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The pathogenic mechanisms of Alzheimer’s disease (AD) remain largely unknown and clinical trials have not demonstrated

significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic

insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n¼ 40), mild cognitive

impairment (MCI, n¼ 36) and control (n¼ 38) subjects; univariate and multivariate analyses to define between-group

differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic

profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had

elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus

controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios

revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that

appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine

pathways; amyloid-b (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings

indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine

pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics

provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure.
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Introduction

Although the causes for late-onset Alzheimer’s disease (AD)

are unknown, there are clearly profound biochemical

alterations in multiple pathways in the AD brain including

changes in amyloid precursor protein metabolism, tau

phosphorylation, oxidative stress, energetics and mitochon-

drial dysfunction, inflammation, membrane lipid dysregulation

and neurotransmitter pathway disruption.1,2 Many of these

biochemical changes are functionally interrelated, highlighting

the need for a systems approach tomodel the pathogenesis of

AD at a network level.

Until recently, the lack of validated ‘mega’ metabolic

platforms has limited the ability to study metabolic networks

in relation to known pathologic markers. Such studies could

eventually help provide a deeper understanding of disease

mechanisms that goes beyond current limited AD hypotheses

and targets, and may potentially yield novel candidate

biomarkers for diagnosis or risk prediction.

Over the past decade, major advances in analytical

chemistry have resulted in a new field, that is, metabolomics,

the study of the repertoire of small molecules present in

cells, tissues, organs and biological fluids and their mutual

interactions.3,4 Many diseases disrupt metabolism and result

in changes that are long-lasting and can be captured as

metabolic signatures.4 As metabolic processes are at the

core of physiology, metabolomics is ideally positioned to

characterize an integrated view of metabolic failures in AD

and metabolic failures that can lead to formation of plaques

and tangles in the brain. Metabolomic signatures, utilizing

different metabolomic platforms, have been reported for

several central nervous system disorders, including AD.5–9

One such platform, the liquid chromatography electrochemi-

cal array platform, detects a subset of the metabolome

consisting of compounds susceptible to oxidation reduction

and is therefore one of the most sensitive platforms for

studying key central nervous system pathways, such as the

tryptophan, tyrosine and purine pathways. This targeted

platform enabled us to define signatures for several central

nervous system diseases and drugs used for the treatment of

these diseases.7,10
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In this study, we used liquid chromatography electroche-

mical array to establish metabolomic signatures in cerebrosp-

inal fluid (CSF) from two well-characterized cohorts of

AD and mild cognitive impairment (MCI) participants com-

pared with matched cognitively intact normal control (CN)

participants.Wemodeled changes inmetabolic pathways and

developed multivariate models to classify diagnostic groups

using their baseline CSF metabolomic profiles. A partial

correlation network was built to link metabolic markers,

protein markers and disease severity.

Materials and methods
Study design and participants. This case–control study examined
participants enrolled in a prospective longitudinal study. The participants were
recruited at the Penn Memory Center, University of Pennsylvania (Philadelphia,
PA, USA) and the Maria de los Santos Health Center (Philadelphia, PA, USA),
following written informed consent under approval of the University of
Pennsylvania ethics committee and Duke University Medical Center institutional
review board. Cases were classified as AD or MCI based on standard diagnostic
criteria.11,12 From this cohort, we identified a subset of 114 participants (40 AD, 36
MCI and 38 CN) who had banked CSF samples and other traditional biomarker
data. Cases from each diagnostic category were matched as closely as possible
for age and gender. Neuropsychological testing was conducted including the
Clinical Dementia Rating, Dementia Rating Scale-Second Edition, Mini-Mental
State Exam (MMSE) and/or tests of frontal executive function, memory, language,
praxis, visuospatial construction, motor performance, mood and function. Details
for CSF samples collection and for standardized Lumixex assay for amyloid-b
(Ab42), total tau (t-tau) and phosphorylated tau (p-tau) at the threonine 181 are
described elsewhere.13 There were no significant differences between AD, MCI
and CN groups with regard to age and gender; however, as expected, baseline
cognitive status and apolipoprotein E (ApoE) e4 genotype prevalence were
significantly different (Table 1).

Metabolomic profiling. Samples were analyzed using a liquid chromato-
graphy electrochemical array platform that was extensively used and validated in
our prior studies into neurodegenerative and psychiatric disorders.7,10 Levels of
71 metabolites, including 24 known compounds, were measured (see Table 2 for
known compounds and their abbreviations).

