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Background: Dysbiosis of human gut microbiota is associated with a wide range of

metabolic disorders, including gestational diabetes mellitus (GDM). Yet whether gut

microbiota dysbiosis participates in the etiology of GDM remains largely unknown.

Objectives: Our study was initiated to determine whether the alternations in gut

microbial composition during early pregnancy linked to the later development of GDM,

and explore the feasibility of microbial biomarkers for the early prediction of GDM.

Study design: This nested case-control study was based upon an early pregnancy

follow-up cohort (ChiCTR1900020652). Gut microbiota profiles of 98 subjects with

GDM and 98 matched healthy controls during the early pregnancy (10–15 weeks) were

assessed via 16S rRNA gene amplicon sequencing of V4 region. The data set was

randomly split into a discovery set and a validation set, the former was used to analyze the

differences between GDM cases and controls in gut microbial composition and functional

annotation, and to establish an early identification model of GDM, then the performance

of the model was verified by the external validation set.

Results: Bioinformatic analyses revealed changes to gut microbial composition

with significant differences in relative abundance between the groups. Specifically,

Eisenbergiella, Tyzzerella 4, and Lachnospiraceae NK4A136 were enriched in the

GDM group, whereas Parabacteroides, Megasphaera, Eubacterium eligens group, etc.

remained dominant in the controls. Correlation analysis revealed that GDM-enriched

genera Eisenbergiella and Tyzzerella 4 were positively correlated with fasting blood

glucose levels, while three control-enriched genera (Parabacteroides, Parasutterella, and

Ruminococcaceae UCG 002) were the opposite. Further, GDM functional annotation

modules revealed enrichment of modules for sphingolipid metabolism, starch and

sucrose metabolism, etc., while lysine biosynthesis and nitrogen metabolism were

reduced. Finally, five genera and two clinical indices were included in the linear

discriminant analysis model for the prediction of GDM; the areas under receiver operating

characteristic curves of the training and validation sets were 0.736 (95% confidence

interval: 0.663–0.808) and 0.696 (0.575–0.818), respectively.
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Conclusions: Gut bacterial dysbiosis in early pregnancy was found to be associated

with the later development of GDM, and gut microbiota-targeted biomarkers might be

utilized as potential predictors of GDM.

Keywords: biomarker, early prediction, gestational diabetes mellitus, gut microbiota, nested case-control study

INTRODUCTION

Gestational diabetes mellitus (GDM), defined as any degree
of glucose intolerance initially diagnosed during pregnancy
(ADA, 2019). It occurs ∼5–20% of all pregnancies with rising
prevalence (Zhu and Zhang, 2016), and is becoming a great
threat to maternal and neonatal health, such as gestational
hypertension, pre-eclampsia, cardiovascular disease and type 2
diabetes (T2DM) in the mothers (Metzger et al., 2008; Bellamy
et al., 2009), as well as premature birth, fetal macrosomia, obesity,
and T2DM in the offspring (Dabelea and Pettitt, 2001;Mitanchez,
2010). Considering the inordinate potential for harm from this
illness, early detection and prevention are essential. However, no
readily defined early diagnostic criterion or efficient prediction
system is currently available for GDM (Kennelly and McAuliffe,
2016), and the explicit mechanism underlying its onset has not
yet been fully clarified.

Microbes that reside in the human gut are increasingly
recognized as one of the important contributors to host
metabolism and health (Le Chatelier et al., 2013). Gut microbiota
changes significantly during gestation (Koren et al., 2012) and
may contribute to metabolic dysfunction during pregnancy, like
GDM (Lv et al., 2018). Specific differences in gut microbiota
between GDM patients and normoglycemic pregnant women
were reported by several recent studies (Kuang et al., 2017;
Mokkala et al., 2017; Cortez et al., 2018; Crusell et al., 2018;
Wang et al., 2018a; Ye and Zhang, 2019). Increased abundance of
Klebsiella variicola (Kuang et al., 2017), Ruminococcus, Prevotella
(Cortez et al., 2018), Desulfovibrio, Rothia (Crusell et al.,
2018), Fusobacterium (Wang et al., 2018a), Blautia, Eubacterium
hallii group (Ye and Zhang, 2019), and reduced richness of
Bifidobacterium spp., Eubacterium spp. (Kuang et al., 2017),
Bacteroides, Parabacteroides, Dialister, Akkermansia (Cortez
et al., 2018), Marvinbryantia, Anaerosporobacter (Crusell et al.,
2018), and Faecalibacterium (Wang et al., 2018a; Ye and Zhang,
2019) in the gut were reported in GDM patients compared to
normoglycemic controls. The only study that focused on changes

in gut microbiota preceding diagnosis of GDM (15 of the total 75

overweight/obese women developed GDM) demonstrated that
increased proliferation of the Ruminococcaceae family in the

gut was associated with a higher potential of developing GDM
(Mokkala et al., 2017). However, limited by cross-sectional study
design and small sample size, the exact mechanisms involved
in causing this significant shift in the dominant bacteria within
the gut could not be clarified. In order to know more about
the potential role of gut microbiota in the etiology of GDM, it
is important to set the observation point before its onset, and
transfer the study population focus from high-risk individuals to
general pregnant women.

In the present nested case-control study, we evaluated women
in the early stages of pregnancy from the general population
in an effort to ascertain the bacteria involved during the gut
flora transformation, which renders the subject susceptible to
GDM. We also established an early identification model of GDM
based on bacteria markers and clinical indices, then explored its
feasibility and verified the performance.

