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ABSTRACT
◥

Purpose: In multiple myeloma, extramedullary progression is

associated with treatment resistance and a high mortality rate. To

understand the molecular mechanisms controlling the devastating

progression of myeloma, we applied single-cell RNA-sequencing

(RNA-seq) to myeloma in the bone marrow and myelomatous

pleural effusions or ascites.

Experimental Design: Bone marrow or extramedullary myelo-

ma samples were collected from 15 patients and subjected to single-

cell RNA-seq. The single-cell transcriptome data of malignant

plasma cells and the surrounding immune microenvironment were

analyzed.

Results: Comparisons of single-cell transcriptomes revealed

the systematic activation of proliferation, antigen presentation,

proteasomes, glycolysis, and oxidative phosphorylation pathways

in extramedullary myeloma cells. The myeloma cells expressed

multiple combinations of growth factors and receptors, suggest-

ing autonomous and pleiotropic growth potential at the single-

cell level. Comparisons of the tumor microenvironment revealed

the presence of cytotoxic T lymphocytes and natural killer (NK)

cells in both the bone marrow and extramedullary ascites,

demonstrating a gene-expression phenotype indicative of func-

tional compromise. In parallel, isolated myeloma cells persis-

tently expressed class I MHC molecules and upregulated inhib-

itory molecules for cytotoxic T and NK cells.

Conclusions: These data suggest that myeloma cells are

equipped with specialized immune evasion mechanisms in cyto-

toxic microenvironments. Taken together, single-cell transcrip-

tome analysis revealed transcriptional programs associated with

aggressive myeloma progression that support autonomous cell

proliferation and immune evasion.

Introduction
Multiple myeloma, a plasma cell malignancy in the bone marrow,

begins as a monoclonal gammopathy of undetermined significance

(MGUS) and eventually progresses to extramedullary disease (1).

Extramedullary myeloma commonly affects the pleura, lymph nodes,

soft tissues, and liver and is an aggressive disease associated with

treatment resistance and shorter patient survival times (2). Early

extramedullary or ascites involvement at diagnosis is rare and partic-

ularly detrimental.

Cytogenetic and genetic analyses have been performed to identify

the molecular characteristics associated with aggressive extrame-

dullary myeloma progression. Cytogenetic abnormalities involving t

(4;14) or t(14;16) translocations are early genetic events with poor

prognosis, whereas the 17p deletion, which is the most significant

genetic prognostic factor in multiple myeloma, occurs during

disease progression (3). In addition, MYC translocations and muta-

tions in TP53, CCND1, ATM, ATR, and ZFHX4 have a negative

prognostic impact (3). Extramedullary myeloma has a higher

incidence of the t(4;14) translocation, 17p deletion, and MYC

overexpression and often manifests with different cytogenetics than

matched bone marrow myeloma (4), indicating genomic instability.

Gene-expression profiling–based risk stratification using many

proliferation genes classifies patients with extramedullary myeloma

as a high-risk group (5).

The cytogenetic, genetic, and gene-expression profiles of extrame-

dullarymyeloma are enriched for poor prognostic alterations, suggest-

ing an intrinsically aggressive nature. As extramedullary myeloma

progression requires bone marrow–independent growth and survival,

it must gain an alternative source of growth/survival signals and

immune suppression signals that would normally be provided by the

bone marrow niche (6). The inextricable relationship between mye-

loma and its microenvironment requires the characterization of both

components to understand the progression of myeloma to non-bone

marrow compartments.

In this study, we used single-cell RNA sequencing (RNA-seq) to

carry out the genomic characterization of diverse cell populations

without experimental separation (7). We combined two single-cell

RNA (scRNA)-sequencing approaches, high-throughput RNA-seq

for the simultaneous analysis of myeloma, and the immune micro-

environment and full-length RNA-seq of purified myeloma cells

for molecular pathway analyses. We show that extramedullary

1Samsung Genome Institute, Samsung Medical Center, Seoul, Korea. 2Depart-

ment of Health Sciences and Technology, Samsung Advanced Institute for

Health Sciences and Technology, Sunkyunkwan University School of Medicine,

Seoul, Korea. 3Department of Molecular Cell Biology, Sungkyunkwan University

School of Medicine, Seoul, Korea. 4Division of Hematology-Oncology, Depart-

ment of Medicine, SamsungMedical Center, SungkyunkwanUniversity School of

Medicine, Seoul, Korea. 5Department of Laboratory Medicine and Genetics,

Sungkyunkwan University School of Medicine, Seoul, Korea.

Note: Supplementary data for this article are available at Clinical Cancer

Research Online (http://clincancerres.aacrjournals.org/).

Corrected online 9/1/2020.