Data analysis. Data analysis included univariate and multivariate statistical
techniques. The Fisher’s exact test was used to examine the association of the
following clinical covariates with disease status: gender, with APOE e4,
cholinesterase inhibitors and memantine; Kruskal–Wallis tests were used to test
between-diagnostic-group differences in age, years of education and MMSE
scores; two-sample t-test was used to compare age of onset between diagnostic
groups. The raw metabolomics data were first viewed by quantile–quantile normal
and w2 plots, and by variable-pair scatterplots, to assess normality and nonlinear
relationships. As most analytes were not approximately normally distributed,
nonparametric Kruskal–Wallis tests were used for pairwise comparison between
AD or MCI and CN. Significant metabolites were mapped to several key

biochemical pathways. We examined differences among diagnostic groups in
product/substrate ratios within the pathways; the ratios of compounds could
potentially indicate the relative effectiveness of enzymes involved in the pathways.
Correlations between metabolites and protein markers were obtained by
calculating their Pearson’s correlation coefficients. The significance of correlation
was tested using Student’s t-distribution. For all above systematic univariate tests,
multiple comparison was corrected by estimating the positive false discovery rate
using Storey’s q-value. The partial correlation network was built among
metabolites, protein markers and MMSE using the sparse partial correlation
estimation approach.14 An edge between two network variables implies conditional
dependency between corresponding variable pairs conditional on the rest of the
variables. The false discovery rate was controlled at 0.05 using the approach
suggested by Meinshausen and Bühlmann.15 Metabolomic profiles were used to
construct partial least square-discriminant analysis (PLS-DA) models for
categorical separation of AD or MCI and CN. The variable importance in
projection parameter was used to identify metabolites that make the most
contribution in discriminating diagnostic groups in the PLS-DA models, and
threefold cross-validation of the PLS-DA models was performed to evaluate model
predictive performance. Participant data from different groups were randomly
divided into training (B2/3 of all participants in a given group) and test (remaining
participants in a given group) sets. Following construction of PLS-DA models using
training sets, the models were used to predict class membership of the test-set
participants. This procedure was repeated three times with different participants in
the training and test sets and a new PLS-DA model constructed each time.

Results
Metabolic differences between AD, MCI and CN groups

Metabolites and key pathways altered in AD. Several metabolites were
significantly different in AD patients versus controls (Table 3 and Figure 1).

Table 1 Participant demographics and clinical characteristics

Characteristics AD (N¼ 40) MCI (N¼ 36) CN (N¼ 38) P-value Test

Age range 51.3–90.2 50.3–86.7 51.3–87.3
Mean age 69.0 69.9 69.5 0.93 K
Male, no. (%) 10 (25.0) 17 (47.2) 13 (34.2) 0.13 F
Median years of education±MAD 15.5±3.0 14.5±2.5 18.0±2.0 0.003 K
Median MMSE±MAD 23±3.0 27±2.0 30±0 o0.001 K
Mean age onset± s.d. 65.3±8.9 66.8±9.6 NA 0.48 T
with ApoE e4, no. (%) 23 (62.2) 13 (37.1) 12 (31.6) 0.018 F
Taking cholinesterase inhibitors, no. (%) 15 (37.5) 8 (22.2) 0 o0.001 F
Taking memantine, no. (%) 6 (15%) 0 0 0.003 F

Abbreviations: AD, Alzheimer’s disease; ApoE, apolipoprotein E; CN, normal cognition; F, Fisher’s exact test, two-sided; K, Kruskal–Wallis test; MAD, median
absolute deviation; MCI, mild cognitive impairment; MMSE, Mini-Mental State Exam; T, two-sided t-test between AD and MCI.

Table 2 List of known compounds quantified by the LCECA platform

Metabolite by pathways Abbreviation Metabolite by
pathways

Abbreviation

Tryptophan Purine
Tryptophan TRP Guanosine GR
5-Hydroxyindoleacetic acid 5-HIAA Hypoxanthine HX
5-Hydroxytryptophan 5-HTP Uric acid URIC
Kynurenine KYN Xanthine XAN
Indole-3-acetic acid I-3-AA Xanthosine XANTH
Tyrosine Paraxanthine PXAN
4-Hydroxyphenylacetic acid 4-HPAC Cysteine and

