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Abstract

Background: Coronary artery disease (CAD) is associated with gut microbiota alterations in different populations.

Gut microbe-derived metabolites have been proposed as markers of major adverse cardiac events. However, the

relationship between the gut microbiome and the different stages of CAD pathophysiology remains to be

established by a systematic study.

Results: Based on multi-omic analyses (sequencing of the V3-V4 regions of the 16S rRNA gene and metabolomics) of

161 CAD patients and 40 healthy controls, we found that the composition of both the gut microbiota and metabolites

changed significantly with CAD severity. We identified 29 metabolite modules that were separately classified as being

positively or negatively correlated with CAD phenotypes, and the bacterial co-abundance group (CAG) with

characteristic changes at different stages of CAD was represented by Roseburia, Klebsiella, Clostridium IV and

Ruminococcaceae. The result revealed that certain bacteria might affect atherosclerosis by modulating the metabolic

pathways of the host, such as taurine, sphingolipid and ceramide, and benzene metabolism. Moreover, a disease

classifier based on differential levels of microbes and metabolites was constructed to discriminate cases from controls

and was even able to distinguish stable coronary artery disease from acute coronary syndrome accurately.

Conclusion: Overall, the composition and functions of the gut microbial community differed from healthy controls to

diverse coronary artery disease subtypes. Our study identified the relationships between the features of the gut

microbiota and circulating metabolites, providing a new direction for future studies aiming to understand the host–gut

microbiota interplay in atherosclerotic pathogenesis.
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Background
Despite the widespread use of medical therapy in the last

decade, cardiovascular diseases (CVDs) remain the leading

causes of mortality and morbidity in many developed and

developing countries, CVDs remain responsible for 17.7

million deaths every year (constituting 31% of all global

deaths), and this number corresponds to one of every three

deaths in the US and one of every four deaths in Europe

[1]. Coronary artery disease (CAD) refers to the myocardial

dysfunction and/or organic lesions caused by coronary ar-

tery stenosis and insufficient blood supply. Based on clinical

symptoms, the extent of arterial blockage and the degree of

myocardial injury, CAD is divided into different categories:

stable coronary artery disease (SCAD), unstable angina

(UA) and myocardial infarction (MI) [2]. SCAD refers to

the syndrome of angina pectoris including recurrent, transi-

ent episodes of chest pain reflecting demand-supply mis-

match [3]. Patients with spontaneous attacks of prolonged

angina-type chest discomfort occurring at rest that are
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associated with vulnerable plaques are categorized as pa-

tients with UA [4]. MI is usually accompanied by severe

and persistent chest pain, typical ECG changes, and ele-

vated serum biomarkers of myocardial necrosis like cardiac

troponins [5]. UA and MI are also referred to as acute cor-

onary syndrome (ACS) (detailed diagnostic criteria are

summarized in Additional file 3). The progression of ath-

erosclerotic plaque is considered to be dynamic and com-

plicated, and the detailed mechanisms underlying the

formation, development and dislodgement of plaque are

largely unknown. Identifying biomarkers of the risk of

plaque destabilization and rupture in patients is important

for preventing the transition from coronary stability to in-

stability and the occurrence of thrombosis events.

Recently, multiple studies have suggested that the

structure and composition of the gut microbiota in CAD

patients exhibit significant alterations. According to a

study conducted in Sweden [6], which involved 12 pa-

tients and 13 controls, the gut microbiota composition

of patients with atherosclerosis (AS) contains relatively

high levels of Collinsella, whereas that of the normal

control group has relatively higher abundance of Rose-

buria and Eubacterium. Koren et al. identified Chryseo-

monas, Veillonella and Streptococcus in AS plaque

samples, and several bacterial phylotypes from the gut

are common to the atherosclerotic plaque and are corre-

lated with the cholesterol levels [7]. A metagenome-wide

association study showed that the abundance of Entero-

bacteriaceae and Streptococcus spp. were higher in pa-

tients with atherosclerotic cardiovascular disease than in

healthy controls [8]. We hypothesize that the reason

why discrepancies on microbial signatures of different

atherosclerotic populations are due to the intrinsic flaw

of taxon-based analysis, which overlooks the variations

of the bacterial strains belonging to the same taxon.

Moreover, the resident microbial communities in the in-

testinal tract act as key “metabolic filters” of the diet as

these species can convert common nutrients to metabo-

lites, and specific microbial-associated metabolites, such

as trimethylamine-N-oxide (TMAO), short-chain fatty

acids (SCFAs) and secondary bile acids, have been

shown to affect the progression of CVD [9–13]. For ex-

ample, TMAO, an independent marker for predicting

clinical vascular events, has been mechanistically linked

with the development of atherosclerosis in humans and

mice. This substance is generated when a toxic metabol-

ite (trimethylamine) produced by bacterial fermentation

of dietary fat-derived choline enters the host blood-

stream and is metabolized by the liver [14]. Both epi-

demiological and animal studies have provided strong

evidence showing that alterations of the gut microbiota

might be involved in the development of atherosclerosis,

but the features of the gut microbiota in patients with

different categories of CAD remain to be determined.

To address the questions above, we analysed the gut

microbial characteristics of 161 CAD patients (SCAD

group N = 44, UA group N = 80, and MI group N = 37)

and 40 healthy controls through high-throughput

sequencing. In addition, we used untargeted liquid

chromatography-mass spectrometry (LC-MS) to ana-

lyse the metabolic profiles of these patients. Based on

these multi-omic analyses, we identified specific fea-

tures of the gut microbiota and host metabolite pro-

files that are associated with increases in CAD severity

and further established relationships, particularly be-

tween several bacterial co-abundance groups (CAGs)

and serum metabolite function modules. This infor-

mation may be used to construct a disease classifier

for discriminating between healthy controls and differ-

ent CAD subgroups (an overview of the workflow is

provided in Additional file 1: Figure S1). Our study re-

veals that the integration of metabolomic and 16S

rRNA V3-V4 sequencing analyses might reveal the

interactions that occur between the host and the gut

microbiome.

