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Abstract

Background: Amnestic mild cognitive impairment (aMCI) is characterized by cognitive functional decline, especially

in memory. Resting-state functional magnetic resonance imaging (fMRI) has been widely used in neuroimaging

studies that explore alterations between patients and normal individuals to elucidate the pathological mechanisms

of different diseases. The current study was performed to investigate alterations in the functional connectivity of

the default mode network (DMN) in aMCI patients compared to healthy elderly controls, as well as further define

the association between neurological alterations and memory function.

Methods: Twenty-five aMCI patients and 25 healthy individuals were recruited and underwent both fMRI and

neuropsychological examinations. fMRI data was analyzed by independent component analysis.

Results: Compared to healthy individuals, aMCI patients exhibited a significant increase in functional connectivity

between the DMN and right-middle and right-superior frontal gyri, left-middle occipital gyrus, and left-middle

temporal gyrus, but reduced functional connectivity between the DMN and left-middle and left-inferior frontal gyri

and left insula. These alterations were found to be associated with reduced memory function.

Conclusions: aMCI patients exhibited abnormal functional connectivity between the DMN and certain brain

regions which is associated with changes in memory function associated with aMCI.

Keywords: Amnestic mild cognitive impairment, Default mode network, Functional magnetic resonance imaging,

Functional connectivity, Independent component analysis

Background

Current evidence suggests that approximately 44 million

individuals suffer from dementia or Alzheimer disease

(AD) worldwide, and this figure is expected to more

than triple by 2050 due to a rapidly expanding older

adult population [1]. AD is a neurodegenerative disorder

characterized by progressive dementia with widespread

cognitive decline [2]. Mild cognitive impairment (MCI)

is considered to be an intermediate stage between nor-

mal aging and AD [3, 4]. MCI patients show decline in

cognitive functiongreater than that expected for one’s

age and education level, but the severity is not enough

to be classified as dementia; however, these individuals

have a higher risk of developing dementia or AD than

their age-matched, normal controls (10–15% annually

for MCI versus 1–4% for controls) [5–7]. Moreover, the

subtype of MCIwith memory complaint and deficit,

namely amnestic MCI (aMCI), is consistently shown to

have a higher risk of dementia than those without mem-

ory impairment [6]. More and more attention has been

paid to preventative therapies and pathological processes

associated with each stage of MCI in recent years
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because clinical trials of treatments for AD have failed.

The growing consensus is that the target population for

more effectively interventions is not individuals with di-

agnosed dementia but rather those with aMCI [8, 9].

Recently, resting-state functional magnetic resonance

imaging (fMRI) has been increasingly utilized for study-

ing the pathogenesis of MCI. Many researchers have

begun to explore alterations within the resting-state

brain network which may directly relate to disease path-

ology. The idea of the default mode network (DMN) has

attracted many neuroimaging experts to examine alter-

ations in the resting-state brain physiology of normal

aging subjects and those with neurological disorders

predominantly via fMRI [10]. The DMN is believed to

anatomically involve the precuneus (PCu)/posterior cin-

gulate cortex (PCC), medial prefrontal cortex (MPFC),

medial temporal lobe, including the hippocampus and

adjacent cortex, and inferior parietal lobule, as well as

temporoparietal junction,retrosplenial cortex and the lat-

eral temporal cortex, which play vital roles in cognition

and memory [11–13]. Many studies have demonstrated

that breakdown of DMN connectivity may underlie cog-

nitive function loss in MCI subjects. For example, the

intrinsic functional connectivity in the hippocampus,

parahippocampal gyrus, PCu [14], PCC, inferior parietal

lobule [15], and medial temporal and/or bilateral medial

frontal lobes [16] has been shown to be decreased in

MCI subjects compared with healthy controls. The

functional connectivity between different regions within

the DMN, such as between the hippocampus and PCC

[17, 18], PCC and MPFC, and/or PCC and PCu [19], has

also been reported to be absent or decreased in MCI

patients. Hence, such neuroimaging findings could be

considered as potential biomarkers of MCI. However,

most previous results were obtained based on region-of-

interest analyses, making it difficult for researchers to

come to a unanimous conclusion considering the limita-

tions of this approach with the relative arbitrariness of

the region-of-interest [20].