MATERIALS AND METHODS

Study Design
This nested case-control study aimed to determine whether
the alternations in gut microbial composition during early
pregnancy were associated with the later development of GDM,
it was based upon an early pregnancy follow-up cohort. The
cohort was established in the Hunan Provincial Maternal and
Child Health Hospital (HPMCHH) in South China, from Mar
2017 to 2018 (ChiCTR1900020652). All the eligible participants
provided written informed consent, and the study protocol was
approved on Jan 11, 2017, by the Medical Ethical Committee
of HPMCHH (EC201624). Details concerning inclusion criteria,
sampling, questionnaires, anthropometrics, and biochemistry are
provided as supplementary material (Supplementary Text 1).
Participants were recruited in the first trimester (10–14 weeks)
and followed up to 42 days postpartum. GDM was defined
at 24–28 gestational weeks, using established criteria from the
International Association of Diabetes and Pregnancy Study
Groups (IADPSG) based on the results of a standard 2 h, 75-
g oral glucose tolerance test (OGTT) (ADA, 2012). Pregnant
women were diagnosed with GDM if one or more of following
applied glucose levels were elevated: fasting ≥ 5.1mmol/L, 1 h
≥ 10.0mmol/L, 2 h ≥ 8.5mmol/L (ADA, 2012). Controls with
normal blood glucose throughout the pregnancy were recruited
from the same cohort and matched 1:1 to the confirmed
GDM cases with respect to age (±3 years), gestational age (±1
week), and sample collection date (±1 month). Considering
the fluctuations in the results of single blood glucose values
(Bonongwe et al., 2015), it was necessary to consolidate the
definition of normoglycemia to ensure that the included controls
were true non-cases. OGTT results of all the controls adhered to
the standards proposed by the American College of Obstetricians
and Gynecologists for the management of blood glucose during
pregnancy (requiring fasting, 1, 2 h blood glucose values to be
lower than 5.0, 7.8, 6.7mmol/L, respectively) (Committee on
Practice Bulletins-Obstetrics, 2013).

Excluding those who were lost to follow-up (abortion,
induced labor, transfer, or reluctance to continue to cooperate),
GDM was diagnosed in 112 of 828 women according to
the IADPSG criteria. Of which, 98 cases with complete data
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and early pregnancy samples were included and matched
to the same number of controls. According to the study
design (Supplementary Figure 1), 70 cases and 70 controls
(unmatched) were randomly selected as a discovery set to analyze
differences between GDM cases and controls in operational
taxonomic units (OTUs), taxonomy and function levels, and to
explore the correlation between differential genera and clinical
indices/differential functions. Pattern recognition analysis based
on data of the discovery set was performed for the early
identification model of GDM, and the performance of the model
was verified using the external validation set consisting of the
remaining 28 cases and 28 controls (unmatched).

DNA Extraction and 16S rRNA Gene
Amplicon Sequencing
All the stool samples were collected from the GDM cases and
controls in the early pregnancy. Total fecal genomic DNA was
extracted from about 180–200mg feces using QIAamp Fast
DNA Stool Mini Kit (Qiagen, Hilden, Germany), according to
the manufacturer’s instructions. Extracted DNA was stored at
−20◦C until used. The variable region V4 of the 16S rRNA
gene was amplified using specific 515F and 806R primers with
the barcodes (Kozich et al., 2013). All PCR reactions were
carried out with Phusion High-Fidelity PCR Master Mix (New
England Biolabs). PCR products were mixed at equidensity ratios
and then purified with Qiagen Gel Extraction Kits (Qiagen,
Germany). A sequencing library was generated using TruSeq
DNA PCR-Free Sample Preparation Kit (Illumina, USA), then
assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific) and
Agilent Bioanalyzer 2100 system. The established library was
sequenced on an Illumina HiSeq 2500 platform at Novogene
Bioinformatics Technology Co., Ltd, and 250-bp paired-end
reads were generated.

Statistical Analysis
The 16S rRNA gene sequence data set were processed with
QIIME2 version 2018.11 using default parameters (https://docs.
qiime2.org/). DADA2 version 2018.4.0 (Callahan et al., 2016) was
utilized to filter out noisy sequences, correct errors in marginal
sequences, remove chimeric sequences, remove singletons, join
denoised paired-end reads, and then to dereplicate those
sequences into OTUs with 100% sequence similarity. Rarefaction
curves were utilized to evaluate the effects of sequencing depth
on the obtained number of OTUs. OTUs with a number
of the sequences <0.005% of the total number of sequences
were discarded as recommended (Navas-Molina et al., 2013).
The resulting OTU table was used for downstream analysis.
Taxonomy annotation was conducted with a Naive Bayes
classifier trained on the SILVA database (version 132) (Quast
et al., 2013), in order to define the features that best distinguish
each taxonomic group. Sequences that were identified as
members of Chloroplasts, Eukarya, Cyanobacteria, and Archaea
were removed. Alpha diversity was calculated with QIIME2
software (version 2018.11) based on the sequence similarity at the
100% level, including index of ObservedOTUs, abundance-based
coverage estimator (ACE), Chao1 estimator, Shannon, Simpson,
Heip’s evennessmeasure (Heip_e) andDominance. Beta diversity

was measured by Jaccard, Bray-curtis, unweighted and weighted
UniFrac distances (Lozupone and Knight, 2005). Principal
coordinate analysis (PCoA) plots based on several distances
were constructed to detect the differences in beta diversity, and
PERMANOVA (permutated analysis of variance) was used to
indicate differences in the overall microbial composition between
the two groups (Lozupone and Knight, 2005). The functional
profile was predicted with Tax4Fun (Asshauer et al., 2015),
an open-source R package for the output obtained from the
SILVA dataset (version 132). Pattern recognition analysis based
on forward feature selection combined with linear discriminant
analysis (LDA) was performed using R version 3.5.1 (RCT, 2019).

Normal distributed continuous variables were reported as
mean ± standard deviation and analyzed using the paired t-test
or two-sample t-test, while non-normal distributed continuous
variables were reported as median with interquartile ranges (Q1–
Q3) and analyzed using the Wilcoxon signed rank test or Mann-
Whitney U test. For dichotomous variables, the McNemar chi-
square test, Pearson’s chi-square test or Fisher’s exact test was
applied. LEfSe (linear discriminant analysis effect size; Segata
et al., 2011) with P-value cutoff 0.05 and LDA score cutoff 2 was
utilized to obtain the differential taxa and functions between the
two groups. For correlation analysis, Spearman’s rank correlation
was used. The microbiota-microbiota correlation network was
constructed using SparCC algorithm (Friedman and Alm, 2012)
and visualized with Cytoscape version 3.4.0 (Shannon et al.,
2003). The predictive model was established as follows: First,
the performance of each variable was evaluated on the training
samples using Leave-one-out cross-validation, and the one with
the best performance was selected into the model. Then, the
remaining variables were added into the model sequentially.
In each round, the performance of each variable combined
with the selected ones were evaluated, and the one with the
best performance was added into the model. The model with
the best performance was finally utilized in this study. All
statistical analyses were conducted with SPSS version 23.0 (SPSS
Inc., Chicago, IL, USA) and R version 3.5.1, P < 0.05 was
considered significant.