Results

Characteristics of the study population

A total of 201 participants were enrolled at Peking

Union Medical College Hospital and were further

divided into the following four groups based on

guidelines for diagnosis (detailed in the “Materials and

methods” section): control group (N = 40), SCAD group

(N = 44), UA group (N = 80), and MI group (N = 37). The

traditional cardiovascular risk factors of the 201 subjects

are summarized in Table 1, and the extrinsic host factor

profiles, including diet, lifestyle, and stool consistency, are

summarized in Additional file 2: Table S1. Compared with

the healthy subjects, the patients in the SCAD, UA and

MI groups showed disruptions in glucose and lipid metab-

olism and an increased inflammatory state. Except for the

significant differences in the hs-CRP levels between SCAD

vs. MI and UA vs. MI, the risk factors showed no signifi-

cant difference between comparisons of CAD subgroups.

The atherosclerosis burden was quantified using the Gen-

sini score [15], and the median scores of the various

groups were as follows: SCAD, 35.25 (24, 65.5); UA, 44.25

(33, 60); and MI, 62.5 (47, 74.5). We observed that the

Gensini score level increased significantly with the

development of atherosclerosis and showed significant

difference between SCAD vs. MI (P < 0.001, Mann-

Whitney U test) and UA vs. MI (P <0.05, Mann-Whit-

ney U test) (Additional file 1: Figure S2). We also found

that the MI group exhibited a high proportion of

three-stenosed vessels (51.4%), which was consistent

with the coronary atherosclerotic burden observed in

other populations diagnosed with CAD [16]. Cardiac

troponin I (cTnI) has been found to have excellent
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sensitivity and specificity as an indicator of myocardial ne-

crosis [17], the median levels of cTnI in our study were 0,

0.005 (0, 0.02), 0.003 (0, 0.014) and 0.08 (0.06, 1.1) μg/L

from Control subjects, SCAD, UA to MI patients, re-

spectively. And significant differences in the cTnI levels

were found in all pairwise comparisons with the excep-

tion of the SCAD vs. UA. (SCAD vs. MI, P < 0.001; UA

vs. MI, P < 0.001; Mann-Whitney U test). According to

the results of cardiac catheterization and biochemical

data, we suppose that the integration of the Gensini

score, number of stenosed vessels and cTnI level can

indicate the severity of CAD.

Changes in the serum metabolomic features between

CAD subgroups

To identify the serum metabolome features of the pa-

tients in different CAD categories, untargeted metabo-

lome profiles were generated on fasting serum samples

by LC-MS. Considering the variable stability of metabo-

lites and in order to collect all possible metabolites in

serum, we optimized the sample preparation and detec-

tion for both polar ionic and lipid modes. Metabolomic

(polar ionic mode) and lipidomic (lipid mode) profiling

yielded 7061 features and 4975 features, respectively.

We conducted a “cross-comparison scheme”, in which

Table 1 Characteristics of the study cohort

Control
(n = 40)

SCAD
(n = 44)

UA
(n = 80)

MI
(n = 37)

P value
for trend

Age, years† 55 (49, 62.25) 62.5 (52.5,68.8) 62.5 (57.3, 67.8) 63 (53.5, 72) 0.023b

Female§ 23 (57.5) 11 (25) 24 (30) 8 (21.6) 0.002abc

SBP, mmHg* 119.9 ± 10.8 130.8 ± 15.5 131.1 ± 17.7 126.5 ± 16.5 0.002abc

BMI, kg/m2* 24.2 ± 2.9 25.1 ± 3.3 26.7 ± 2.9 26.1 ± 3.8 < 0.001bc

Waistline, cm* 83.3 ± 10.2 90.1 ± 7.8 93.9 ± 8.7 93.6 ± 9.7 < 0.001abc

Current smoker§ 6 (15) 25 (56.8) 43 (53.8) 22 (59.5) < 0.001abc

Drinking history§ 6 (15) 21 (47.7) 38 (47.5) 22 (59.5) < 0.001abc

No. of stenosed vessels§ 0.126

NA NA 3 (6.8) 5 (6.3) 0 (0)

1 NA 13 (29.5) 26 (32.5) 5 (13.5)

2 NA 11 (25) 15 (18.8) 13 (35.1)

3 NA 17 (38.6) 34 (42.5) 19 (51.4)

Gensini score† NA 35.25 (24, 65.5) 44.25 (33, 60) 62.5 (47, 74.5) < 0.001de

Medication

Statins§ 2 (5) 13 (29.5) 28 (35) 11 (29.7) 0.005abc

Antihypertensive drugs§ 8 (20) 28 (63.6) 49 (61.3) 23 (62.2) < 0.001abc

Oral antidiabetic drugs§ 2 (5) 12 (27.3) 15 (18.8) 12 (32.4) 0.014

Laboratory data

TG, mmol/l† 1.3 (0.86, 1.87) 1.25 (1, 1.6) 1.6 (1.1, 1.9) 1.3 (1.1, 2.1) 0.113

TC, mmol/l† 4.7 (4, 5.3) 3.7 (3.2, 4.6) 3.8 (3.3, 4.5) 4 (3.3, 4.7) 0.001abc

HDL-C, mmol/l† 1.1 (0.9, 1.4) 1 (0.8, 1.2) 0.9 (0.8, 1.1) 0.9 (0.8, 1.1) < 0.001abc

LDL-C, mmol/l† 2.8 (2.2, 3.2) 2.1 (1.7, 2.7) 2.2 (1.7, 2.7) 2.3 (1.6, 2.8) 0.013b

FBG, mmol/l† 6.2 (5.3, 7.9) 7.05 (5.9, 8.4) 6.4 (5.4, 7.9) 7.9 (6.2, 10.2) 0.019 c

