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The p53 protein is probably the most important tumor suppressor, acting as a nuclear 
transcription factor primarily through the modulation of cell death. However, currently, it is 
well accepted that p53 can also exert important transcription-independent pro-cell death 
actions. Indeed, cytosolic localization of endogenous wild-type or transactivation-deficient  
p53 is necessary and sufficient for the induction of apoptosis and autophagy. Here, we 
present the extra-nuclear activities of p53 associated with the mitochondria and the endo-
plasmic reticulum, highlighting the activities of the p53 mutants on these compartments. 
These two intracellular organelles play crucial roles in the regulation of cell death, and it is 
now well established that they also represent sites where p53 can accumulate.
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inTRODUCTiOn

The p53 protein is the product of one of the most frequently mutated tumor suppressor genes in 
human cancer (TP53), playing a crucial role in the response of a myriad of intracellular pathways (1). 
Despite this master role, more than 50% of human cancers harbor somatic p53 gene mutations (2).

Unlike most tumor suppressor genes, which are predominantly inactivated by deletions or 
truncating mutations during cancer progression, the TP53 gene in human tumors often contains 
missense mutations that produce a full-length protein containing only a single amino acid substitu-
tion (called naturally occurring mutants) with a greatly prolonged half-life (3, 4).

Mutations in p53 result in both loss-of-function and gain-of-function activities (5–7).
In addition to its nuclear activity, there is much evidence to support the idea that the cytoplas-

mic pool of p53 plays a pivotal role in inducing apoptosis through a transactivation-independent 
mechanism (8) and Table 1.

The overexpression of a mutant p53, lacking most of the DNA-binding domain (DBD) and 
completely deficient in transactivation function, still triggers apoptosis (14). Moreover, the over-
expression of a number of transactivation-incompetent p53 mutants efficiently induces apoptosis 
(16). Similarly, it was shown that p53 is able to trigger apoptosis even in the absence of a nucleus 
(13). However, these studies did not provide any mechanistic explanation; only several years later, a 
breakthrough study showed a direct role of p53 in mitochondrial apoptosis (17).

Mitochondria play a pivotal role in cell death (18), including apoptosis. In healthy cells, the inner 
mitochondrial membrane, the barrier between the intermembrane space (IMS) and the matrix, is 
nearly impermeable to all ions. Mitochondrial membrane permeabilization, e.g., through opening 
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TABLe 1 | p53 mutants localization and function.

P53 mutant Localization Ability to 
induce 

apoptosis

Transcription 
independent

Reference

L-p53 M Yes Yes (9)
R273H C No (10)
R175H N, C No (11)
L194F N, C No (10)
R280K N, C No (10)
G245S N, C No
R248W N, C No (11)
R249S N, C No (11)
R282W N No (11)
L22Q N Yes Yes (12)
W23S N Yes Yes (12)
ΔNLS C Yes Yes (13)
dl214 N, C Yes Yes (14)
N1–102 C Yes Yes (13)
M246I N No (15)

N, nucleus; M, mitochondria; C, cytosol.
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of the permeability transition pore (PTP) (19), is frequently the 
decisive event that delineates the balance between survival and 
death (20, 21).

Proapoptotic signals resulting in outer mitochondrial 
membrane (OMM) permeabilization induce the release of IMS 
proteins that, once in the cytosol, activate different cell death-
associated pathways (22).

How p53, once at the mitochondrion, induces OMM permea-
bilization to trigger the release of proapoptotic factors from the 
IMS is described in depth in the next section.

The endoplasmic reticulum (ER) can connect to and act 
synergistically with other membranous structures, including 
mitochondria, in particular at ER–mitochondria contact sites, 
also known as mitochondria-associated ER membranes (MAMs), 
which have a distance of approximately 10–25 nm between the 
ER and the mitochondria (23, 24). The close proximity of the ER 
and the OMM explains how proteins situated on the opposing 
membrane faces could interact and thus “tether” the two orga-
nelles (25, 26).