RESULTS

Characteristics of the Participants
The characteristics of the study population are presented in
Table 1. As expected, markers of body mass index (BMI), waist,
glucose, insulin homeostasis, and high-sensitivity C-reactive
protein were higher in GDM groups compared to the groups of
normoglycemic women in early pregnancy. For all participants,
women diagnosed with GDM had higher systolic pressure
(SBP, P = 0.001) and diastolic pressure (DBP, P = 0.001),
whereas the two groups were comparable in Edinburgh Postnatal
Depression Scale score (P = 0.738) and daily average intake of
all major types of food. About 20% (40/196) of the participants
had supplemented yogurt, however, there was no significant
difference in daily average yogurt intake between controls and
women who developed GDM later (P = 0.711), and no other
types of probiotic supplements were involved. Considering the
test efficiency caused by sample size, the differences in trends for
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TABLE 1 | Characteristics of the study population#.

All participants Discovery set Validation set P*

Controls (N = 98) GDM (N = 98) P Controls (N = 70) GDM (N = 70) P Controls (N = 28) GDM (N = 28) P

Basic characteristics

Age (year) 31.5 (28.75–35) 31.0 (28.8–35.0) 0.207 32.5 (29.0–35.0) 31 (28.8–34.0) 0.314 29.0 (28.0–34.0) 33.0 (28.3–36.0) 0.099 0.879

Gravidity 2 (1–3) 2 (1–3) 0.597 2 (1–3) 2 (1–3) 0.998 2 (1–3) 2 (2–3) 0.147 0.725

Parity 1 (0–1) 1 (0–1) 0.873 1 (0–1) 1 (0–1) 0.355 0 (0–1) 1 (0–1) 0.109 0.602

PCOS, n (%) 6 (6.1%) 9 (9.2%) 0.607 5 (7.1%) 8 (11.4%) 0.382 1 (3.6%) 1 (3.6%) 1.000 0.288

Smoking history, n (%) 2 (2.0%) 2 (2.0%) 1.000 1 (1.4%) 2 (2.9%) 1.000 1 (3.6%) 0 (0%) 1.000 1.000

Drink history, n (%) 3 (3.1%) 3 (3.1%) 1.000 3 (4.3%) 1 (1.4%) 0.612 0 (0%) 2 (7.1%) 0.471 1.000

Anthropometrics and behavioral factors in early pregnancy

Gestational age of recruit (weeks) 12.71 ± 0.76 12.65 ± 0.78 0.574 12.70 (12.25–13.30) 12.70 (12.10–13.10) 0.570 12.95 (12.33–13.08) 12.7 (12.3–13.25) 0.954 0.650

BMI 20.83 ± 2.65 22.79 ± 3.01 <0.001 21.22 ± 2.71 22.75 ± 3.16 0.003 19.86 (18.49–20.51) 23.28 (20.85–24.9) <0.001 0.196

Waist (cm) 77.29 ± 7.33 81.53 ± 9.15 0.001 76.00 (73.00–81.00) 80.50 (75.75–88.00) 0.015 75.38 ± 7.78 81.96 ± 5.96 0.001 0.699

SBP (mmHg) 114.82 ± 9.57 119.17 ± 10.09 0.001 114.86 ± 9.41 119.71 ± 9.68 0.003 114.71 ± 10.13 117.82 ± 11.11 0.279 0.523

DBP (mmHg) 74.30 ± 8.39 76.87 ± 8.61 0.035 74.00 (66.00–82.00) 78.00 (72.50–83.00) 0.012 76.32 ± 8.25 76.54 ± 8.44 0.924 0.406

EPDS 8.48 ± 3.83 8.32 ± 3.15 0.738 8 (6–11) 9 (5–11) 0.973 8 (6–11) 7.5 (6–10) 0.644 0.517

Daily cereal intake (g) 150 (120–225) 150 (120–225) 0.941 150 (120–225) 150 (120–225) 0.907 150 (120–225) 150 (120–225) 0.993 0.240

Daily tuber intake (g) 14.3 (5.6–28.6) 14.3 (3.3–28.6) 0.494 13.81 (5–28.57) 14.29 (3.33–28.57) 0.884 20.71 (6.79–28.57) 12.14 (0.42–19.82) 0.154 0.971

Daily vegetable intake (g) 200.0 (142.5–400.0) 200.0 (120.0–400.0) 0.760 200 (120–400) 200 (120–300) 0.296 200 (200–400) 220 (170–400) 0.672 0.277

Daily fruit intake (g) 400.0 (200.0–450.0) 400.0 (200.0–400.0) 0.849 400 (200–412.5) 400 (200–400) 0.863 400 (200–562.5) 400 (200–400) 0.810 0.701

Daily meat intake (g) 40.0 (13.9–60.0) 37.1 (8.6–65.0) 0.987 40 (11.14–60) 37.14 (8.57–60) 0.943 60 (19.29–115) 35 (8.93–120) 0.552 0.195

Daily seafood intake (g) 0 (0–4.6) 0 (0–7.0) 0.590 0 (0–4.63) 1 (0–7.14) 0.429 0 (0–7) 0 (0–7.5) 0.861 0.689

Daily fresh water products intake (g) 8.0 (2.0–17.1) 8.6 (2.0–25.7) 0.397 8 (2.5–17.14) 8 (0.75–17.14) 0.650 6.29 (0–11.86) 17.14 (3.14–28.93) 0.050 0.505

Daily eggs intake (g) 50.0 (14.3–50.0) 50.0 (21.4–50.0) 0.437 42.86 (14.29–50) 42.86 (21.43–50) 0.537 50 (14.29–50) 50 (21.43–50) 0.657 0.992