BUN, mmol/l† 4.9 (4.3, 5.9) 5.9 (4.9, 6.8) 6.2 (4.9, 7.3) 5.7 (5, 7) 0.006bc

CR, μmol/l† 68.5 (61.2,79.8) 78.5 (67.3,92.8) 81.5 (68.25, 90) 79 (70.5, 89.5) 0.01bc

cTnI, μg/l† 0 0.005 (0, 0.02) 0.003 (0, 0.014) 0.08 (0.06, 1.1) < 0.001abcde

hs-CRP, mg/l† 0.7 (0.4, 1.2) 1.3 (0.6, 3.2) 1.9 (0.8, 2.9) 3.8 (2, 19.4) < 0.001bcde

TNF-α, pg/mL† 11.4 (3.1, 21.9) 25.9(15.2, 64.2) 22.6 (15.8, 38.9) 18.8 (14.3, 23.4) < 0.001abc

†median (IQR), *mean ± SD, §n (%)

Continuous, normally distributed variables among the four groups were analysed by a one-way analysis of variance. The Kruskal-Wallis H-test was applied for data

of this type that were not normally distributed. Continuous, normally distributed variables between two groups were analysed by Student’s t-test. The Mann-

Whitney U test was applied for data of this type that were not normally distributed. Categorical variables were compared by the χ
2 test. N/A not available.

Drinking history is defined as patients who consumed ≥ 50 g of alcohol per day. aP < 0.05 for equality between SCAD vs. control. bP < 0.05 for equality between

UA vs. control. cP < 0.05 for equality between MI vs. control. dP < 0.05 for equality between SCAD vs. MI. eP < 0.05 for equality between UA vs. MI.
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the various stages of CAD were compared with normal

coronary arteries and to each other: control vs. SCAD

for plaque formation and growth, SCAD vs. UA for tran-

sition from coronary stability to instability, SCAD vs.

ACS for plaque rupture and erosion, and UA vs. MI for

cardiac events [18]. Based on the OPLS-DA models of

metabolite profiling data, we found that the serum me-

tabolites were significantly different between all patients

with CAD and healthy controls. The patients with SCAD

status exhibited significantly different metabolite profiles

compared with the healthy subjects and the patients

with ACS. Moreover, the patients with UA and MI,

which are two different stages of ACS, also showed sig-

nificant differences (Additional file 1: Figures S3 and S4).

From the OPLS-DA models, we identified two collec-

tions of differentially produced compounds that included

334 metabolites (122 known and 212 unknown) under

polar ionic mode and 494 metabolites (111 known and

383 unknown) under lipid mode. The metabolic features

identified in the analysis included both host-derived and

bacterial-derived metabolites. We binned these serum me-

tabolites into 72 co-abundance clusters across all the sub-

jects. We identified 29 of the 72 metabolite clusters

(40.3%) to be significantly associated with the Gensini

score, number of stenosed vessels and cTnI levels (Fig. 1a,

Additional file 2: Tables S2 and S3). Among these 29 clus-

ters, the metabolite clusters under polar ionic mode were

separated into two groups that were either positively

(CAD enriched) or negatively (control enriched) corre-

lated with CAD severity, while the metabolite clusters

under lipid mode among these 29 clusters were only

negatively correlated with CAD severity (Additional

file 2: Table S4). Moreover, the CAD-enriched meta-

botypes were positively correlated with the main risk

factors of CAD but negatively correlated with cholesterol.

For example, the metabolite module P003 (fatty acyls and

carboxylic acids) was positively correlated with the waistline

(Rho = 0.29, adjusted P value < 0.001), triglyceride (TG)

(Rho = 0.4, adjusted P value < 0.001) and TNF-α (Rho =

0.22, adjusted P value = 0.009) but negatively correlated with

HDL-C (Rho = − 0.38, adjusted P value < 0.001). While the

control-enriched metabotypes generally showed the oppos-

ite correlation (Fig. 1b, Additional file 1: Figure S5).

By abundance comparison, we found that all the

CAD-negative metabotype modules were generally

highly abundant in the healthy subjects. Among the

CAD-positive-associated metabotypes, for Control vs.

SCAD, the metabolism changed for fatty acyls and car-

boxylic acids, benzene and substituted derivatives, pre-

nol lipids, phenolic glycoside, and amino acids, including

L-leucine and aminobenzoate degradation; the compari-

son of SCAD vs. UA did not identify much modules

with significant changes; for UA vs. MI, heteroaromatic

compounds, steroids, phenolic glycoside, tyrosine and

derivatives, and aminobenzoate degradation modules

were elevated (Fig. 1c).

Taken together, the results suggested that the CAD

patients had significantly different metabolite profiles

compared with healthy controls, and the metabolite

levels may further shift with different CAD severity.

Changes in the gut microbiome between the CAD

subgroups

As shown in the results, many CAD-associated metabotypes

are involved in the metabolism of aromatic compounds,

which may be co-metabolites of the gut microbiota and the

host. We then investigated the changes in the gut micro-

biome in the CAD subgroups by sequencing the faecal 16S

rRNA V3-V4 region. No significant differences in the rich-

ness and diversity of the gut microbiota were found between

the healthy control subjects and the patients with SCAD,

while the UA group exhibited higher values of observed op-

erational taxonomic units (OTUs) and a higher Chao1 index

than the healthy control group (Additional file 1: Figure S6).

To assess the overall structure of the gut microbiota, the

score plot of the principal coordinate analysis based on un-

weighted UniFrac distances was constructed, and the results

showed that with intensification of the pathophysiological

process of coronary AS, the structure and composition

of the microbiota differed significantly (Additional file 1:

Figure S7). We explored the associations between varia-

tions in the gut microbiota and host characteristics using

Adonis. Eighteen parameters were significantly associated

with gut microbial variations derived from between-sam-

ple unweighted UniFrac distances (P < 0.1 of PERMA-

NOVA, Fig. 2a, Additional file 2: Table S5). Bristol stool

type, CAD phenotype indicators, inflammatory factors,

lifestyle and medication use were among the strongest ex-

planatory factors, which was consistent with the results

observed for Western populations [19].