The ER and the mitochondria reciprocally transmit danger 
signals through physical contacts (24, 27). In particular, the 
ER–mitochondrial cross talk plays a key role in decoding Ca2+-
mediated apoptotic signals (28–32).

p53 AnD THe MiTOCHOnDRiA

Moll and colleagues showed that death signals induce p53 
stabilization and rapid translocation (30–60  min) to the 
mitochondria in primary, immortal, and transformed cells (9, 
17, 33). The main evidence for a sequence-specific transactiva-
tion (SST)-independent pathway for p53-induced apoptosis 
comes from Mihara et  al., who demonstrated that bypassing 
the nucleus by targeting p53 to the mitochondria (via fusion 
with a mitochondrial import leader peptide, designated L-p53) 
was sufficient to launch apoptosis in p53-deficient tumor cells 
(9) and to suppress colony growth, although not as strongly as 
nuclear p53.

When a portion of endogenous p53 trafficked to the mito-
chondria, it interacted with the Bcl-2 family members, including 
the anti-apoptotic Bcl-2 and Bcl-xL at the OMM to block their 
functions (9). Interestingly, through nuclear magnetic reso-
nance (NMR) spectroscopy, it has been demonstrated that the 
p53 DBD is involved in this protein–protein interaction (34). 
Indeed, mutant p53-harboring breast cancer cells, such as MDA 
468, SKBr3, T47D, and MDA 231 (missense p53 mutations 
R273H, R175H, L194F, and R280K, respectively, both structural 
and DNA-binding mutant types), were unable to elicit this 
interaction (34).

DNA-binding domain represents the central core domain 
of p53 structure required for sequence-specific DNA binding 
(residues 102–292), and it is the most highly conserved region 
where more than 80% of p53 mutations occur.

Moreover, trafficking wild-type (wt) p53 within the mito-
chondria displayed the activation of proapoptotic members, such 
as Bax and Bak (13, 35, 36), to induce their oligomerization by 
forming a pore in the OMM. As a result, the oligomerization 
allowed the release of cytochrome c into the cytoplasm, resulting 
in apoptosis induction (33). To gain functional insight, they were 
brought forward in vitro experiments using purified recombinant 
p53 proteins at increasing concentrations. Because modifications 
in the p53 DBD (represented by the p53 R175H and p53 R273H 
naturally occurring mutants) were strictly unable to promote 
cytochrome c release and the fact that p53 L194F, R280K, G245S, 
R248W, R249S, and R282W missense mutants destroyed any 
attempt to mediate OMM permeabilization (Figure 1), the integ-
rity of the p53 DBD was declared essential for SST-independent 
apoptosis as well as for transcription-independent cell death.

In contrast, conflicting results can be seen in previously 
published papers, in which specific mutations that abolish 
the trans-activating functions of p53 (L22Q and W23S) in the 
amino-terminal domain (residues 1–42) or impair the p53 
nuclear localization signal (p53 ΔNLS) in the C-terminal region 
(residues 324–393) did not fully abolish the p53 apoptogenic 
potential (14).

In 1995, Haupt and coworkers reported that a truncated p53 
protein, containing only the first 214 residues of wt p53 (p53 dl214) 
and incapable of SST, appeared as a potent inducer of apoptosis. 
Similar experiments were conducted with a protein containing 
two point mutations (p53 Gln22Ser23), and in this case, the abil-
ity to induce efficient apoptotic cell death without SST properties, 
even though it occurred more slowly, was also confirmed (14). All 
of these sharply contradictory results culminated in the discovery 
of a p53 N1–102 truncation mutant as the minimal requirement 
for proapoptotic activity. This protein includes a mutated transac-
tivation domain and an intact proline-rich region (residues 61–94 
containing multiple copies of the PXXP sequence, where X is an 
amino acid) but lacks the central core and the C-ter previously 
mentioned. On the basis of these findings, p53 death signaling 
seems to depend on the proline-rich regulatory domain and does 
not require transactivation of target genes (13). Thus, as conse-
quence, the DBD may be dispensable. The proline-rich region 
plays a role in p53 stability regulated by mouse double minute 
2 homolog (MDM2). Indeed, p53 becomes more susceptible to 
degradation by MDM2 if this region is deleted (37).
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FiGURe 1 | Schematic representation of p53 intracellular localizations known to date. Major effects of intracellular distribution are shown in boxes while 
agents stimulating p53 localization are in italic font.
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To be thorough, it should be considered that p53 mutants bind 
their interactors also in a DNA structure-selective mode as well 
as in a sequence-specific manner (38). However, this topic needs 
to be explored by additional studies.