Daily milk intake (g) 112.8 ± 97.9 132.3 ± 131.4 0.273 92.86

(24.46–178.93)

107.14 (55.71–200) 0.096 125.36 (37.5–237.5) 50.71 (2.5–190.89) 0.123 0.533

Daily beans intake (g) 15.0 (4.3–32.1) 18.6 (6.3–32.7) 0.730 21.43 (4.82–33.04) 21.43 (7.14–40.71) 0.696 10.71 (3.14–27.86) 11.07 (5.18–21.43) 0.811 0.102

Daily nuts intake (g) 21.4 (7.1–50.0) 38.6 (10.7–65.7) 0.053 21.43 (4.82–50) 38.57 (13.39–70.36) 0.045 26.79 (13.21–50) 40 (10.71–61.07) 0.468 0.639

Daily oil intake (g) 21.0 (21.0–24.0) 22.5 (21.0–24.0) 0.198 21.75 (21–24) 22.5 (21–24) 0.303 21 (21–24) 22.5 (21–24) 0.240 0.537

Daily salt intake (g) 10.5 (10.5–12.0) 10.5 (10.5–12.0) 0.259 10.5 (10.5–12) 10.5 (10.5–12) 0.375 10.5 (10.5–12) 10.5 (10.5–12) 0.332 0.599

Daily water intake (g) 1,000 (675–1,500) 1,025 (1000–1,500) 0.061 1,000 (737.5–1,500) 1,000 (875–1,425) 0.468 1,000 (600–1,150) 1,200 (1,000–1,575) 0.001 0.470

Daily yogurt intake (g) 0 (0–4.47) 0 (0–0) 0.711 0 (0–28.57) 0 (0–0) 0.431 0 (0–0) 0 (0–0) 0.439 0.383

Biochemical characteristics in early pregnancy

Gestational age of blood sample

(weeks)

12.83 ± 0.77 12.73 ± 0.92 0.341 12.84 ± 0.74 12.69 ± 0.83 0.265 12.81 ± 0.85 12.81 ± 1.14 0.998 0.891

HGB (g/L) 123.24 ± 9.27 126.99 ± 8.4 0.004 124 (115–130) 128 (120.75–132) 0.023 125 (119–127) 128 (121.25–134.75) 0.102 0.359

TG (mmol/L) 1.32 (1.08–1.59) 1.57 (1.22–2.03) 0.005 1.33 (1.08–1.72) 1.61 (1.2–2.12) 0.013 1.31 (1.08–1.57) 1.55 (1.25–1.77) 0.114 0.609

TCHOL (mmol/L) 4.49 ± 0.7 4.58 ± 0.73 0.400 4.49 ± 0.75 4.64 ± 0.73 0.237 4.42 (4.02–4.99) 4.37 (3.9–4.91) 0.682 0.355

HDLCH (mmol/L) 1.92 ± 0.4 1.8 ± 0.41 0.026 1.87 (1.67–2.11) 1.72 (1.47–2.11) 0.053 1.91 ± 0.46 1.77 ± 0.37 0.225 0.682

(Continued)

F
ro
n
tie
rs

in
C
e
llu
la
r
a
n
d
In
fe
c
tio

n
M
ic
ro
b
io
lo
g
y
|w

w
w
.fro

n
tie
rsin

.o
rg

4
F
e
b
ru
a
ry

2
0
2
0
|V

o
lu
m
e
1
0
|
A
rtic

le
5
8

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


M
a
e
t
a
l.

G
u
t
B
a
c
te
ria

lD
ysb

io
sis

B
e
fo
re

G
D
M

TABLE 1 | Continued

All participants Discovery set Validation set P*

Controls (N = 98) GDM (N = 98) P Controls (N = 70) GDM (N = 70) P Controls (N = 28) GDM (N = 28) P

LDLCH (mmol/L) 2.36 ± 0.64 2.5 ± 0.65 0.116 2.37 ± 0.66 2.53 ± 0.64 0.140 2.31 ± 0.6 2.4 ± 0.67 0.622 0.237

ALB (g/L) 45.40 (43.80–47.20) 44.90 (42.68–46.93) 0.096 45.5 (43.8–47.1) 44.85 (42.93–47.3) 0.447 45.69 ± 3.06 44.64 ± 2.68 0.180 0.828

ALT (U/L) 12.55 (9.45–20.80) 16.15 (11.50–25.33) 0.005 12.65 (9.03–20.05) 15.3 (10.98–23.18) 0.077 12.25 (9.53–22.1) 18 (13.1–36.95) 0.007 0.164

AST (U/L) 17.00 (14.48–19.80) 17.15 (15–21.53) 0.208 16.65 (14.08–20.18) 16.8 (14.93–20.83) 0.648 17.3 (16.03–19.3) 18.5 (15.43–25.43) 0.314 0.047

GGT (U/L) 10.0 (8.0–15.0) 12.0 (9.0–19.0) 0.017 10.5 (8.75–16) 12 (9–19) 0.174 9.5 (7–14.75) 12 (8.25–18.75) 0.181 0.417

CREA (umol/L) 43.01 ± 5.75 43.09 ± 5.5 0.923 42.5 (38.75–46) 43 (39.75–46.4) 0.491 44 (41.25–47) 43 (40.5–46) 0.588 0.219

UA (umol/L) 193.05 ± 42.98 216.22 ± 47.94 0.001 190.24 ± 42.53 214.90 ± 47.82 0.002 200.07 ± 44.07 219.54 ± 48.93 0.124 0.386

UREA (umol/L) 2.59 ± 0.62 2.62 ± 0.70 0.786 2.5 (2.1–3) 2.4 (2–3.03) 0.828 2.75 (2.15–3.1) 2.8 (2.4–3.1) 0.812 0.017

FT4 (pmol/L) 16.85 ± 2.90 16.40 ± 2.45 0.254 16.33 (15.12–18.15) 15.94 (14.69–17.4) 0.400 16.99 (15.37–18.13) 16.87 (15.11–18.07) 0.635 0.231