As bacteria work as functional groups (guilds) in the gut

ecosystem [20], we next constructed a co-abundance net-

work in which the 274 OTUs were shared by at least 20%

of the samples based on SparCC correlation coefficients

and clustered the OTUs into 24 CAGs. Of these, CAG4,

CAG14, CAG15 and CAG16 decreased significantly in pa-

tients with CAD compared with the healthy controls (Wil-

coxon rank sum test, P < 0.05, Fig. 2b). Of the OTUs in

these CAGs, 81.6% belonged to Lachnospiraceae and

Ruminococcaceae (Fig. 2c), members of which may protect

against inflammation by producing butyric acid [21, 22].

Then, we analysed CAGs with significant abundance

differences in different subgroups (Fig. 2b). Notably, the

abundance of CAG17 was significantly higher in the group

with more severe disease. This CAG comprised many Pro-

teobacteria phylotypes (Fig. 2c), such as Klebsiella, Strepto-

coccus, Haemophilus and Granulicatella, members of

which have been reported as pathogens or opportunistic
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a

c

b

Fig. 1 Identification of the major serum metabolite modules associated with the onset and development of CAD. a Spearman correlations

between serum metabolite modules and major CAD phenotypes. b Spearman correlations between serum metabolite modules and major CAD

risk factor indicators. c The box plot shows that the serum metabolite modules significantly changed between different groups according to the

Wilcoxon rank sum test. The names of the metabolite clusters comprising the CAD-positive and CAD-negative metabotypes are highlighted in

red and blue, respectively. In a and b, the colour represents positive (red) or negative (blue) correlations, and FDRs are denoted as follows: *FDR

< 0.05, **FDR < 0.01. In c, the asterisk represents P values < 0.05 by the Wilcoxon rank sum test, boxes represent the inter-quartile ranges, and

lines inside the boxes denote medians. PE phosphatidylethanolamine, PC phosphatidylcholine, GP glycerophospholipids, SBP systolic blood

pressure, TC total cholesterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, FBG fasting

blood glucose, hs-CRP high-sensitivity C-reactive protein, IL-6 interleukin 6, TNF-α tumour necrosis factor-α
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pathogens [23–26]. Through Spearman correlation analysis,

we did not identify any CAGs that were directly correlated

with the three major phenotype indicators of CAD. How-

ever, we showed that the CAGs had significant correlation

with age, inflammatory markers (hs-CRP and IL-18), blood

lipids and dietary fibre intake (Additional file 1: Figure S8).

Multi-omic network analysis reveals the relationship

between the gut microbiota and serum metabolites in CAD

We subsequently assessed the correlation between the

gut microbiota and serum metabolites to further explore

the characteristics of the microbiota in patients with

different CAD severities. Given an FDR of 5%, 9 gut

microbiota CAGs were significantly correlated with 14

metabolic modules, as demonstrated through Spearman

correlation coefficients, and these metabolic modules

were further correlated with the Gensini score, number

of stenosed vessels or cTnI level, which can represent

the CAD severity (Fig. 3 and Additional file 2: Table S6).

CAG4, CAG14, CAG15 and CAG16, enriched in the

control group, were positively correlated with metabotypes

that were “CAD-negative associated”, such as sphingolipids

a

c

b

Fig. 2 Identification of the important co-abundance groups that were strikingly different across CAD groups. a Bar plot illustrating the top host factors

that were found to be significantly associated with gut microbial variations. The variations were derived from between-sample unweighted UniFrac

distances. The bars were coloured according to metadata categories. Size effects and statistical significance were calculated by PERMANOVA (Adonis).

The P value was controlled at 0.1. b Relative abundances of the 24 co-abundance groups (CAGs) across different CAD subgroups. The abundance

profiles were transformed into Z scores by subtracting the average abundances and dividing the standard deviations of all the samples. The Z score

was negative (shown in green) when the row abundance was lower than the mean. CAGs at P values <0.05, as determined by the Wilcoxon rank sum

test, are marked with green stars. c OTU-level network diagram showing the enrichments of OTUs in the different groups based on significantly

changed CAGs. Node size indicates the mean abundance of each OTU. The bacteria denoted on the nodes were of the lowest classification status that

could be clearly identified using the RDP classifier. Lines between nodes represent correlations between the nodes connected by the lines, with line

width indicating correlation magnitude, red representing positive correlation, and grey representing negative correlation. Only lines corresponding to

correlations with magnitudes greater than 0.4 were drawn. IL-18 interleukin 18, BUN blood urea nitrogen, hs-CRP high-sensitivity C-reactive protein,

OAD Oral antidiabetic drugs, SBP systolic blood pressure, CK creatine kinase, NYHA class New York Heart Association classification, TG triglyceride
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and PEs, but negatively correlated with “CAD-positi-

ve-associated metabotypes”, such as glycerolipids, pre-

nol lipids and benzene derivatives. In particular, CAG4,

mainly composed of Faecalibacterium and Roseburia, was

closely related to 10 serum modules, which implies that

CAG4 might play an important role in the maintenance of

the normal coronary artery physiological conditions by

interacting with different serum metabolites.

The analysis of the CAGs that were increased in the

more severe groups showed that these were negatively

correlated with the module composed of additive flavours

and ingredients, including linalyl cinnamate and gingerol.

Recent studies have demonstrated that these food flavour-

ings undergo transformation in the gut microbiota and

thereby acquire additional properties that promote the

biological activities of these compounds [27, 28]. For

instance, CAG9, composed of several genera belonging

to Clostridium, was negatively correlated with glycero-

phospholipids such as PE (22:0/14:0) and PC(P-16:0/20:2).

CAG13, represented by Butyricimonas, was found to be

positively associated with carboxylic acids, steroids and

glycerolipid metabolites such as Ne, Ne dimethyllysine,

glycerol 1-hexadecanoate and 1b-hydroxycholic acid.

CAG19 and CAG23 were both negatively correlated

with fatty acyl carnitines, mainly L-octanylcarnitine,

and CAG23 was also positively correlated with benzene

and substituted derivatives.

