our study has some limitations that should be considered. First, our analysis was 553 

performed on a single dataset with a sample size of N = 310, which can be considered large 554 

compared to classic imaging studies where only tens of subjects were scanned but can also be 555 

seen as relatively small compared to publicly available imaging datasets where sample size can 556 

reach 1000+ subjects. Replication of these results in an independent dataset should be a focus of 557 

future work. Second, the fMRI data used to estimate our FBC states has a relatively low temporal 558 

resolution of TR = 2 sec. Since the available frequency range is tied directly to the temporal 559 

resolution (i.e., sampling rate) of the data, it would be beneficial to repeat our analysis in data 560 
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with higher temporal resolution (e.g., TR < 1 sec.) to expand the frequency range within which 561 

the FBC states can be estimated. Considering the strong evidence of the importance of the very 562 

high frequency connectivity states as a functional component of SZ, we believe it will be 563 

extremely beneficial to explore these high frequency ranges more granularly as higher temporal 564 

resolution image acquisitions become more readily available. The relatively short acquisition 565 

time of our data (~5 minutes) could also be considered as a potential limitation, and future work 566 

in this space may focus on replicability of our findings in longer or repeated scans. As mentioned 567 

frequently throughout our report, the key novelty of the FBC approach is its ability to apply 568 

time-frequency analysis directly in the connectivity domain rather than the activity domain. 569 

Recent work has focused on the nature of the linkage between activity and connectivity domains, 570 

and even provides evidence that this relationship may vary for HC and individuals with SZ (Fu et 571 

al., 2018, 2021). Future work may focus on a combined data fusion approach in the context of 572 

linking activity and connectivity together with structure. Future studies may also choose to treat 573 

each frequency-specific FBC state as a separate modality within the fusion architecture, rather 574 

than concatenating all the states into a single fMRI modality vector per subject. Such a study 575 

design would allow for more flexible linkages between each state and the structural components 576 

and add an opportunity for an additional layer of investigation and interpretation. A series of 577 

studies (Clementz et al., 2022) have shown that there is significant overlap between the structural 578 

and functional brain abnormalities reported in schizophrenia and those seen in psychotic bipolar 579 

and schizo-affective disorders. Thus, claims of specificity to schizophrenia of the findings 580 

reported here remain to be demonstrated. Finally, the interpretation of our results should be 581 

considered in the context of the history of antipsychotic and other medication in the SZ group. 582 
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 In conclusion, our results suggest there is a frequency-specific functional component of 583 

the structure/function relationship underlying the pathophysiology of SZ, particularly at the 584 

lowest and highest connectivity frequencies. 585 
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