TSH (mIU/L) 1.14 (0.53–2.01) 1.43 (0.82–2.15) 0.194 1.16 (0.56–2.02) 1.53 (0.8–2.21) 0.110 1.07 (0.5–1.94) 1.34 (0.84–1.71) 0.528 0.369

TPOAB (IU/mL) 12.21 (9.66–18.02) 13.41 (10.35–17.07) 0.774 12.61 (9.79–17.41) 13.02 (10.08–16.74) 0.772 11.7 (9.55–18.99) 14.01 (11.3–19.47) 0.077 0.828

FGB (mmol/L) 4.63 (4.40–4.74) 4.89 (4.56–5.16) <0.001 4.62 (4.3–4.74) 4.82 (4.54–5.15) <0.001 4.65 (4.51–4.84) 4.91 (4.6–5.19) 0.042 0.466

Fasting insulin (pmol/L) 46.46 (28.47–70.42) 64.03 (44.24–90.77) 0.010 48.06 (30.97–72.09) 63.41 (44.45–90.77) 0.018 40.28 (25.00–66.32) 68.41 (39.38–100.7) 0.025 0.649

Leptin (ng/mL) 6.20 (4.54–8.85) 6.25 (4.89–9.41) 0.393 6.3 (4.76–9.2) 6.43 (4.89–9.51) 0.778 5.73 (4.06–6.94) 5.45 (4.83–9.15) 0.706 0.164

Adiponectin (ng/mL) 22.25 (11.95–41.46) 27.93 (13.09–44.09) 0.080 25.88 (14.61–43.13) 29.63 (11.6–47.13) 0.683 17.62 (7.77–34.34) 25 (14.76–40.04) 0.216 0.136

hsCRP (mg/L) 1.61 (0.89–3.03) 2.57 (1.65–4.18) <0.001 1.69 (0.97–3.79) 2.43 (1.55–4.37) 0.024 1.3 (0.83–2.01) 3.04 (1.84–4.14) 0.001 0.505

#Normal distributed continuous variables were reported as mean ± standard deviation and analyzed using the paired t-test or two-sample t-test, while non-normal distributed continuous variables were reported as median with

interquartile ranges (Q1–Q3) and analyzed using the Wilcoxon signed rank test or Mann-Whitney U-test. For dichotomous variables, the McNemar chi-square test, Pearson’s chi-square test or Fisher’s exact test was applied.

*Comparison was conducted between the discovery set (n = 140) and validation set (n = 56).

ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CREA, creatinine; DBP, diastolic pressure; EPDS, edinburgh postnatal depression scale; FBG, fasting blood glucose; FT4,

free thyroxine; GDM, gestational diabetes mellitus; GGT, glutamine transpeptidase; GH, gestational hypertension; HDLCH, high density cholesterol; HGB, hemoglobin; hsCRP, high-sensitivity C-reactive protein; LDLCH, low density

cholesterol; MET, metabolic equivalent of task; PCOS, polycystic ovarian syndrome; SBP, systolic pressure; TCHOL, total cholesterol; TG, triglycerides; TPOAB, thyroid peroxidase antibody; TSH, thyroid stimulating hormone; UA, uric

acid; UREA, urea.

F
ro
n
tie
rs

in
C
e
llu
la
r
a
n
d
In
fe
c
tio

n
M
ic
ro
b
io
lo
g
y
|w

w
w
.fro

n
tie
rsin

.o
rg

5
F
e
b
ru
a
ry

2
0
2
0
|V

o
lu
m
e
1
0
|
A
rtic

le
5
8

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Ma et al. Gut Bacterial Dysbiosis Before GDM

each index between controls and women who developed GDM
later were similar in both the discovery set and the validation
set. Except for the lower levels of aspartate aminotransferase
(P = 0.047) and urea (P= 0.017) found in the discovery set, other
characteristics remained comparable across the two data sets.

Altered Gut Microbiota in Women Who
Developed GDM Later
The 16S rRNA gene sequencing of the stool samples collected
from controls and women who developed GDM later yielded
12,390,684 high-quality reads, with an average of 63,218
reads per sample. Of which, the discovery set comprised
8,940,122 high-quality reads (∼63,858 reads per sample;
Supplementary Table 1). Rarefaction curves (Figure 1A)
indicated that the number of OTUs tended to be stable when
the number of reads exceeded 30,000. Thus, 36,000 sequences
were randomly selected from each sample to normalize the data.
The abundance rank curves (Figure 1B) showed that species
uniformity was similar between the two groups in the discovery
set. The analysis of alpha diversity showed that the women who
developed GDM later presented lower richness (lower Observed
OTUs, P = 0.020; ACE, P = 0.019; Chao1, P = 0.015) and also
lower diversity (lower Shannon, P = 0.029; Simpson, P = 0.037;
Heip_e, P = 0.048; and higher Dominance, P = 0.037) than that
detected in the controls (Figures 1C–I). PCoA plots based on
several distances were constructed to detect the differences in
beta diversity, and PERMANOVA analysis indicated differences
in the overall microbial composition between the two groups
(Supplementary Figure 2).

The top 10 phyla and 10 genera of gut microbiota for
the discovery set are shown in Figures 2A,B. Notably, the gut
microbiota was dominated by Bacteroidetes, Firmicutes and
Proteobacteria in descending order. The predominant genus
found in both groups was Bacteroides, which was increased in
the GDM group, but without statistical significance (P = 0.550).
To further explore the altered gut microbiota in women
who developed GDM later, we compared bacterial abundance
between groups at the levels of phylum, family, and genus.
As shown in Figures 2C,D, at the genus level, women who
developed GDM later showed a significantly higher abundance
of Eisenbergiella (P = 0.002), Tyzzerella 4, (P < 0.001)
and Lachnospiraceae NK4A136 group (P = 0.023), while the
healthy controls were significantly enriched for Parasutterella
(P = 0.040), Parabacteroides (P = 0.039), Megasphaera (P =

0.027), Dialister (P = 0.013), Ruminococcaceae UCG 005 (P =

0.010), Ruminococcaceae UCG 002 (P= 0.001), Ruminococcaceae
UCG 003 (P = 0.006), Eubacterium xylanophilum group,
(P = 0.018), and Eubacterium eligens group (P = 0.029).
Relative abundance of the differential genera is presented in
Supplementary Table 2, while the statistical parameters and
LDA scores are presented in Supplementary Table 3. These
findings revealed dysbiosis of the gut microbiota among women
who developed GDM later.