As mentioned previously, the gut bacterial CAGs were

not directly correlated with the three major phenotype

indicators of CAD. The concerted changes within the

microbiome and metabolome allowed us to construct

interaction networks for CAGs and the CAD-associated

Fig. 3 Interrelationship between gut microbiota composition, host metabolic profile and main CAD phenotype. Visualization of the correlation

network according to Spearman correlation analysis between the gut microbiota of significant CAGs and the parameters represented CAD

severity was mediated by serum metabolites. Red connections indicate a positive correlation (Spearman correlation test, FDR < 0.05), while blue

connections show correlations that were negative (Spearman correlation test, FDR < 0.05). In the gut microbiota column, the green stratum

represents CAGs that were highly enriched in the control group, and the stratum coloured in purple was increased in the more severe group

among the subgroup’s comparisons. In the metabolomics column, the orange stratum represents CAD-negative metabotypes, and the pink

stratum represents CAD-positive metabotypes. CAG co-abundance group, PE phosphatidylethanolamine, PC phosphatidylcholine, GP

glycerophospholipids, No. of SV number of stenosed vessels, cTnI troponin I
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metabolite modules, indicating that the gut microbiota

may influence CAD severity by interacting with host

metabolites.

Subgroup identification and prediction based on CAGs

and CAD-associated metabotypes

To determine whether the gut bacterial CAGs and metab-

olite modules can be regarded as identification biomarkers

for distinguishing various stages of CAD from normal cor-

onary arteries and from each other, random forest models

were constructed to classify different stages of CAD based

on 24 CAGs and 72 serum metabotypes, and receiver

operating characteristic (ROC) curves were used to test

the classification (details are shown in the “Materials and

methods” section). We mainly established five models,

namely, Control vs. CAD, Control vs. SCAD, SCAD vs.

UA, SCAD vs. ACS and UA vs. MI.

We could accurately distinguish CAD patients from

healthy controls, as indicated by the area under the re-

ceiver operating curve (AUC), which had a value up to

0.955 (Fig. 4a). Among the strongest discriminatory fea-

tures, benzene and substituted derivatives had the great-

est impact, followed by metabotypes such as ceramides,

glycerophospholipids, taurine and amino acids, including

L-leucine and L-proline. (Fig. 4b). In the subgroup com-

parisons, we considered control vs. SCAD for plaque

formation and found that SCAD patients possessed dis-

tinct features compared with the controls (Fig. 4a). The

features with predictive value were metabolic modules,

including benzene and substituted derivatives, phenolic

glycoside, heteroaromatic compounds, taurine and tyro-

sine (Fig. 4b). Then, we focused on SCAD vs. ACS for

the transition from coronary stability to instability, and the

AUC for this comparison was 0.897 (Fig. 4a). The main fea-

tures included steroids, aminobenzoate degradation, amino

acids (L-leucine, L-proline and glutamylserine), tyrosine

and derivatives, CAG17 and CAG13 (Fig. 4b). The AUC

for the classification of MI from the UA was 0.855 (Fig. 4a),

and in predicting the process for cardiac events, metabolite

modules were mainly annotated to heteroaromatic com-

pounds, phenolic glycoside, taurine, steroids, CAG14 and

CAG18 (Fig. 4b). However, we obtained poor performance

when discriminating between SCAD and UA due to de-

creased specificity and sensitivity (Fig. 4a). Notably, we

found that these markers were common microbial and

metabolic characteristics of CAD subgroups and contrib-

uted greatly to the identification of plaque formation and

rupture even with myocardial ischaemia.
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Subsequently, we enrolled another independent valid-

ation cohort that met the same inclusion and exclusion cri-

teria as the discovery phase (Additional file 2: Table S7).

The validation cohort was also divided into the con-

trol group (N = 12), SCAD group (N = 11), UA

group (N = 11) and MI group (N = 3). We used the

established random forest models to further demon-

strate the potential ability of subgroup identification.

Consistently, the features of the CAG + metabolite

module can help distinguish CAD patients vs. healthy

controls, SCAD vs. control, ACS vs. SCAD and MI

vs. UA (Fig. 4c). Similarly, the performance on SCAD

and UA individuals was not as satisfactory.

Overall, the CAD-associated microbial and metabolic

features captured by the classifier offered further evidence

of the dysbiotic gut microbiome and highlighted its great

potential for the detection of various stages of CAD.

Discussion
In the current study, we demonstrated that CAD patients

had significantly different serum metabolite profiles and

gut microbiota compared with healthy controls and

showed that the metabolites and gut microbiota may fur-

ther shift during the development of CAD. Through

multi-omics analyses, our study found that CAGs and

metabotypes that exhibited significant changes with the

development of CAD were significantly correlated and

might be used independently as biomarkers for CAD sub-

type diagnosis.

We confirmed that the structural characteristics of the

gut microbiota were altered with the development of

CAD compared with those of healthy controls. The

abundance of CAG17 increased with CAD severity. This

CAG contained several gram-negative bacteria, such as

Veillonella, Haemophilus and Klebsiella and these bac-

teria trigger the innate immune response via lipopolysac-

charide (LPS) production and elicit a subsequent

inflammatory reaction that is mediated by local gener-

ation of cytokines [29]. Klebsiella is also reported to be

associated with disease in hypertensive populations and

is responsible for hypertension pathology [23]. Notably,

we did not find any significant correlation between

CAG17 and CAD-associated metabolic models, which

suggested that these bacteria might contribute to CAD

development by inducing endotoxaemia and systemic in-

flammation [30–32]. Our data also showed that 4 CAGs

containing OTUs from Lachnospiraceae and Rumino-

coccaceae, which are major members of the human GI

tract that produce butyric acid [33], were significantly

reduced with CAD development. A recent study involv-

ing the TwinsUK cohort revealed that OTUs belonging

to the Ruminococcaceae family are negatively associated

with pulse wave velocity (PWV), which is a measure of

arterial stiffness [34]. Among the bacteria in these

CAGs, Roseburia has been associated with weight loss

and reduced glucose intolerance in mice, and a strong

anti-inflammatory effect of Faecalibacterium prausnitzii

has been demonstrated both in vitro and in vivo [35].