In the present study, we investigated the presence of

DMN alterations in aMCI patients compared with

healthy, elderly controls using independent component

analysis (ICA). In particular, we examined the relation-

ship between network functional connectivity and differ-

ent brain regions in aMCI patients to better clarify the

neuropathological mechanism associated with aMCI.

Furthermore, we assessed whether the changes in brain

network functional connectivity correlated with severity

of global cognitive performance.

Methods

Participants

Twenty-five participants diagnosed with aMCI according

to Peterson diagnostic criteria were recruited from the

Cangxia and Fengdanbailu communities in Fuzhou City

(China) [21]. All patients were males or females aged

60 years or older, had recent subjective memory com-

plaint, showed objective memory decline defined by a

Wechsler Memory Scale-Chinese Revision (WMS-CR)

score less than 1.5standard deviations below normative

means, normal or near-normal general cognitive function

defined by a Mini-Mental State Examination (MMSE)

score less than normality with adjustment for age and

education, a preserved activities of daily living (ADL) scale

score less than 18, and absence of dementia. Another

25 healthy, elderly control subjects without memory

complaint were also recruited. All aMCI and control

participants were right-handed and were without MRI

contraindications.

fMRI data acquisition

Images were collected using a 3.0-Tesla General Electric

scanner (Milwaukee, WI, USA) with an eight-channel

phased-array head coil. All subjects were instructed to

lie still with their eyes closed without falling asleep, stay

relaxed, and not think of anything in particular. Resting-

state scans were acquired using an echo planar imaging

sequence with the following parameters: time reso-

lution = 2100 ms, echo time = 30 ms, field of

view = 200 × 200 mm, flip angle = 90°, slice thick-

ness = 3 mm with a 0.6-mm gap, 42 slices, 64 × 64 matrix,

and phases per location = 160. T1 three-dimensional

magnetization-prepared rapid gradient-echo imaging was

acquired in the same session with the following parame-

ters: echo time = min, field of view = 240 × 240 mm, flip

angle = 15°, inversion time = 450 ms, slice thick-

ness = 1 mm, and 164 slices per acquisition). Both behav-

ioral examinations and fMRI scans were completed within

a week after enrollment.

fMRI data preprocessing

fMRI data preprocessing was performed using the Oxford

Centre for Functional MRI of the Brain’s (FMRIB)

Software Library (FSL version 5.0.8, Oxford, UK; http://

www.fmrib.ox.ac.uk/fsl). Nine-parameter nuisance signals,

including global, white matter, and cerebral spinal fluid

signals and six head motion parameters, were extracted

and removed using the Brain Extraction Tool in FMRIB,

and a mean functional image was created for each subject.

Next, functional images were spatially smoothed with a 6-

mm full-width at half-maximum Gaussian smoothing

kernel in FMRIB. Data were then band-pass filtered at

0.01 to 0.10 Hz to reduce the influence of low frequency

noise and effects of higher frequencies, such as respiratory

and cardiac signals. In addition, each participant’s func-

tional images were coregistered to their corresponding

skull-stripped anatomical image and then registered to the

Montreal Neurological Institute 152 stereotactic template
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using linear affine transformations with 12 degrees of

freedom.

fMRI data analysis

Analysis of fMRI data was performed using multivariate

exploratory linear optimized decomposition into inde-

pendent components [22]. Probabilistic ICA was applied

to derive each group’s (n = 50 total) resting-state net-

work activity at 20 components. The DMN was identi-

fied according to functional networks described in

earlier studies, and the similarity between our data and

the template networks derived from 1414 participants

was calculated [23].

Then, a dual-regression technique was applied [23].

First, the priori defined DMN was used as a spatial re-

gressor in a general linear model (GLM) to extract each

subject’s temporal dynamics. These time-courses were

then used as a set of temporal regressors in our GLM to

generate subject-specific maps associated with the differ-

ent group-level independent components. Finally, group

analysis was performed with the whole brain and

subject-specific maps from the second GLM, which rep-

resented the functional connectivity strength of each

voxel with the DMN.