In order to explore potential clinical paths by which
changes in maternal gut microbiota might lead to GDM,
we investigated whether differential taxa were associated with
maternal clinical indices in the early pregnancy (Figure 2E and
Supplementary Tables 4, 5). We observed that GDM-enriched

genera Eisenbergiella (P = 0.029, r = 0.185) and Tyzzerella
4 (P = 0.022, r = 0.194) were positively correlated with
fasting blood glucose levels, while three control-enriched genera:
Parabacteroides (P = 0.018, r = −0.200), Parasutterella (P =

0.036, r = −0.177) and Ruminococcaceae UCG 002 (P = 0.044,
r = −0.171) were negatively correlated with fasting blood
glucose levels. Furthermore, the control-enriched genus Dialister
was negatively correlated with fasting insulin (P = 0.006, r =

−0.232), daily oil (P = 0.030, r = −0.184) and yogurt intake
(P = 0.025, r = −0.189). These results indicated that the
collective expression of these bacteria could be associated with
the subsequent development of GDM.

Inferred Functional Changes in the Gut
Microbiota of Women Who Developed
GDM Later
The network of interactions between gut microbiota may differ
in various health states. Thus, we explored the co-occurring and
co-excluding networks of differential genera for healthy controls
and women who developed GDM later. As shown in Figure 3A,
a highly complex network of interactions was found in the
control group encompassing 12 differential genera, conversely,
networks were limited in the GDM group with correlations
related to genera of Dialister, Megasphaera, Eisenbergiella no
longer significant. Within the Firmicutes phylum, the positive
association between genera of Ruminococcaceae UCG 003 and
Eubacterium xylanophilum group disappeared in GDM group,
and were replaced with new positive correlations between
Ruminococcaceae UCG 002 and Ruminococcaceae UCG 003, as
well as Lachnospiraceae NK4A136 group. Between Bacteroidetes
and Firmicutes phyla, the strong negative relationship between
Parasutterella and Ruminococcaceae UCG 002 in the control
group disappeared in the GDM group. Meanwhile, the positive
correlations between Proteobacteria and Firmicutes phyla in the
control group turned to negative in the GDM group.

Using Tax4Fun and LEfSe we identified 6 differential
pathways between controls and women who developed GDM
later (Figure 3B), the predicted metagenomes for women who
developed GDM later depicted an enrichment of polyketide sugar
unit biosynthesis (ko00523, P= 0.029), sphingolipid metabolism
(ko00600, P = 0.044), pentose and glucuronate interconversions
(ko00040, P = 0.028), starch and sucrose metabolism (ko00500,
P = 0.027), as well as a reduction in lysine biosynthesis
(ko00300, P = 0.002) and nitrogen metabolism (ko00910,
P = 0.007). In the process of plotting correlations between
differential genera and inferred metabolic pathways (Figure 3C
and Supplementary Table 6), we observed significant positive
relationships between several control-enriched genera (Dialister,
Ruminococcaceae UCG 002, Ruminococcaceae UCG 003,
Megasphaera, Parasutterella) and control-enriched pathways
(ko00300, ko00910). Negative correlations were observed
between GDM-enriched genera and control-enriched pathways,
as well as between control-enriched genera and GDM-enriched
pathways. Moreover, Spearman’s rank correlation analyses
indicated that starch and sucrose metabolism pathway was
positively associated with fasting blood glucose (P = 0.022, r
= 0.194) and total cholesterol (P = 0.023, r = 0.193), lysine
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FIGURE 1 | The richness and diversity of the gut microbiota in healthy control and GDM groups. (A) Rarefaction curves to estimate the richness of the gut microbiota

in healthy control and GDM groups. The vertical axis shows the number of OTUs expected after sampling the number of tags or sequences shown on the horizontal

axis. (B) Rank abundance curves of bacterial OTUs derived from the two groups. Alpha diversity was calculated with QIIME2 software (version 2018.11) based on the

sequence similarity at the 100% level, including index of Observed OTUs (C), abundance-based coverage estimator (ACE, D), Chao1 estimator (E), Shannon (F),

Simpson (G), Heip’s evenness measure (Heip_e, H) and Dominance (I). Unpaired t-tests (two-tailed) were used to analyze variation among the two groups, and the

P-values are shown in the corresponding figures.

biosynthesis pathway was negatively associated with fasting

blood glucose (P = 0.033, r = −0.181) and leptin (P = 0.043, r

= −0.171). Although the pathway analyses are predictive, they

indicated that impairment of gut microbiota may contribute

to the onset of GDM through the interference of physiological
metabolic functions.

Gut Microbiota-Based Pattern Recognition
Analysis for the Diagnosis of GDM
Pattern recognition analysis was performed to assess the
predicative ability of gut microbiota and clinical data for GDM
status. An LDA model was established utilizing a set of 5 OTUs
(Parabacteroides, Ruminococcus 2, Ruminococcaceae UCG-014,
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FIGURE 2 | Different bacterial taxa between healthy control and GDM groups. (A) Relative abundance of the top 10 bacterial taxa at the level of bacterial phylum. (B)

Relative abundance of the top 10 bacterial taxa at the level of bacterial genus. (C) Linear discriminant analysis (LDA) score of differential taxa at genus level based on

LEfSe (P < 0.05 and LDA threshold value >2). The abscissa is the LDA value, the GDM-enriched genera are shown as blue bars, the control-enriched genera are

shown as orange bars, and the P-value is shown in each bar. (D) Boxplot of differential taxa at genus level. (E) Spearman’s rank correlation heatmap of differential taxa

at genus level and clinical indices. Circles that tend to red and tend to green represent positive and negative correlations, respectively.