Interestingly, another study showed that the abundances

of Clostridium IV, Clostridium XlVa and Clostridium

XVIII, which also belong to Ruminococcaceae, were

higher in patients with coronary heart disease [36]. In

the current work, we also found that CAG9, CAG19 and

CAG23, which were also composed of OTUs from

Ruminococcaceae, were enriched significantly in patients

with severe disease. In fact, even though the OTUs were

assigned to the same genus, their functions may be dis-

tinct because the functions of bacteria are strain specific

[37]. Ecologically, gut bacteria do not exist in isolation

but rather as functional groups named “guilds”. The key

members of a co-abundance group would thrive or de-

cline together in response to the changing physiological

environmental resources and form different guilds [38].

Therefore, compared with the conventional taxon-based

analysis, the CAG-based analysis performed in this study

offers a more ecologically relevant method for reducing

the dimensionality of microbiome datasets and facilitate

the identification of functionally important members of

the gut microbiota in CVD. In summary, our data sug-

gested that the composition of the gut microbiome also

changes dynamically with chronic development of CAD.

The human gut microbiota interacts extensively with

the host through metabolic exchange and substrate

co-metabolism. The human metabolome is composed of

endogenous metabolites, exogenous metabolites, metab-

olites from the gut microbiota and bacterial and host

co-metabolites. Metabolic phenotypes revealed signifi-

cant pattern differences between patients at various

CAD stages and those with normal coronary arteries in

the current work, suggesting that CAD may involve a

universal metabolic disturbance. The metabolites, in-

cluding PE, PC, PS and sphingolipid metabolites, ob-

served in our study were negatively correlated with AS

severity and myocardial markers. The roles of phospho-

lipid metabolites in CVD and metabolic syndrome are

contradictory [39, 40]. In recent years, studies have indi-

cated that elevated levels of specific PCs, CM and SMs

are characteristic of cardiovascular risks and mortality

[41–43], and these substances are abundant in the apical

membrane of the gut absorptive epithelium and are con-

sidered important for the preservation of structural in-

tegrity during exposure to bile salts and enzymes [44].

However, PC-16:0/2:0 was found to be negatively associ-

ated with CVD risk factors in population-based study of

990 adolescents [45]. What’s more, a recent research in-

dicated that serum C16:0-CM and SM concentrations

are negatively correlated with insulin resistance and

metabolic syndrome in Danish individuals [46]. As the
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lipidomic profile is affected by the complex physiological

and environmental factors such as the dietary pattern

and medication use, it is difficult to draw the same con-

clusions from different cohorts. Furthermore, technical

aspects such as mass spectrometry conditions may also

contribute to the inconsistencies between different stud-

ies [47]. Ceramides and sphingomyelin may play a more

complex role in the regulation of host AS than previ-

ously recognized.

We did not observe the main classes of gut

microorganism-dependent metabolites that have been

linked to CVD risk, such as TMAO. However, our data

showed that the taurine and hypotaurine metabolic mod-

ule was negatively associated with CAD severity. As a ne-

cessary amino acid, taurine could regulate gut micro-

ecology, which might be beneficial to health, by inhibiting

the growth of harmful bacteria, accelerating the produc-

tion of SCFA and reducing the LPS concentration [48].

Human clinical studies have reviewed the beneficial effects

of taurine in the treatment of hypertension, AS and dia-

betic cardiomyopathy [49]. In addition, our metabolic pro-

file showed that aromatic compounds such as benzenoids,

which are normally generated and biosynthesized by bac-

terial species, significantly perturbed the development of

CAD [50]. Phenolic and indolic compounds are typical

products of bacterial metabolism of aromatic amino acids,

and dietary phenolic compounds are often transformed

prior to absorption. The potential mechanistic participa-

tion of these metabolites remains to be further chemically

elucidated. Overall, through inter-group comparisons and

correlation analysis with clinical indicators, we identified

metabotypes that are closely related to the gut microbial

metabolism, and these metabotypes exhibited significant

alterations with the development of CAD.

Results from epidemiological studies have identified

multiple major risk factors responsible for CAD develop-

ment including hypertension, hyperlipidaemia, insulin

resistance, and obesity [51, 52]. Moreover, large-scale

studies have revealed that genetic factors can only explain

a small part of the variation in disease risk [53]. Recently,

studies have provided strong support for the idea that the

interplay between microorganisms and the host has a con-

tributory role in atherosclerotic CVD [6–8, 13]. In our re-

search, although we did not find any direct correlation

between CAGs and the main CAD phenotype indicator

that was mediated by serum metabolites, we were able to

further identify the correlation between specific bacteria

and different stages of CAD. However, we only conducted

cross-sectional study and our data was correlative as well.

Moreover, many confounding factors like diet and lifestyle

may impair the quality of the associative findings.

Long-term follow-up studies and functional studies are ur-

gently needed to reveal the specific bacteria that may con-

tribute to CAD through the production of bioactive

metabolites. Nevertheless, tracking individuals from stable

atherosclerotic plaques to plaque ruptures and thrombosis

is a long process that requires long-range standardized

follow-up. Overall, the process of AS progression is con-

sidered to be dynamic and complicated, and modulation

of the gut microbiota composition may represent a prom-

ising diagnostic biomarker or therapeutic target. With an

independent validation cohort, our study proved that both

CAGs and metabolites may potentially be used together

as important markers for CAD subgroup diagnosis.

The gut microbial ecosystem, which is arguably the

largest endocrine organ in the body, is capable of produ-

cing a wide range of biologically active compounds that

may be carried via circulation and distributed to distant

sites within the host and thereby influences different es-

sential biological processes of the host [54]. In addition,

bacteria in the gut constitute a complex ecosystem in

which different species exhibit specialized functions and

interact as a community. The bacteria in the human gut

may survive, adapt, and decline as CAGs in response to

environmental perturbations [55]. Therefore, multi-omic

studies may provide an improved global understanding

of the functional variations that occur in CAD popula-

tions. Further studies are needed to investigate the

mechanism of action of the key microbiota and metabo-

lites identified in our study during CAD progression.