Recently, it has been demonstrated how wt p53 can contrib-
ute to the apoptotic process through the caspase 3 protein. First, 
Sayan et al. demonstrated the presence of two caspase 3 cleavage 
sites in wt p53 at residues Asp21 and Asp186. Because a portion of 
both proteins localized to the mitochondria, these authors com-
pared the apoptotic activities of wt p53, non-cleavable mutants 
(D21A and D186A), and naturally occurring p53 mutants 
(R248W and R249S) (39). Their results, through overexpres-
sion experiments, suggested that following caspase activation 
p53 gains a transcription-independent function to reinforce 
apoptosis, leading to the formation of a positive feedback 
loop in which p53 accumulation induces caspase cleavage and 
promotes apoptosis. Later, Frank and coworkers identified and 
characterized pro-caspase-3 as a mitochondrial p53-interacting 
protein. This finding was detectable in wt p53 cells, upon stress 
induction and following Adriamycin treatment, but only 1–3% 
of the total wt p53 had this affinity. p53 R175H and R273H 
stably transfected cells shown how both the mutants were able 
to interact with caspase-3 at levels comparable to wt p53, but 
conversely impaired the ability of pro-caspase-3 to be activated 
by upstream caspases (40).

More recently, Sorrentino showed the strong requirement of 
the phosphorylation-specific peptidyl-prolyl cis/trans isomerase, 
NIMA-interacting 1 (Pin1) in the early phases of p53-dependent 
apoptosis by controlling its mitochondrial accumulation, 
activation, and increased retention (41). Phosphorylation at 
Ser46 on p53 by the homeodomain-interacting protein kinase 

2 (HIPK2) is a key event in promoting its monoubiquitination 
and translocation to the mitochondria. These findings were 
intimately interconnected with the results previously obtained 
by Mihara and Mancini regarding the p53–Bcl-2 interaction and 
Ser46 phosphorylation of p53 (9, 42), and those results reported 
by Dumont et  al. on the impact of the p53 codon 72 Pro/Arg 
polymorphism on the direct mitochondrial activity of p53 (37). 
In particular, the Arg72 displayed a higher level of translocation 
to the mitochondria, with this variant found to have higher 
phosphorylation on Ser46 and to be bound to Pin1 better than 
the Pro72 counterpart.

A small molecule known as PRIMA-1, which activates p53 to 
achieve tumor suppression by restoring the capacity of mutant 
protein to bind DNA, has been shown to induce the death of 
tumor cells expressing p53 and tumor-derived mutation p53 
M246I and p53 R273H in the absence of transcription (13, 43).

Finally, another functional link between p53 and mito-
chondria originates from reactive oxygen species (ROS). ROS 
may contribute as actors on the stage of mitochondria–nuclear 
communication, interfering with the activity of various protein 
kinases and phosphatases (44, 45). Changes in mitochondrial 
function involving alterations in ROS production could affect p53 
activity and its subcellular localization. In one specific case, p53 
underwent an amino acid redox modification at cysteine 277 (oxi-
dation of Cys277) in the p53 DBD that altered its DNA-binding 
affinity (46). Moreover, mitochondria-generated ROS induce p53 
translocation to the mitochondria and in turn stimulate oxidative 
stress (46, 47) in part by transcription-independent mechanisms, 
leading to an increase in apoptosis. p53 translocates not only to the 
OMM but also into the matrix, where it was able to interact with 
protein–manganese superoxide dismutase (MnSOD, Figure 1), 
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leading to a reduction of its scavenging activity [Ref. (48) or Ref. 
(49) for an extensive review].

In the mitochondrial compartment, p53 has also been shown 
to accumulate following oxidative stress and ischemia, where it 
triggered PTP opening and necrosis (50). Thus, these results reveal 
a new role for p53 in activating necrotic cell death (Figure 1).