Corresponding Authors: Woong-Yang Park, Samsung Medical Center, 81

Irwonro, Gangnamgu, Seoul 06351, Korea. Phone: 822-2148-9810; Fax: 822-

2148-9819; E-mail: woongyang@skku.edu; Hae-Ock Lee, Samsung Genome Insti-

tute, Samsung Medical Center, Seoul, Korea. E-mail: haeock.lee@samsung.com;

and Kihyun Kim, Division of Hematology-Oncology, Department of Medicine,

Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,

Korea. E-mail: kihyunk.kim@samsung.com

Clin Cancer Res 2020;26:935–44

doi: 10.1158/1078-0432.CCR-19-0694

�2019 American Association for Cancer Research.

AACRJournals.org | 935

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

6
/4

/9
3
5
/2

0
6
3
4
0
8
/9

3
5
.p

d
f b

y
 g

u
e
s
t o

n
 2

7
 A

u
g

u
s
t 2

0
2
2

http://crossmark.crossref.org/dialog/?doi=10.1158/1078-0432.CCR-19-0694&domain=pdf&date_stamp=2020-9-1
http://crossmark.crossref.org/dialog/?doi=10.1158/1078-0432.CCR-19-0694&domain=pdf&date_stamp=2020-9-1


myeloma cells exhibit autonomous and multiple growth factor–

receptor expression that can drive massive cell proliferation in a

bone marrow–independent manner. Second, extramedullary mye-

loma cells possess heterogeneous immune evasion mechanisms

against NK and cytotoxic T cells accompanied by the functional

impairment of immune cells. By analyzing the myeloma transcrip-

tome aligned with tumor progression, we identified transcriptional

programs controlling the progression of aggressive extramedullary

myeloma.

Materials and Methods
Patients and sample preparation

This study was approved by the Institutional Review Board (IRB)

of Samsung Medical Center (IRB approval no. SMC2013-09-009-

012) and carried out in accordance with the principles of the

Declaration of Helsinki. Informed written consent was obtained

from each subject. The study subjects were 15 Korean patients

diagnosed with multiple myeloma at the Samsung Medical Center

(Seoul, Korea). Four bone marrow aspirates, one ascites, and two

pleural effusion samples were subjected to red blood cell lysis

(Qiagen) and cryopreserved in CELLBANK1 (Zenoaq) before 30

scRNA sequencing. Nine bone marrow aspirate samples were

subjected to a Ficoll-Paque PLUS (GE Healthcare) gradient and

magnetic separation with anti-CD138 antibody microbeads

(Miltenyi Biotech). Ascites (2 patients) and pleural effusion (1

patient) samples were collected and subjected to the same cell

isolation process. CD138-positive myeloma-enriched fractions were

immediately used for full-length scRNA sequencing, except for one

sample (MM26 ascites) that was cryopreserved. Genomic DNA and

RNA were purified from CD138-positive and CD138-negative

fractions using an ALLPrep kit (Qiagen). Corresponding blood

DNA was isolated using a QIAamp DNA Blood Kit (Qiagen).

Exome sequencing and data processing

Genomic DNA from the bone marrow and corresponding blood

samples was sheared by Covaris S220 (Covaris) and libraries were

constructed using a SureSelect XTHumanAll Exon v5 and a SureSelect

XT Reagent Kit, HSQ (Agilent Technologies) according to the man-

ufacturer's protocol. After multiplexing, the libraries were sequenced

on a HiSeq 2500 sequencing platform (Illumina) using the 100 bp

paired-end mode of the TruSeq Rapid PE Cluster Kit and TruSeq

Rapid SBS Kit (Illumina).

Sequencing reads were aligned to the UCSC hg19 reference genome

(http://genome.ucsc.edu) using Burrows–Wheeler Aligner version

0.6.2 with the default options. PCR duplications and data cleanup

were marked using Picard-tools-1.8 (http://picard.sourceforge.net/)

and GATK-2.2.9 (https://www.broadinstitute.org/gatk/). Single-

nucleotide variants of paired samples were identified by MuTect

(https://github.com/broadinstitute/mutect) and annotated using

ANNOVAR.

RNA-seq and data processing

Whole-transcriptome sequencing libraries were generated for the

RNAs fromCD138-negative cell fractions using a TruSeqRNASample

Preparation v2 Kit (Illumina). Sequencing was carried out using the

100 bp paired-end mode of the TruSeq Rapid PE Cluster Kit and

TruSeq Rapid SBS Kit (Illumina).