To explore the relationship between changes in func-

tional connectivity and cognitive behavior, a regression

analysis was performed between subject-specific network

maps and each subject’s WMS-CR memory quotient

(MQ). A threshold of voxel-wise Z > 2.3 and cluster-

level family wise error (FWE) correction for multiple

comparison corrections of P < 0.05were used. Moreover,

age, gender, and education level were considered as co-

variates in this GLM.

Statistical analysis

Statistical analyses were performed with SPSS version

18.0 software (SPSS Inc., Chicago, IL, USA) for demo-

graphic and neuropsychological data, as well as correl-

ation analyses. The normality of continuous variables

was examined using the Shapiro-Wilk test. Normally

distributed data were expressed as means ± standard

deviations and analyzed by Student’s t-test. Non-

normally distributed data were analyzed using the non-

parametric Mann-Whitney U-test and reported as the

median and interquartile range. A Chi-square test was

used to assess gender differences between the two

groups. The mean Z-values of DMN regions with

significant differences between the two groups were

extracted, and correlations with neuropsychological

scores were analyzed using a Spearman correlation

analysis or Pearson correlation analysis if data had non-

normal distribution. A P < 0.05 was considered to be

significantly different.

Results
Demographic and neuropsychological data

Demographic and neuropsychological characteristics of

both groups are described in Table 1. Gender, age, and

MMSE and ADL scores were not significantly different

between aMCI and control groups (all P > 0.05). Interest-

ingly, the education level of aMCI patients was signifi-

cantly higher than for healthy controls (P = 0.012), but

their memory ability measured by WMS-CR was signifi-

cantly lower than the healthy control group (P < 0.001).

Differences in DMN functional connectivity

The DMN obtained from ICA was in conformity with

previously published results [23], which included the

MPFC, anterior cingulate cortex, parietal cortex, and

Pcu/PCC (Fig. 1). The correlation coefficent (r-value)

between the independent component we chose and the

template network was 0.56. All valid resting-state

components derived from ICA are shown in Additional

file 1: Table S1.

Compared with healthy controls, aMCI subjects

exhibited a significant increase in functional connect-

ivity between the DMN and right-middle and right-

superior frontal gyri, left-middle occipital gyrus, and

left-middle temporal gyrus. On the other hand, re-

duced functional connectivity was found between the

DMN and the left-middle and left-inferior frontal gyri

and left insula (Fig. 2a-b; Table 2).

Correlations between DMN functional connectivity and

WMS-CR MQ

Regression analysis between the DMN and WMS-CR

MQ showed a negative association between the DMN

and the left-middle frontal gyrus, right-middle and left-

inferior occipital gyri, and left-middle temporal gyrus.

A positive association was found between the DMN

and right-middle and right-superior frontal gyri and

right cingulate gyrus (Fig. 3a-b; Table 3). Pearson cor-

relation analysis showed that WMS-CR MQ changes

were positively correlated with functional connectivity

Table 1 Participant demographics and baseline

neuropsychological test scores

MCI (N = 25) HC (N = 25) P value

Gender (M/F) 9/16 11/14 0.564

Age (years): Mean ± SD 64.56 ± 4.984 62.84 ± 2.794 0.219

Education (years): Mean ± SD 11.44 ± 2.931 9.32 ± 2.495 0.012

MMSE: Mean ± SD 26.88 ± 1.856 27.60 ± 1.732 0.154

ADL 14 14 1

WMS-CR MQ 91.28 ± 11.07 110 ± 8.902 <0.001

ADL activities of daily living, HC healthy control, MCI mild cognitive

impairment, MMSE Mini-Mental State Examination, WMS-CR MQ Wechsler

Memory Scale-Chinese Revisionmemory quotient, SD standard deviation
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alterations in the right-middle occipital gyri (r = 0.490,

P = 0.0004) and left-inferior occipital gyri (r = 0.516,

P = 0.0001),where as negatively correlated with functional

connectivity alteration in the right-middle frontal gyrus

(r = −0.555, P = 0.0003) (Fig. 4).

Discussion
Several previous studies have compared differences in the

DMN between MCI and healthy subjects [14–19, 24, 25].