In the mitochondrial matrix also resides p53Ψ, an isoform 
product of an alternative 3′ splice-site activation of p53 mRNA. 
Consistent with previous information, this protein lacks SST 
functions and is sufficient to promote prometastatic features in 
epithelial cells (51). Moreover, cells expressing p53Ψ exhibited 
increased mitochondrial permeability and ROS production 
compared with cells that did not express this p53 isoform (51).

p53 AnD THe eR AnD MiTOCHOnDRiA-
ASSOCiATeD eR MeMBRAneS

Another important subcellular localization of p53 is the ER, 
where it plays a critical role in the modulation of apoptosis and 
autophagy.

p53 regulates autophagy in a dual fashion: the pool of nuclear 
p53 stimulates autophagy in a transcription-dependent fashion 
(52, 53) and the pool of cytoplasmic p53 protein represses 
autophagy in a transcription-independent manner (54).

Suppression of autophagy is mediated by cytoplasmic, not 
nuclear p53. Indeed, Tasdemir at al. observed that p53 KO cells 
display higher autophagy levels compared to their wt counter-
part. This effect was reverted by overexpression of wt p53, p53 
with impaired nuclear localization sequence, and ER-targeted 
p53 (p53ER). A p53 form that was unable to exit the nucleus 
[using a disrupted nuclear export signal (NES)] failed to inhibit 
autophagy and the p53 inhibitor pifitrin α was able to induce 
autophagy in wt cells or nucleus deprived cells (54). Interestingly, 
the R175H mutation, which is known to inhibit the nuclear 
and cytoplasmic effects of p53 (34, 55), prevented inhibition of 
autophagy (54).

These results indicate that p53 inhibits autophagy through 
a transcription-independent effect exerted from a cytoplasmic 
localization. In fact, cytoplasmic p53 inhibits the AMP-
dependent kinase, a positive regulator of autophagy, and activates 
mammalian target of rapamycin (mTOR), a negative regulator 
of autophagy. At present, the exact molecular pathway by which 
autophagy-inducing stimuli, such as ER stress, cause the cyto-
plasmic translocation and subsequent degradation of p53 remain 
unknown. It is known that its sequential phosphorylation of p53 
on Ser 315 and Ser 376, the nuclear export, the ubiquitination 
by HDM2 and its proteasome-mediated degradation is required 
(56, 57). Inhibiting HDM2 or the proteasome prevents degrada-
tion of p53 induced by various autophagy triggers and inhibits 
autophagy.

In recent years, many other tumor suppressor proteins, such 
as PML and PTEN, have been demonstrated to localize to the 
ER and MAMs, where they regulate the ER–mitochondria Ca2+ 
flux and apoptosis (58, 59). p53 localization at the ER has been 
previously suggested (60), but this specific ER-localization was 
unable to regulate cell death induced by calcium-independent 
apoptotic stimuli.

We demonstrated that in the cytoplasm, wt p53 localizes at the 
ER and MAMs to modulate Ca2+-mediated apoptosis in a tran-
scription-independent manner (61). This non-nuclear fraction 
of p53 is able to modulate Ca2+ homeostasis in response to both 
physiological and pathological stimulation; in fact, activation and 
accumulation of p53 at the ER/MAMs render cells more prone to 
death, and the absence of p53 leads to lower steady-state levels 
of reticular Ca2+, reduced Ca2+ mobilization, and mitochondrial 
accumulation evoked by agonist stimulation (ATP) or after the 
oxidative apoptotic inducer H2O2 (Figure  1). Importantly, to 
exclude the possibility that these effects are independent from the 
transcriptional activity of p53, different experimental strategies 
were used: a pharmacological inhibition of the transcriptional 
arm of p53 through the use of RNA polymerase II inhibitor 
α-amanitin (62), alone or in combination with pifitrin α, and the 
overexpression of p53 mutants lacking nuclear localization signal 
(p53 ΔNLS or ER p53).

Thus, p53 controls mitochondrial Ca2+ homeostasis and, in 
turn, apoptotic sensitivity from the ER/MAMs compartments.