Alloprevotella, and uncultured-Ruminococcaceae) and 2 clinical
indices (GLU, GGT). The receiver operating characteristic (ROC)
curves demonstrated that the model showed accuracy and
efficacy in the identification of GDM patients in early pregnancy,
with the areas under ROC curves (AUC) of the discovery
(Figure 4A) and validation (Figure 4B) sets being 0.736 (95%
confidence interval: 0.663–0.808) and 0.696 (95% confidence
interval: 0.575–0.818), respectively. In the new dimension

defined by the model variables, samples in different groups could
be effectively distinguished (Figure 4C). Moreover, distribution
trends of the 7 categorical indices between the two groups were
similar in both data sets (Figure 4D), the relative abundance of
genus uncultured-Ruminococcaceae was significantly higher in
the controls both in the discovery (P = 0.001) and validation
(P = 0.029) sets, while the level of fasting GLU was significantly
higher in GDM group both in the discovery (P < 0.001)
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FIGURE 3 | Functional analysis of the gut microbiota in healthy control and GDM groups. (A) Co-occuring and co-excluding networks for differential genera in control

and GDM groups (yellow line: co-occuring; green line: co-excluding). (B) Boxplot of differential functions between control and GDM groups. The differential pathways

were identified using Tax4Fun and LEfSe, the P-values next to each boxplot. (C) Heatmap of Spearman’s rank correlations between differential genera (LEfSe: P <

0.05 and linear discriminant analysis threshold value >2) and differential pathways. Bars that tend to red and tend to blue represent positive and negative

correlations, respectively.
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FIGURE 4 | Gut microbiota-based pattern recognition analysis for the diagnosis of GDM. (A,B) Receiver operating characteristic (ROC) curves for samples in

discovery and validation sets. AUC, the areas under ROC curves; CI, confidence interval. (C) Scatter plot of all samples in discovery and validation sets based on first

two axes obtained from Linear discriminant analysis. (D) The boxplot of the seven features utilized in the model for samples in discovery and validation sets. The otu1,

2, 3, 4, 5 were genera Uncultured-Ruminococcaceae, Alloprevotella, Ruminococcus 2, Parabacteroides, and Ruminococcaceae UCG-014, respectively. GGT,

glutamine transpeptidase; Glu, fasting blood glucose.

and validation (P = 0.042) sets. Performance of LDA models
(Supplementary Table 7) suggested that the combined model
outperformed models based on five bacterial markers or two
clinical indices alone, with higher accuracy and specificity both
in the discovery set and validation set. Thus, a similar model
could be utilized as a new technology for the early detection of
GDM patients.

DISCUSSION

Principal Findings
In the present study, we sequenced the 16S rRNA gene for total

bacterial DNA of stool samples from 98 GDM and 98 matched

healthy controls in their early pregnancy (10–15 weeks). The

results demonstrated that aberrant gut microbiota interactions
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were associated with GDM before its onset, which was mainly
reflected through the observed alterations in gut microbial
composition and bacterial gene functions. The prediction model
with external validation also demonstrated the potential and
feasibility of utilizing gut microbiota as a non-invasive biomarker
for the diagnosis of GDM. This study will provide a better
understanding of the association between gut microbiota and
GDM. Ultimately, it will help identify novel microbiota-related
diagnostic tools and preventive strategies.

Alterations in Gut Microbial Composition
and Functional Annotation Precede the
Onset of GDM
The data set was randomly split into a discovery set and a
validation set. Based on bioinformatic analyses of the discovery
set, decreased richness (alpha diversity) and increased individual
diversity (beta diversity) were observed in women who would
eventually develop GDM. Specifically, Eisenbergiella, Tyzzerella
4, and Lachnospiraceae NK4A136 group were enriched in women
with subsequent GDM. Moreover, these GDM-enriched bacteria
were reported to have been involved in gut bacterial dysbiosis in
previous studies (Kelly et al., 2016; Zhao et al., 2017; Crusell et al.,
2018). Eisenbergiella was recently reported to be associated with
higher gestational weight gain (Crusell et al., 2018). Tyzzerella
4 were potentially pathogenic bacteria linked to increased
cardiovascular disease risk (Kelly et al., 2016). Moreover, both
Eisenbergiella and Tyzzerella 4 were positively correlated with
fasting blood glucose levels, suggesting that they might have
direct associations with GDM pathophysiology. Lachnospiraceae
NK4A136 group were previously reported in several animal
studies with various conclusions. Zhao et al. (2017) considered
Lachnospiraceae NK4A136 group to be intestinal probiotics
showing a negative correlation to intestinal inflammation in rats;
while Zheng et al. (2018) suggested that the Lachnospiraceae
NK4A136 group was an indicator of gut dysbiosis, higher relative
abundances of Lachnospiraceae NK4A136 group were found in
rats with advanced-stage type 1 diabetes (Gao et al., 2019).

Meanwhile, the microbes reduced in women with subsequent
GDM included Parasutterella, Parabacteroides, Megasphaera,
Dialister, Ruminococcaceae UCG 005, Ruminococcaceae UCG
002, Ruminococcaceae UCG 003, Eubacterium xylanophilum
group, and Eubacterium eligens group. Most importantly,
the pronounced reduction of Parabacteroides, Dialister, and
Eubacterium eligens group had been previously observed in
diagnosed GDM patients in comparison to healthy pregnant
women (Kuang et al., 2017; Cortez et al., 2018), suggesting
that changes in these bacteria were closely related to GDM,
and occurred over time prior to the development of GDM, the
potential pathological mechanism is worthy of further research
utilizing sterile animal verification trials. Most of these bacteria,
including Parabacteroides, Megasphaera, Ruminococcaceae UCG
005, Ruminococcaceae UCG 002, Eubacterium xylanophilum
group and Eubacterium eligens group, could produce short-chain
fatty acids (SCFAs) such as butyrate, propionate, and acetate
(Chen et al., 2017; Chung et al., 2017; Gao et al., 2018; Wang
et al., 2018b, 2019; Metzler-Zebeli et al., 2019), which could

maintain normal physiological functioning of the intestines,
regulate gut permeability, increase insulin sensitivity, and induce
gut inflammatory responses that recede the development of
diabetes (Vaarala et al., 2008). Additionally, the study provided a
clear insight into the correlations between differential genera and
maternal clinical indices, besides several reported associations
(Guo et al., 2018; Wei et al., 2018), the others, especially the
associations with blood pressure, blood lipids, dietary intake, liver
and kidney functions, still need validation via continued research
in this field. Moreover, studies regarding the potential causal
links between the collective effects of gut microbiota and their
relationship to GDM are also warranted.