methionine
Homovanillic acid HVA Glutathione

(reduced)
GSH

Methoxyhydroxyphenlyglycol MHPG Methionine MET
Tyrosine TYR Other
Vanillylmandelic acid VMA Ascorbic acid ASA
Phenylalanine Delta-tocopherol DTOCO
4-Hydroxybenzoic acid 4-HBAC Indole-3-propionic

acid
I-3-PA

4-Hydroxyphenyllactic acid 4-HPLA
2-Hydroxyphenylacetic acid 2-HPAC

Abbreviation: LCECA, liquid chromatography electrochemical array.
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Methionine (MET), involved in one-carbon metabolism and methylation processes;
5-Hydroxyindoleacetic acid (5-HIAA), a major metabolite of serotonin (5-HT);
Vanillylmandelic acid (VMA), an end product of catecholamine metabolism; and
Xanthosine (XANTH), a purine pathway metabolite, were significantly increased in
AD. The 5-HIAA/5-Hydroxytryptophan (5-HTP) ratio was significantly increased
in AD, whereas GSH (glutathione)/MET ratio was decreased. There were
significant differences in the levels of several compounds of unknown chemical
structure between AD and CN (Table 3).

Metabolites and key pathways affected in MCI. Metabolites that
increased in MCI included 5-HIAA, MET, hypoxanthine (HX), indole-3-acetic
acid (I-3-AA), uric acid (URIC) and kynurenine (KYN) whereas tryptophan (TRP)
was decreased (Table 3 and Figure 2). Similar to AD, the 5-HIAA/5-HTP ratio was
increased and GSH/MET ratio was decreased in MCI; additionally, the ratios of
URIC/XAN (Xanthine), KYN/TRP, I-3-AA/TRP and XAN/XANTH were increased
and of 5-HTP/TRP and XAN/HX were decreased. Similar to AD, several
compounds of unknown chemical structure were different between MCI and

controls (Table 3). Many significant unknown metabolites increased in MCI were
those noted in AD.

MCI versus AD comparison 5-HTP was lower in MCI compared with AD. Several
unknown metabolites differed between MCI and AD (Supplementary Table I).

Metabolite intercorrelations. To gain insights into possible structure/
functions of unknown metabolites changed in AD and MCI, we analyzed their
possible associations with the known metabolites (Supplementary Table 2). Levels
of several unknown metabolites that significantly changed in AD and MCI versus
controls correlated with levels of known compounds significantly changed in AD
and MCI, suggesting that they could be either structurally or functionally related to
the metabolites from one-carbon metabolism and from tyrosine, TRP, and purine
pathways.

PLS-DA models for categorical separation of AD, MCI and
CN. We evaluated the value of metabolic profiles in separating disease
participants and controls. PLS-DA models were constructed for each pair of

Table 3 Metabolic differences among diagnostic groups

Groups Metabolites Mean s.d. Mean s.d. P-value q-value

AD CN
AD vs CN 15–65.533 50.85 14.72 29.52 6.54 o0.001 o0.001

12–94.5 100.88 10.52 85.70 32.10 o0.001 o0.001
8–93.65 92.42 15.16 82.07 16.08 o0.001 o0.001
8–89.433 116.74 60.38 70.45 57.71 o0.001 o0.001
14–64.275 51.93 18.86 33.98 17.60 o0.001 o0.001
MET 74.59 24.29 51.58 26.22 o0.001 o0.001
9–20.858 133.69 105.57 39.00 46.53 o0.001 o0.001
5-HIAA 95.72 45.43 64.08 18.52 o0.001 o0.001
GSH/MET 1.58 0.65 2.04 0.63 o0.001 o0.001
VMA 133.63 37.32 100.66 53.56 o0.001 0.001
9–29.925 174.55 95.56 126.62 89.35 o0.001 0.002
5-HIAA/5-HTP 0.78 0.48 0.61 0.44 o0.001 0.004
8–14.983 118.51 61.42 77.78 42.98 0.002 0.008
5–40.292 20.68 16.33 23.07 14.17 0.002 0.009
13–18.475 89.17 52.63 54.72 37.63 0.003 0.01
XANTH 68.92 21.18 57.21 11.68 0.004 0.02
GSH 105.85 22.64 93.45 19.4 0.01 0.03
8–63.675 128.69 59.77 163.50 55.61 0.01 0.03