Most of them used region-of-interest (ROI) and task-

fMRI to explore the functional connectivity or activation

Fig. 1 The DMNof all participants derived from ICA. Brain regions observed in the network included the bilateral medial prefrontal (a), inferior

parietal lobe/angular gyrus (b) and PCu/PCC (c)

Fig. 2 Abnormal functional connectivity of the DMN in MCI patients compared to healthy controls. a The yellow color indicates brain regions

exhibiting increased functional connectivity (A: right-middle frontal gyrus; B: right-superior frontal gyrus, left-middle occipital gyrus, and left-

middle temporal gyrus) in MCI patients compared with healthy controls. b The red color indicates brain regions exhibiting decreased functional

connectivity (A: left-middle frontal gyrus; B: left-inferior frontal gyrus; C: left insula) in MCI patients compared to healthy controls
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of regions within the DMN. However, results of previous

studies varied widely due to different ROIs and tasks the

researchers chose and therefore analysis of functional con-

nectivity via resting-state fMRI requires a less complex

task design and data-driven approach. Moreover, ICA can

determine distinct components by capturing spatial inde-

pendence and time-courses of resting-state data and

thereby, reliably define different resting-state networks. In

the current study, we examined functional connectivity

within the DMN in a sample of aMCI patients and healthy

controls using the ICA method and found an increase in

functional connectivity between the DMN and right-

middle and right-superior frontal gyri, left-middle occipital

gyrus, and left-middle temporal gyrus, as well as decreased

functional connectivity between the DMN and left-middle

and inferior frontal gyri and left insula in aMCI patients

compared to healthy controls. In addition, our findings

also indicated these alterations in functional connectivity

between the DMN and specified brain regions were

closely associated with memory decline.

The frontal lobe is one of the most complicated brain

regions and is involved in a variety of cognitive func-

tions, especially memory [26, 27]. aMCI patients, char-

acterized by memory deficits, often exhibit abnormal

functional connectivity between the frontal lobe and

other brain regions. As a result, the frontal lobe is con-

sidered to be a “hub” that is profoundly relevant to

memory processing in MCI [28]. Sui et al. [29] reported

that long-range functional connectivity density in the

superior and middle frontal gyri was increased in MCI

patients compared to healthy controls and also corre-

lated with cognitive performance, allowing differenti-

ation of MCI brain from controls. Zhao et al. [30]

found that aMCI patients showed increased amplitude

of low-frequency fluctuation (ALFF) signals in the left-

superior and middle-frontal gyri compared with normal

subjects. Similarly, our results showed that aMCI

patients showed a significant increase in functional

connectivity between the DMN and right-middle and

right-superior frontal gyri.

Table 2 Comparison of significant differences in functional connectivity between MCI and HC group

Contrast Brain regions MNI coordinates (mm) Peak
Z-score

Cluster
size (mm3)

x y z

MCI>HC R. Middle Frontal Gyrus/ R. Superior Frontal Gyrus 32 22 52 4.28 429

L. Middle Occipital Gyrus/ L. Middle Temporal Gyrus −50 −80 20 3.90 162

HC>MCI L. Middle Frontal Gyrus/ L. Inferior Frontal Gyrus/ L. insula −30 20 22 4.33 432

Abbreviations:HC healthy control, L left, MCI mild cognitive impairment, MNI Montreal Neurological Institute, R right

Fig. 3 Correlation between functional connectivity alterations in the DMN and WMS-CR MQ changes across all participants. a The yellow color indicates

brain regions exhibiting increased functional connectivity in MCI versus control subjects; the blue color indicates brain regions exhibiting a negative

association between their DMN functional connectivity alterations with corresponding WMS-CR MQs across all participants. b The red color indicates

brain regions exhibiting decreased functional connectivity in MCI patients compared to healthy controls; the green color indicates brain regions

exhibiting a positive association between their DMN functional connectivity alterations with corresponding WMS-CR MQs across all participants
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The middle occipital gyrus is an important part of the

primary visual cortex considered to play a role in the pro-

cessing of visual recognition. Its abnormal connectivity

might lead to impaired visual cognition in aMCI patients

[31]. Cai et al. [32] reported that aMCI patients exhibited

a significant increase in ALFF in the left-middle occipital

gyrus and increased functional connectivity between the

left-middle occipital gyrus and other regions. Golby et al.