Conclusion

AS is a chronic, long-term pathologic process that is as-

sociated with inflammatory reactions. The mechanism

responsible for the sudden conversion of a stable situ-

ation to an unstable condition is usually plaque disrup-

tion, which tends to occur after decades of progression,

and these vulnerable plaques may suddenly cause

life-threatening coronary thrombosis [56, 57]. Therefore,

the identification of an effective and convenient bio-

marker for monitoring vulnerable plaques is very im-

portant for prevention of acute MI. Mounting evidence

shows that key members of the gut microbiota might be

potential candidates [6, 7, 58], but most studies on the

gut microbial variations associated with CAD were lim-

ited to case-control studies. Our results showed that al-

terations in the gut microbial community and serum

metabolites in different CAD subgroups and alterations

in the gut microbiota were correlated with CAD severity

via the mediation of serum metabolites. Furthermore,

the combination of specific bacterial CAGs and metabol-

ite modules exhibited potential diagnostic value for dif-

ferentiating patients with different CAD subtypes. These

findings may provide new insights for revealing novel

potential aetiologies for AS, understanding the role of

gut microbiota in CAD, and modulating gut microbiota

as a therapeutic target.
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Materials and methods
Study design and population

We consecutively recruited 40 healthy volunteers and

161 CAD patients who were hospitalized for coronary

angiography in Peking Union Medical College Hospital.

Patients who exhibited ≥ 50% stenosis in at least one

main coronary artery were diagnosed with CAD. Coron-

ary atherosclerotic burden was evaluated using the Gen-

sini score by two professional cardiologists (Additional

file 1: Figure S2a). CAD patients were further divided

into three subgroups as follows: (1) SCAD, (2) UA and (3)

MI. The detailed diagnose criteria of CAD subgroups are

summarized in Additional file 3: Supplementary Methods.

For controls, we enrolled subjects who exhibited negative

results upon coronary artery CT or coronary angiography

examination or were identified as having no CAD-related

clinical signs and symptoms. Subjects were excluded if

they had gastrointestinal diseases, malignant tumours,

autoimmune disorders, infectious diseases, renal dysfunc-

tion (severe renal disease creatinine > 3.0mg/dl), a history

of gastrointestinal surgery in the previous year or were ad-

ministered antibiotics for more than 3 days in the previous

3months.

All clinical information was collected according to

standard procedures (detailed in Additional file 3:

Supplementary Methods). For the participants, periph-

eral venous blood was drawn in the morning the day

after admission. Participants were given a stool sampler

and provided detailed illustrated instructions for sample

collection. Stool samples freshly collected from each par-

ticipant were immediately transported to the laboratory

and frozen at − 80 °C immediately.

In addition, we also included a small verification co-

hort, which was also divided into control group (N =

12), SCAD group (N = 11), UA group (N = 11) and MI

group (N = 3), and met the same inclusion and exclusion

criteria as the discovery phase cohort. The study was

performed in accordance with the principles of the Dec-

laration of Helsinki. Subjects provided written, informed

consent for participation in the study.

Untargeted metabolomics study

Sample analysis was performed on Waters ACQUITY

ultra-high-performance liquid chromatography system

(Milford, MA) coupled with a Waters Q-TOF Micromass

system (Manchester, UK) in both positive and negative

ionization modes. In order to detect more metabolites as

much as possible, we performed both polar ionic and lipid

mode depending on the properties of the serum metabo-

lites. Detailed parameters for the sample preparation and

HPLC-MS experiment parameters were provided in the

Additional file 3: Supplementary Methods.

The raw data were imported to the Progenesis QI

(Waters) for peak alignment to obtain a peak list

containing the retention time, m/z, and peak area of

each sample [59]. By using retention time and the m/z

data pairs as the identifiers for each ion, we obtained ion

intensities of each peak and generated a matrix contain-

ing arbitrarily assigned peak indices (retention time-m/z

pairs), ion intensities (variables) and sample names (ob-

servations). The matrix was further reduced by removing

peaks with missing values in more than 80% samples

and those with isotope ions from each group to obtain

consistent variables. The CV (coefficient of variation) of

metabolites in the QC samples was set at a threshold of

30%, as a standard in the assessment of repeatability in

metabolomics data sets. The nonparametric univariate

method (Mann-Whitney-Wilcoxon test) was used to

analyse metabolites that differed in abundance between

the different subgroups corrected for false discovery rate

(FDR) to ensure that the peak of each metabolite was re-

producibly detected in the samples. Then, the peak list

was imported into SIMCA-P 14.0 software (Umetrics AB,

Umeå, Sweden) to acquire clustering information and im-

portant variables between the CAD subgroups and the con-

trol group. Metabolites selected as biomarker candidates

for further statistical analysis were identified on the basis of

variable importance in the projection (VIP) threshold of 1

from the tenfold cross-validated OPLS-DA model, which

was validated at a univariate level with adjusted P < 0.05.

The online HMDB database (http://www.hmdb.ca) (ver-

sion: 4.0) [60] and KEGG database (http://www.genome.jp/

kegg/) (updated: September 14, 2016) [61], Lipid maps

Structure Database (LMSD) (updated: October, 2017) [62]

and METLIN (version: 1.0.5673.40082) [63] were used

to align the molecular mass data (m/z) to identify

metabolites. The mass error used was 0.005 Da for

ms1 and 15 ppm for ms2. MetaboAnalyst (https://

www.metaboanalyst.ca) (version 4.0) was used for the

identification of metabolic pathways [64].

Clustering of co-abundant serum metabolites.

Clusters of co-abundant serum metabolites were identified

using the R package WGCNA [65]. Signed, weighted me-

tabolite co-abundance correlation networks were calcu-

lated for all examined individuals. A scale-free topology

criterion was used to choose the soft threshold β = 14 for

serum metabolites correlations. Clusters were identified

with the dynamic hybrid tree-cutting algorithm using a

deepSplit of 4 [66]. The serum polar metabolite and serum

molecular lipid clusters (labelled P01–P42 and L01–L30,

respectively) were collectively termed metabolite clusters.