MCI CN
MCI vs CN 15–68.542 54.08 38.65 25.10 14.34 o0.001 o0.001

15–65.533 63.49 62.75 29.52 6.54 o0.001 o0.001
14–64.275 57.61 35.93 33.98 17.60 o0.001 o0.001
8–93.65 85.14 11.28 82.07 16.08 o0.001 o0.001
12–94.5 88.07 10.48 85.70 32.10 o0.001 o0.001
5-HIAA/5-HTP 0.86 0.38 0.61 0.44 o0.001 o0.001
5–40.292 20.09 19.43 23.07 14.17 o0.001 0.002
GSH/MET 1.56 0.54 2.04 0.63 o0.001 0.002
4–22.117 79.45 39.24 61.83 18.44 o0.001 0.004
5-HIAA 83.17 28.71 64.08 18.52 0.001 0.006
13–18.475 85.94 47.56 54.72 37.63 0.003 0.01
8–3.675 123.82 60.32 163.50 55.61 0.003 0.01
URIC/XAN 0.90 0.42 0.70 0.42 0.005 0.02
5-HTP/TRP 1.32 0.97 1.50 0.56 0.005 0.02
MET 66.45 31.69 51.58 26.22 0.007 0.02
15–77.017 2422.89 7373.11 742.51 2045.72 0.007 0.02
KYN/TRP 0.98 0.32 0.80 0.27 0.007 0.02
8–89.433 76.48 34.97 70.45 57.71 0.01 0.02
XAN/HX 1.98 0.90 3.91 3.91 0.01 0.02
I-3-AA/TRP 1.54 0.82 1.14 0.65 0.01 0.02
HX 61.04 43.12 41.05 25.34 0.01 0.02
I-3-AA 139.11 79.10 98.40 63.29 0.02 0.03
URIC 80.45 31.44 65.24 33.90 0.02 0.03
5-HTP 116.53 87.98 128.31 48.94 0.02 0.03
KYN 91.15 42.55 69.37 26.35 0.02 0.03
15–90.6 97.27 66.04 74.80 26.01 0.03 0.05
XAN/XANTH 2.19 2.71 1.76 0.56 0.03 0.05

Abbreviations: AD, Alzheimer’s disease; CN, normal cognition; MCI, mild cognitive impairment.
For expansions of the metabolite abbreviations, see Table 2.
Significance cutoff: q-value o0.05.
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disease status (AD vs CN and MCI vs CN); the performance of models was
evaluated by cross-validation using correct classification rate together with
sensitivity and specificity. The correct classification rate for AD versus CN was
83.1% (sensitivity: 76.5% and specificity: 89.2%). The correct classification rate for
MCI versus CN was also 83.1% (sensitivity: 73.5% and specificity: 91.9%).
Figure 3 shows the classification results using a two-component PLS-DA model,
with corresponding variable importance in projection scores provided in
Supplementary Table 3.

Correlation between metabolites, proteins and MMSE scores. A
pair-wise correlation analysis revealed significant associations between metabo-
lites and each of Ab42, t-tau and p-tau (Table 4). We found correlations between
MET, VMA and Ab42; between XAN, 4-hydroxyphenyllactic acid (4-HPLA),
5-HIAA, VMA, GSH, (2-hydroxyphenylacetic acid) and t-tau; and between XAN,
VMA, 4-HPLA, HVA, GSH, XANTH and p-tau. For correlations within each group,
see Table 5. A partial correlation network was built among protein AD biomarkers,
MMSE, all known metabolites and seven unknown metabolites found in previous
studies to be related to disease status (Figure 4). Two variables are connected
within the network if their mutual correlation cannot be fully mediated by the other
variables. The false discovery rate was controlled at 0.05. T-tau is directly related
to VMA, XAN and 9–29.925, Ab42 is related to 15–65.533, and MMSE is related
to 15–65.533 and 12–94.5. Interestingly, the unknown metabolite 15–65.533 is
related to MET and 5-HIAA, the two metabolites altered in AD CSF.