Concomitant with the alteration of gut microbial
composition, we observed changes in bacterial gene functions.
Functional annotation indicated that a significant decrease in
the lysine biosynthetic pathway was related to GDM. As an
essential amino acid required in protein synthesis, lysine is also
used in the peptidoglycan layer of Gram-positive bacterial cell
walls, the lysine biosynthetic pathway offers several potential
antibacterial enzyme targets, highlighting their importance
for bacterial cell survival and the healthy homeostasis of the
gut microbiota (Gillner et al., 2013). In contrast, enrichment
of modules for sphingolipid metabolism in the GDM group
may hint at a potential role of gut microbiota in inflammatory
signaling (Maceyka and Spiegel, 2014), as bacterial sphingolipid
production resulted in changes in host sphingolipid metabolites
(Brown et al., 2019), and sphingolipid metabolism was a
converging point linking excess free fatty acids and inflammation
aroused by adipose-derived inflammation (Kang et al., 2013).
Moreover, sphingolipid metabolism also played a crucial role
in glucolipotoxicity induced apoptosis and loss of function of
pancreatic β cells, contributing to the progression of insulin
resistance (Kang et al., 2013; Veret et al., 2014). Consistent with
the findings in T2DM and obesity (Haus et al., 2009), the link
between sphingolipids, inflammation, and insulin resistance
was likely responsible for GDM pathology. Functional analysis
in the present study also found two carbohydrate metabolism
pathways (pentose and glucuronate interconversions, starch and
sucrose metabolism) that were enriched in the GDM group, both
of which were previously found to be associated with T2DM
(Zhao et al., 2013; Sun et al., 2014), and might be used for
GDM prevention.

Feasibility of Microbial Biomarkers for the
Early Prediction of GDM
Early prediction of GDM allows for potential implementation of
interventions to reduce the risk of subsequent adverse maternal
and fetal outcomes. Here, we constructed an LDAmodel to assess
the predictive performances of gut microbiota for GDM, based
on the fact that microbes within the human gut are important
contributors to the host metabolism (Le Chatelier et al., 2013),
and gut microbial communities could be modified by improving
diet and lifestyle, or through intervention with probiotics (Ray,
2014; Homayouni et al., 2019). Five OTUs (Parabacteroides,
Ruminococcus 2, Ruminococcaceae UCG-014, Alloprevotella, and
Uncultured-Ruminococcaceae) and 2 clinical indices (GLU, GGT)
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were included in this model, with the AUC of the training
and validation sets being 0.736 (0.663–0.808) and 0.696 (0.575–
0.818), respectively, which outperformed models based on
five bacteria markers or two clinical indices alone. Previous
predictions of GDM were largely dependent on recognized risk
factors, the most important of which include ethnicity, maternal
age, BMI, family history of T2DM, and prior GDM (Kennelly
and McAuliffe, 2016). Several risk-prediction tools (Naylor et al.,
1997; van Leeuwen et al., 2010; Teede et al., 2011; Gabbay-Benziv
et al., 2015) based exclusively on these clinical characteristics
available in the early pregnancy have been proposed to identify
women at high risk of developing GDM. External validation of
four clinical risk-prediction models using our cohort yielded a
lower performance than those observed in the original studies,
mainly having an unsatisfactory AUC in the discovery set
and over-fitting in the validation set (Supplementary Table 8).
Despite the differences in characteristics of the population,
diagnostic criteria used, and prevalence of GDM, the compared
results might indicate that the LDA model utilizing both clinical
and gut microbiota-targeted biomarkers demonstrated effective
performance in the prediction of GDM. However, considering
the strong associations between gut microbiota and host location
(He et al., 2018), as well as ethnicity (Deschasaux et al., 2018), it is
necessary to carry out further verification on other populations,
to assess whether the gut microbiota as a predictor of GDM
is applicable to people with different races and regions. The
confirmed conclusion would provide a new direction for the early
detection and prevention of GDM.

Strengths and Limitations
This nested case-control study was based on a prospective
follow-up cohort. Comparison of the gut microbial composition
and function in general pregnant women before the onset
of GDM provided a better understanding of the association
between gut microbiota and GDM. Exploration of the prediction
model provided a novel microbiota-related direction for the
early detection of GDM. However, several limitations of
this study need to be addressed, and thus, merit further
discussion. First, the sample size was small, especially the
validation set, and the performances of LDA models were
not very satisfactory in external validation samples. Second,
all of the participants were from the same research site, and
only one fecal sample per participant was analyzed. Samples
in this prospective study were collected in early pregnancy,
but no fecal samples prior to pregnancy were available for
comparison. Moreover, samples collected at a single time point
would not convey the entire dynamic relationship. Third, the
biochemical baselines with significant differences might have
some confounding. Fourth, we had no information on the levels
of immune inflammatory factors and intestinal metabolites that
were working in correlation with the gut microbiota. In order
to address these limitations and confirm the findings observed
in the current study, a multi-center, multi-point, vertical cohort
investigation with analyses of gut genome and metabolome will
be required.

CONCLUSION

In summary, we characterized aberrant gut microbiota found
in early pregnancy in women who eventually developed
GDM, and reported a diagnostic model protocol with external
validation of microbial markers for GDM. If confirmed by
further large-sampled well-designed studies, these results suggest
that gut bacterial dysbiosis in early pregnancy might be
involved in the pathogenesis of GDM, and gut microbiota-
targeted biomarkers might be potential predictors of GDM.
Elucidating these findings in the gut microbiota will provide a
foundation to improve our understanding of GDM etiology and
support potential preventive options based on modifying the
gut microbiota.
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