For full-length scRNA sequencing, CD138-positive myeloma cells

were loaded onto a 5 to 10 mm integrated fluidic circuit mRNA

sequencing chip for microscopic examination, lysis, reverse transcrip-

tion, and cDNA amplification in the C1 Single-Cell Auto Prep System

(Fluidigm), according to the manufacturer's instructions. RNA spike-

ins 1, 4, and 7 from ArrayControl RNA spikes (Thermo Fisher

Scientific) were added to the lysis solution according to the manu-

facturer's instructions. For MM02EM, 96 External RNA Controls

Consortium spike-in sequences (Thermo Fisher Scientific) were used

instead. Sequencing libraries were constructed using amplified cDNAs

with the Nextera XT DNA Sample Prep Kit (Illumina) and sequenced

using the 100 bp paired-end mode of the TruSeq Rapid PE Cluster kit

and TruSeq Rapid SBS Kit (Illumina). Reads from bulk and C1 RNA-

seq (single cells and whole transcriptome) were mapped on to the

GRCh37.75 human reference genome using STAR (https://github.

com/alexdobin/STAR/releases) version 2.4.0 and transcripts were

quantified as transcript per million (TPM) using RSEM version

1.2.18 (http://deweylab.biostat.wisc.edu/rsem/).

For 30 scRNA sequencing, each single-cell suspension was loaded

into a GemCode system version 2 (10X Genomics) targeting 5,000

cells. Sequencing libraries were generated and sequenced on a HiSeq

2500 (Illumina) using the 100 bp paired-end mode. Sequencing reads

were mapped on to the GRCh38 human reference genome using the

Cell Ranger toolkit (version 2.1.0). scRNA sequencing data for normal

bone marrow were downloaded from the HCA Data Portal (https://

preview.data.humancellatlas.org/). Before downstream analyses, we

applied three quality measures of mitochondrial gene percentages

(<20%), unique molecular identifiers (UMI, over 1,000), and gene

counts (over 20) calculated from the raw gene-cell–barcode matrix.

Single-cell transcriptome analysis

For the 30 scRNA sequencing data, UMI counts were normalized to

TPM-like values and used in the scale of log2 (TPMþ1), as described

previously (8). Variable genes were selected using the R package Seurat

R toolkit (ref. 9; https://satijalab.org/seurat/) and used to compute

principal components (PC). Significant PCs were used for cell clus-

tering and t-distributed stochastic neighbor embedding (tSNE) visu-

alization. Before malignant plasma cell (MPC) clustering, the Regress-

Out function was applied to remove the sample-specific batch effect.

Before immune cell clustering, immunoglobulin genes were excluded

from the analysis. Differentially expressed genes (DEG) were selected

for each cell cluster using the Seurat package with default parameters

and Student t tests. Immune cell identity annotations were defined for

each cluster by reference-based single-cell annotations in the R

package SingleR (https://github.com/dviraran/SingleR; ref. 10).

Because SingleR calculates the correlation to the reference transcrip-

tome for each cell, clusters were annotated using the dominant cell type

within the cluster.

For the full-length scRNA sequencing data, reference sequences

were modified by merging with external spike-in sequences (Thermo

Fisher Scientific). Gene quantification data were filtered by eliminat-

ing zero-expressed genes and applying the following criteria: (i) in

genes, the number of zeros should be less than 449 (mean zero count)

across all samples, and (ii) in cells, the number of genes expressed

in each sample should be over 1,000. To visualize the myeloma

Translational Relevance

Single-cell RNA sequencing reveals the myeloma transcriptome

landscape in the context of the immune microenvironment.

Extramedullary myeloma progression is associated with hetero-

geneous mechanisms of growth factor stimulation and immune

evasion.
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Clin Cancer Res; 26(4) February 15, 2020 CLINICAL CANCER RESEARCH936

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

6
/4

/9
3
5
/2

0
6
3
4
0
8
/9

3
5
.p

d
f b

y
 g

u
e
s
t o

n
 2

7
 A

u
g

u
s
t 2

0
2
2

http://genome.ucsc.edu
http://picard.sourceforge.net/
https://www.broadinstitute.org/gatk/
https://github.com/broadinstitute/mutect
https://github.com/alexdobin/STAR/releases
https://github.com/alexdobin/STAR/releases
https://github.com/alexdobin/STAR/releases
http://deweylab.biostat.wisc.edu/rsem/
https://preview.data.humancellatlas.org/
https://preview.data.humancellatlas.org/
https://preview.data.humancellatlas.org/
https://satijalab.org/seurat/
https://github.com/dviraran/SingleR


transcriptomic landscape, tSNE and k-means clustering was per-

formed using 11,664 genes and curated gene sets in the molecular

signature database (v6.0 MSigDB). To analyze pathway activation, we

performed gene set variation analysis (GSVA; ref. 11) and gene set

enrichment analysis (GSEA; ref. 12) using hallmark, curated (chemical

and genetic perturbations, CGP), and gene ontology gene sets in the

MSigDB. For trajectory analysis, monocle 2 (13) was utilized with the

default parameters.