Discussion

We used a metabolomics approach to identify potential metabolic pathways
implicated in the mechanisms of AD and MCI. Different perturbations in one-carbon
metabolism, tyrosine, TRP and purine pathways were identified in CSF from AD
and MCI patients. These findings complement and expand upon prior reports

of alterations in neurotransmitter, purine and cysteine metabolism in AD and MCI,
and provide some new insights. We have confirmed that all key metabolites that
contribute to separation of groups are not confounded by gender differences.
Earlier studies indicated that blood levels of homocysteine and cysteine were

increased in AD patients; it was also shown that increased homocysteine is
associated with an increased risk of cognitive impairment and dementia,16 and
alterations in the homocysteine metabolism are related to increased accumulation
of p-tau and could contribute to the neurofibrillary pathology in normal aging and
AD.17 Recently, a significant increase of cysteine in the CSF of AD patients has
been reported.8MET, the key metabolite of one-carbon metabolism, which provides
the methyl groups for numerous methyl transferase reactions via S-adenosyl-
methionine, is the precursor for homocysteine and cysteine, the rate-limiting amino
acid in glutathione synthesis. Synthesis of glutathione involves formation of
g-glutamylcysteine from glutamate and cysteine (catalyzed by g-glutamylcysteine
synthetase), followed by the addition of glycine to g-glutamylcysteine (catalyzed by
glutathione synthetase). The role of glutathione depletion in AD and in dementia has
been documented.18

In this study, we found for the first time that in both AD and MCI participants, the
levels of MET—the precursor of homocysteine—are increased whereas the MET/
GSH ratio is decreased. These findings suggest that the glutathione depletion in AD
could result from perturbations within this pathway, probably occurring at the level of
synthesis of glutathione from cysteine. Supporting this hypothesis are reports that
upregulation of glutathione by g-glutamylcysteine in primary neuronal cultures
protects against Ab42-mediated oxidative stress and neurotoxicity,19 and that GSH
delivery systems prevent amyloid-induced oxidative stress and cholinergic
dysfunction in AD models in vitro.20

AD is associated with dysfunction of catecholaminergic and serotoninergic
neurotransmitter systems. Post-mortem studies in AD have found the loss of
noradrenergic (NE) neurons in locus coeruleus with corresponding decreases of NE
levels in the cortical and subcortical projection areas, and have demonstrated that
severity of AD correlated with the degree of NE neuron loss in locus coeruleus.21

Figure 1 Changes in the methionine (a), tryptophan (b), purine (c) and tyrosine (d) pathways in Alzheimer’s disease (AD). Red metabolites: significantly increased in AD;
dark metabolites: not measured. Red and green pathways: significantly up- and downregulated in AD, respectively, implicated by ratios. For expansions of the metabolite
abbreviations, see Table 2.
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Our previous metabolomic study found significant decreases in NE levels in
ventricular CSF from autopsy-confirmed AD participants.7 NE was not measured in
this study because of its very low levels in lumbar CSF; however, VMA levels

(end product of the NE pathway) were found to be significantly increased in AD, as
noted in previous ventricular CSF studies.7 The observed increases in VMA levels
could be a result of medication, as approximately 15% of the AD participants

Figure 2 Changes in the methionine (a), tryptophan (b), purine (c) and tyrosine (d) pathways in mild cognitive impairment (MCI). Red metabolites: significantly increased
in MCI; dark metabolites: not measured. Red and green pathways: significantly up- and downregulated in MCI, respectively, implicated by ratios. For expansions of the
metabolite abbreviations, see Table 2.

Figure 3 PLS-DA models for separation between AD, MCI and CN. (a) Separation between AD and CN; (b) separation between MCI and CN. Examples of PLS-DA
models cross-validation: (c) AD versus CN and (d) MCI versus CN. A, Alzheimer’s disease; AD, Alzheimer’s disease; C, normal cognition; CN, normal cognition; M, mild
cognitive impairment; MCI, mild cognitive impairment; PLS-DA, partial least square-discriminant analysis.
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were treated with the N-Methyl-D-aspartate antagonist, memantine, which was
shown to increase the release and metabolism of NE.22 However, we found no
differences in VMA levels between AD participants who received memantine and
those who did not (data not shown). NE is metabolized by catechol-O-
methytransferase (COMT) and monoamine oxidase (MAO) with VMA as the end
product. Therefore, it is possible that upregulation of COMT and/or MAO in AD
patients could result in the observed increases of VMA in AD. Indeed, activation of
MAO in the AD brain was recently demonstrated.23 COMT, in addition to the
metabolism of monoamines, is the principal enzyme in the metabolism of estrogens
that have recently been implicated in the AD pathogenesis through the ApoE-
dependent mechanism.24,25 The COMT GG genotype and APOE e4 allele have
been found to have a synergistic effect upon the risk of AD, and COMT genetic
variations could be associated with psychoses in AD.26 Therefore, the elevated
levels of VMA in AD found in this study suggest upregulated COMT that, in turn,
could result in the increased metabolism of estrogens. In this respect, it is interesting
that levels of VMA were the highest among the e4/e4 participants as compared with
e3/e4 and non-ApoE participants (data not shown). Further studies with larger
cohorts of well-defined ApoE AD participants are necessary to elucidate the
potential role of COMT in the mechanisms of AD.
The main metabolite of 5-HT metabolism, 5-HIAA, was increased in both AD and