DNA extraction and 16S rRNA gene V3-V4 region

sequencing

Bacterial DNA was isolated from faecal samples using

the bead-beating method as previously described [67].

The extracted DNA from each sample was used as the
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template to amplify the V3–V4 region of 16S rRNA

genes using PCR. PCR amplification, sequencing of the

PCR amplicons and quality control of raw data were

performed as described previously [68]. A sequencing li-

brary of the V3–V4 regions of the 16S rRNA gene was

prepared as described previously [69]. The purified prod-

ucts were mixed at an equal ratio for sequencing using

an Illumina MiSeq system (Illumina Inc., USA).

Sequencing data analysis

Operational taxonomic units (OTUs) were delineated

at the cutoff of 97% using the USEARCH v.8.0 [70].

The protocol can be found on the website http://

drive5.com/usearch/manual/uparse_pipeline.html. The

detailed procures were stated in our previous publica-

tion [69]. Representative sequences for each OTU

were built into a phylogenetic tree by FastTree and

subjected to the RDP classifier (RDP database version 11.5,

http://rdp.cme.msu.edu/classifier/classifier.jsp) [71] to de-

termine the phylogeny with a bootstrap cut-off of 80%.The

sequences of all the samples were downsized to 10,800

(1000 permutations) to match the difference in sequencing

depth. α- and β-diversity analyses were performed using

Qiime v1.8.0 [72]. Shannon’s index, the observed OTUs,

and Chao1 index were evaluated. A normalized OTU

abundance table was used for the β-diversity analysis, in-

cluding principal coordinate analysis (PCoA) based on

Bray-Curtis, weighted UniFrac, and unweighted UniFrac

distances.

PERMANOVA was used to test for statistical signifi-

cance between the groups using 9999 permutations. To

calculate the variation explained by each of our collected

host factors, we performed an Adonis test implemented

in R. Each host factor was calculated according to its ex-

planation rate, and P values were generated based on

9999 permutations.

Microbial cluster generation using SparCC

The OTUs shared by at least 20% among all the samples

were considered key OTUs. The correlation among 274

key OTUs was calculated by the SparCC algorithm [60]

with a bootstrap procedure repeated 100 times, and then

correlation matrices were computed from the resampled

data matrices. Once the bootstrapped correlation scores

have been computed, only OTUs with correlation scores

greater than 0.4 were classified into CAGs. Meanwhile,

we threshold the P value at the desired cut-off < 0.05.

The correlation values were converted to a correlation

distance (1-correlation value), and the OTUs were clus-

tered using the Ward clustering algorithm via the R

package WGCNA. Similar clusters were subsequently

merged if the correlation between the CAG’s eigenvec-

tors exceeded 0.8. The CAG network was visualized in

Cytoscape (version 3.2.1).

Spearman multi-omic correlation analysis

Spearman correlations between CAGs, serum metab-

olite modules and clinical parameters were calculated

using R, and both differential abundances of CAGs

and CAD-associated metabotypes were tested by the

Wilcoxon rank sum test. Wherever mentioned, the

Benjamini-Hochberg method was used to control the

FDR. The visual presentation of multiple omics corre-

lations was performed using the R. ggplot2 package.

Feature selection using the random forest model

Using the profiles of CAGs and metabolite modules, the

discovery phase samples were randomly divided into a train-

ing set and a test set. A random forest classifier was trained

on 70% of the samples and tested on the remaining 30% of

our samples using the random forest package in R. Then,

based on this model, we used another independent cohort

for further prediction. We used tenfold cross-validation

within the training set. We built an optimal set of variables

at the lowest cross-validational error. Thus, the predictive

model was constructed using the most important variables,

which were further applied for ROC analysis. The perform-

ance of the smaller models was measured as AUC when ap-

plied to the test set, and the confidence intervals for the

ROC curves were calculated using the pROC R package.

Additional files

Additional file 1: Figure S1. Overview of the workflow integrating CAD

phenotypes, serum metabolome, gut microbiome. Figure S2. Distribution

of the Gensini score in each CAD subgroup. Figure S3. Orthogonal

projection to latent structure-discriminant analysis (OPLS-DA) score plots

under polar ionic mode. Figure S4. Orthogonal projection to latent

structure-discriminant analysis (OPLS-DA) score plots under lipid mode. Fig-

ure S5. Fine-grained correlation profile of serum metabolite clusters and

physiological traits in CAD and control subjects. Figure S6. Taxonomic

alpha diversity of gut microbiomes among 4 subgroups. Figure S7. Cluster-

ing of the gut microbiota based on the unweighted UniFrac

distances between different groups. Figure S8. Spearman correlations be-

tween CAGs and major CAD risk factor indicators. (PDF 3080 kb)

Additional file 2: Table S1. The extrinsic host factor profile included

diet, lifestyle, and stool consistency in CAD and control individuals. Table

S2. Description of metabolite clusters of serum metabolites under polar

ionic mode and their associations with Gensini score, no. of stenosed

vessels and cTnI in 201 individuals. Table S3. Description of metabolite

clusters of serum metabolites under lipid mode and their associations with

Gensini score, no. of stenosed vessels and cTnI in 201 individuals. Table S4.

Composition of the 29 fasting serum metabolite clusters comprising the CAD-

positive- and CAD-negative metabotypes in 201 subjects. Table S5. Adonis

results based on unweighted UniFrac distances. Table S6. Multi-omic analysis

of the gut microbiome, metabolites and CAD phenotype. Table S7. Baseline

characteristics of validation-phase subjects. (XLSX 53 kb)

Additional file 3: Supplementary Methods. The supplementary file

consist of CAD definitions and phenotype measurements,

metadatacollection and statistical analysis method as well as sample

preparation details for UPLC-MS. (DOCX 27 kb)
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