[33] also found that AD patients exhibited deficient expli-

cit memory but had normal implicit memory, which was

Table 3 Brain regions showing significant associations between WMS-CR MQsand corresponding functional connectivity

Contrast Brain regions MNI coordinates (mm) Peak
Z-score

Cluster
size (mm3)

x y z

MCI>HC R. Middle Occipital Gyrus/
R. inferior Occipital Gyrus/
R. Superior Occipital Gyrus/
R. Cuneus

36 −78 −6 4.01 443

L. Middle Frontal Gyrus/
L. Superior Frontal Gyrus/
L. Inferior Frontal Gyrus/
L. Insula

−42 24 22 3.46 237

L. Inferior Occipital Gyrus/
L. Middle Occipital Gyrus/
L. Fusiform

−34 −74 −12 4.69 224

L. Middle Temporal Gyrus/
L. Inferior Temporal Gyrus

−52 −24 −14 3.65 154

HC>MCI R. Middle Frontal Gyrus/
R. Superior Frontal Gyrus/
R. Cingulate Gyrus

28 16 32 4.55 228

Abbreviations:HC healthy control, L left, MCI mild cognitive impairment, MNI Montreal Neurological Institute, R right, WMS-CR MQs Wechsler Memory Scale-Chinese

Revision memory quotients

y=100.06+3.433x

r =0.516, P=0.0001

y=101.06+3.21x

r=0.490, P=0.0004

y=104.71-2.93x

r=-0.555, P=0.00003

Fig. 4 Correlation between functional connectivity alterations in the right-middle and left-inferior occipital gyri and right-middle frontal gyrus

with WMS-CR MQ changes based on Pearson correlation analysis
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encoded in the occipital cortex. In the current study, re-

sults revealed an increase in functional connectivity be-

tween the DMN and left-middle occipital gyrus in aMCI

patients compared with healthy controls, which might be

helpful for maintaining normal implicit memory in pa-

tients with aMCI. In addition, current results also demon-

strated a significant decrease in functional connectivity

between the DMN and left-inferior frontal gyrus in MCI

patients, which is consistent with a prior study [34]. This

is likely because encoding and retrieval of memory in

healthy older adults is primarily driven by the hippocam-

pus and inferior frontal gyrus [35]. Thus, the decreased

functional connectivity of aMCI patients may result in

problems with encoding and retrieval of memory.

Some possible limitations to the current study may

exist. First, our sample size was relatively small (n = 25

per group), which might have affected the statistical

power of results and might induce sampling biases.

Second, considering the difficulty associated with re-

cruitment, we did not use a matched-pair study design.

This likely led to the significant difference in education

level between the two groups and may have induced bias

regarding cognitive measures between groups. Addition-

ally, it is difficult to derive causal associations between

changes in functional connectivity and cognitive ability

due to the cross-sectional design of our study. Further

studies with larger sample sizes are needed to strengthen

the results, and might apply a matched-pair design with

a control group that is age-, gender- and education-

level- matched to reduce bias. Moreover, longitudinal

studies with follow-up periods are needed to investigate

whether functional connectivity alterations of the DMN

in aMCI could be an early biomarker for higher risk of

conversion to dementia in the future.

Conclusions

In summary, the present study was conducted to explore

the alterations of the resting-state functional connectivity of

the DMN in patients with MCI. The results demonstrated

that MCI exhibited significantly increased functional

connectivity between the DMN and right-middle and right-

superior frontal gyri, left-middle occipital gyrus, and left-

middle temporal gyrus, but reduced functional connectivity

between the DMN and the left-middle and left-inferior

frontal gyri and left insula. These alterations were associ-

ated with memory changes in MCI patients, which sug-

gested that the altered DMN functional connectivity might

be useful for the preclinical identification of dementia.

Additional file

Additional file 1: Table S1. Valid resting-state components derived

from ICA. (DOCX 13 kb)
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