MCI participants. Potential mechanisms could involve upregulation of MAO activity

in AD,23 or antidepressant therapy in these patients. No correlation was found
between use of medications and levels of 5-HIAA (data not shown). We also
observed an increased 5-HIAA/5-HTP ratio in AD and MCI groups, and an
increased KYN/TRP ratio in MCI participants. These findings, combined with
previous reports, provide further evidence for the involvement of TRP and KYN
branch of its metabolism in mechanisms of neurodegeneration and in depression.27

We found increased XAN levels in AD and an increased ratio of URIC/XAN in
MCI, which is in accordance with our previous studies in AD.7 Several studies have
implicated mitochondrial dysfunction, oxidative stress and related perturbations in
purine metabolism in the mechanisms of neurodegenerative disorders, including
AD. Additionally, there is growing evidence for the involvement of purinergic
transmission in the mechanisms of AD and in Ab42 processing. Post-mortem
brain tissue from patients with a confirmed diagnosis of AD showed a loss of A1
adenosine receptors in the hippocampus, and an increased density of A1 and A2
receptors in the frontal cortex.28 In post-mortem neocortical and hippocampal tissue
from patients with AD, a colocalization of A1 receptors with Ab42 in senile plaques
was reported, and in human neuroblastoma cells, activation of A1 receptors was
linked to increased formation of soluble Ab42; it was also found that purinergic
receptors are involved in a-secretase-dependent processing of the Ab42.29,30 In
addition, novel purine-based g-secretase modulators were introduced as selective
agents toward Ab42.31

A partial correlation network has revealed new insights about links between
protein markers of AD and metabolites. The correlation of t-tau to VMA and XAN
suggests that the NE pathway and purine pathway might be implicated in t-tau
pathology and that the MET pathway one-carbon metabolism and methylation might
link to Ab42 pathology through the unknown compound 15–65.533. A new
perspective emerging from recent research is that AD is a network disorder that
affects a large number of neuronal cell types, is organized into functionally
connected networks across many brain regions and is not simply a disease of
discrete lesions limited to specialized brain regions associated with cognition and
learning. Within this concept, AD is believed to be a response to a shift from normal
to pathological networks, and hence the emerging recognition that we must
understand the disease at a systems level. Metabolomics provides powerful tools to
enable this systems approach.
In this study we used a targeted metabolomics approach to map biochemical

pathways that could be implicated in the mechanisms of AD pathogenesis. CSF
samples were analyzed as it is generally believed that CSF more closely reflects
metabolic processes in the brain because of the free exchange of several molecules
between the brain and CSF. Obviously, blood samples easily available in clinical
setting would be more suitable for developing biomarkers for monitoring/predicting
progression of the disease. However, the extent to which metabolic changes in
blood reflect changes in CSF remains to be investigated and we will establish
relationships between changes in central and peripheral compartments in future
studies; most likely, for different classes of metabolites the relationships between
central and peripheral compartments would be different. In this study, matching
plasma and CSF samples from same subjects were not available; currently, we are
collecting such samples for our next study. Integration of data obtained using
different metabolomics and lipidomics platforms (both targeted and nontargeted) for
central and peripheral samples with genetic, imaging and proteomic data for all AD
subjects is our ultimate goal and focus of our current investigations. For MCI
subjects involved in this study, no sufficient clinical data to enable us to define
metabolic signatures of progression from MCI to AD were available. Currently, we
are in the process of getting this information and are recruiting more MCI subjects to
address this topic in subsequent studies.
The strength of our study is the careful and rigorous selection of participants and

prospective nature of our cohort. However, there are limitations to our study.