Various naturally occurring p53 mutants, such as p53 R175H 
and p53 R273H, are unable to restore ER Ca2+ homeostasis when 
overexpressed in p53 KO cells, while the wt p53 efficiently does 
so. Accordingly, overexpression of wt p53, but not p53 R175H 
and p53 R273H, increased the sensitivity of p53 KO cells to 
oxidative stress back to the levels of their p53+/+ counterparts, 
although there were no differences in the expression of apoptotic 
genes in cells expressing mutant p53. Moreover, cells harboring 
the p53 R273H mutation, such as MDA-MB 468 cells, did not 
display any significant alterations in ER Ca2+ levels when p53 
was stabilized by adriamycin. Next, it was demonstrated that the 
Sarco/ER Ca2+-ATPase Pump (SERCA), a pump responsible for 
maintaining high Ca2+ levels in the ER lumen (63), selectively 
binds wt p53 on the C-terminal portion, modulating its oxidation 
status; however, this domain alone is not sufficient to modulate 
Ca2+ homeostasis and apoptosis, indicating that this function 
requires the entire protein. Interestingly, the naturally occurring 
p53 mutants R175H and R273H were unable to bind SERCA and 
its oxidation was unchanged.

Taken together, all of these data suggest that Ca2+-mediated 
apoptosis is a transcription-independent pathway regulated by 
p53 at ER/MAMs, through which p53 exerts its potent proapop-
totic role in response to anticancer treatments.

To elucidate the relevance of these findings in vivo, we inves-
tigated the involvement of p53 in the control of intracellular Ca2+ 
signals and apoptosis in a 3D tumor mass in living mice (64). 
The use of a “skinfold chamber” installed on the back of athymic 
mice allowed the monitoring of tumor formation and, through a 
single-photon fluorescence microscope, the investigation of Ca2+ 
dynamics inside the tumor.

When detectable, the mass was stained with Fura-2, a 
Ca2+-sensitive dye, and aluminum phtalocyanine chloride, a 
light-activated agent used in cancer photodynamic therapy 
(PDT). PDT accumulates in intracellular organelles, including 
ER and mitochondria, and after photo stimulation, it promotes 
Ca2+-dependent apoptotic pathways. Through this technique, we 
demonstrated that p53 is able to modulate the Ca2+ response and 
that this is associated with reduced responsiveness to apoptotic 
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stimulation. Together, these results reveal a new mechanism by 
which p53 exerts its potent proapoptotic function in response to 
anticancer treatments.

Importantly, p53 can not only regulate cell survival through 
its activity at ER/MAMs sites but also alter ER functions that can 
control both localization and apoptotic activity of p53. It has been 
shown that ER stress inhibits p53-mediated apoptosis, modulat-
ing its localization and function (57). In fact, ER stress induces 
the cytoplasmic localization and enhances the destabilization of 
p53 due to phosphorylation at serine 315 and serine 376, which is 
mediated by glycogen synthase kinase-3-β (GSK3-β). As a result 
of the increased cytoplasmic localization, ER stress prevents p53 
stabilization and p53-mediated apoptosis in response to DNA 
damage (57). Furthermore, it has been demonstrated that induc-
tion of the cytoplasmic translocation and degradation of p53 by 
ER stress is mediated by Hdm2 (56). This could have possible 
important implications for treatment of tumors with dysfunc-
tional ER, aiming at p53 stabilization through the inhibition of 
the p53–Hdm2–GSK3-β pathway. Overall, these findings suggest 
that the cross talk of p53 with the dynamic ER plays a pivotal role 
in the regulation of cell survival and provides important evidence 
on how the specific targeting of the ER by tumor suppressors 
could counteract tumor progression.

FUTURe PeRSPeCTiveS

Despite the long-time knowledge on p53 involvement in tumo-
rigenesis, its translation to clinical field has yet to be concluded. 
The studies summarized above clearly confirm that transcription-
independent activities of p53 play an important role in the ability 
of the protein to activate several pathways in many circumstances. 
Nevertheless, many efforts still need to dissect the intricate sign-
aling network that coordinates and couples the transcriptional 

and non-transcriptional proapoptotic activities of p53. In this 
way, there are still various mutants to be characterized, and 
how naturally occurring mutations affect p53 structure and 
function also remains elusive, as does the role of loss of wt and 
gain-of-function amino acid substitutions. Moreover, p53 extra-
transcription activity studies using p53 mutants’ overexpression 
should consider possible transcription activity alteration. For 
instance, high concentrations of p53 are demonstrated to inhib-
ited p53-activated transcription by squelching (65, 66). Further 
studies should clarify how transcription and extra-transcription 
effects could cooperate.

This recognition and classification that not all p53 mutants are 
equivalent is important not merely as a conceptual distinction but 
may also have practical implications.
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