Although our approach was targeted, we did perform a large number of preplanned

and exploratory analyses on a relatively small sample. However, within the logistics

of obtaining CSF studies in a prospective cohort of AD and MCI patients, ours is one

of the largest CSF metabolomics studies in at-risk and AD participants to date. We

were unable to replicate some prior findings because of low levels of some

metabolites in lumbar CSF compared with ventricular CSF (for example, NE). Yet,

our findings complement prior findings in pointing to changes within key pathways;

for example, studies have reported changes in cysteine levels in AD,32,33 which

seem related to our observation of alteration in MET and the GSH/MET ratio,

although we could not measure cysteine. The same applies for observations with

the VMA end product, NE. Previously, in post-mortem ventricular CSF, we

measured NE and implicated it in AD pathogensis.7 Its levels were much lower in

lumbar CSF (this study), and hence we could not measure it yet. Still, both studies

Table 4 Correlations of metabolites with proteins in all participants

Proteins Metabolites Correlation coefficient P-value q-value

Ab42 11–46.55 �0.36 o0.001 0.006
MET �0.33 o0.001 0.008

11–36.75 �0.33 o0.001 0.008
13–18.475 �0.32 o0.001 0.008
15–65.533 �0.28 0.004 0.03

VMA �0.28 0.005 0.03
9–20.858 �0.27 0.005 0.03
5–102.808 �0.26 0.008 0.03

GSH �0.25 0.01 0.04
p-tau 13–44.608 0.44 o0.001 o0.001

12–41.200 0.36 o0.001 0.002
XAN 0.36 o0.001 0.002
VMA 0.29 0.002 0.01

11–46.55 0.31 0.002 0.01
11–60.917 0.30 0.002 0.01
XANTH 0.28 0.004 0.02
4-HPLA 0.27 0.006 0.02
HVA 0.26 0.007 0.02
GSH 0.26 0.007 0.02

13–74.392 0.26 0.008 0.02
9–20.858 0.25 0.01 0.02
14–22.758 �0.25 0.01 0.02
9–29.34 0.25 0.01 0.02
9–29.925 0.24 0.01 0.02
14–34.25 0.22 0.03 0.04

t-tau 13–44.608 0.59 o0.001 o0.001
XAN 0.44 o0.001 o0.001

12–41.200 0.41 o0.001 o0.001
11–46.55 0.39 o0.001 o0.001
13–78.992 0.35 o0.001 0.003
4-HPLA 0.33 o0.001 0.006
9–29.925 0.33 o0.001 0.007
5-HIAA 0.32 o0.001 0.009
9–20.858 0.31 0.001 0.01
VMA 0.30 0.002 0.02

8–14.983 0.28 0.004 0.03
GSH 0.27 0.005 0.03

14–34.25 0.26 0.007 0.04
URIC 0.25 0.01 0.04

2-HPAC 0.25 0.01 0.04
XANTH 0.25 0.01 0.04
9–25.825 0.25 0.009 0.04
11–60.917 0.26 0.008 0.04
9–29.34 0.25 0.01 0.04

Abbreviations: Ab42, amyloid-b; p-tau, phosphorylated tau; t-tau, total tau.
For expansions of the metabolite abbreviations, see Table 2.
Significance cutoff: q-value o0.05.
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pointed to the same pathway as being affected in AD. Differences in exogenous

factors (diet, medications and comorbidities) between study samples might account
for some of the variations, and are difficult to control for across studies. We have

checked for possible effects of key drugs used in this patient population. We used
Fisher’s Exact Test to look for statistically significant associations between cognitive

outcomes (AD vs MCI vs CN) and use of several medication classes. As expected,

there was a statistically significant difference in the use of cholinesterase inhibitors
(unadjusted Po0.0001) as well as memantine (unadjusted P¼ 0.003), the

two types of drugs commonly used to treat Alzheimer-type dementias, among

the diagnostic groups. Use of antidepressants, antipsychotics, anxiolytics,
corticosteroids and statins did not differ significantly between the diagnostic

groups. Therefore, only the cholinesterase inhibitors and memantine were further

examined for correlation with the metabolites. We did note marginal effects of these
agents on a few metabolites including MET, MET/GSH ratio, and several unknown

metabolites. None of these effects fully accounted for the reported metabolic
differences between diagnostic groups. We have also performed analysis on

metabolomics data that have been adjusted for drug effects and our reported
findings remain highly significant. Our results should be viewed as hypothesis-
generating comparisons rather than definitive findings. Therefore, our findings and
theoretical speculations should be viewed as exploratory until replicated in larger
independent studies.

In summary, our study reveals alterations in several functionally relevant
metabolic networks and pathways in AD, with some overlapping changes in MCI.
Further study of such findings might yield new insights about the mechanisms that
underlie AD and novel targets for development as diagnostic or predictive markers.
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