Flow cytometry

Peripheral blood was obtained from 5 healthy donors (average

age 60.6) and 10 newly diagnosed myeloma patients (average age

64.8) within the IRB protocol SMC2013-09-009-012. Informed

written consent was obtained from each subject. After red blood

cell lysis (Qiagen), the whole-cell pellet was cryopreserved in

CELLBANK1, rapidly thawed, and stained with PerCP-anti-CD3

(clone UCHT1), PE/Cy7-anti-CD56 (clone 5.1H11), and Alexa647-

anti-GZMB (clone GB11) mAbs (BioLegend) according to the

manufacturer's protocol. Flow cytometry data were obtained by

FACSverse and analyzed by FlowJo software (BD Biosciences).

Results
Single-cell transcriptome landscape of multiple myeloma

To understand the cellular dynamics associated with myeloma

progression, we first applied massively parallel single-cell RNA-

seq (7) to myeloma-stricken bone marrow or extramedullary sites

(Fig. 1 and Table 1). The aggregated transcriptome analysis of seven

myeloma samples (four bone marrow, one ascites, and two pleural

effusion) revealed patient-specific clusters of MPCs and diverse

immune cell clusters shared by patients (Fig. 2A and B). The immune

cell clusters were mainly comprised of mature T-cell types, NK cells,

and monocytes/macrophages, as well as small numbers of B-cell–

lineage cells, erythroid cells, and granulocytes (Fig. 2B; Supplementary

Fig. S1A; Supplementary Table S1). Myelomatous pleural effusion and

ascites samples contained a large number of MPCs and relatively few

immune cells likely due to themicroenvironment and highly advanced

disease state (Fig. 2C, left).

The major immune cell types in the myelomatous bone marrow

were similar to those in the healthy bone marrow (7, 14) but

contained fewer B-cell populations (B cells and progenitors), indi-

cating deregulated B-cell development (Fig. 2C, right; Supplemen-

tary Fig. S1B; ref. 15). Within the T and NK cell types, more CD4þ

na€�ve T-cell populations were recovered from the healthy bone

marrow, whereas the myeloma bone marrow was populated with

more cytotoxic CD8þ T cells and NK cells (Fig. 2C, right). To

determine whether the expansion of cytotoxic immune cell popula-

tions could be systemically detected, we assessed GZMB (granzyme

B) expression on the peripheral blood cells (Supplementary Fig. S2).

The number of GZMBþ T cells or NK cells in the patients with

myeloma was highly variable, with CD8þ T cells and NK cells from

both healthy and myelomatous bone marrow also expressing var-

iable levels of cytotoxic mediator genes (Fig. 2D, top). Moreover,

regulatory and exhaustion gene expression (16) was slightly elevated

in the patients with myeloma (Fig. 2D, middle), tipping the balance

between exhaustion and cytotoxicity toward an exhausted state

(Fig. 2D, bottom). These data suggest the activation and persistence

of cytotoxic T and NK cells in the patients with myeloma, likely

undergoing exhaustion.

The in silico separation ofMPCs and subsequent clustering revealed

that myeloma subpopulations (Fig. 2E) demonstrated many gene-

expression traits implicated in myeloma progression (Supplementary

Table S2). The majority of bone marrow myeloma cells shared

transcriptome features forming multipatient clusters (Fig. 2E; clusters

0, 7, 12). These bone marrow myeloma–enriched clusters expressed

AP-1 (Fig. 2F; cluster 0; JUN, FOS; ref. 17) orTNFRSF17 (clusters 7, 12;

ref. 18), genes that promote myeloma growth and survival in the bone

marrow microenvironment. In contrast, primary refractory

(MM173BM) or extramedullary (MM173EM, MM26EM, and

MM36EM) myeloma cells formed patient-specific clusters with

heightened intratumoral heterogeneity (Fig. 2E, right and bottom).

The clustering results partially reflected the expression patterns of

myeloma driver genes (Supplementary Fig. S3A). MM36EM ascites

myeloma contained subpopulations with proliferative and poor prog-

nostic (Fig. 2F; cluster 6; CKS1B; ref. 19) gene expression, as well as

inflammatory and angiogenic (cluster 1; CCL3 and TMSB4X;

refs. 20, 21), immune suppressive (cluster 5; TNFSF10; ref. 22), or

potentially dexamethasone resistant (cluster 11; NEAT1; ref. 23)

marker genes (Fig. 2F; Supplementary Table S2). MM173BM and

MM173EM myelomas shared MYBL2hi subpopulations (Fig. 2F;

clusters 2, 8, 10) with proliferative (cluster 10; UBE2S; ref. 19) or

metabolic (cluster 8; PKM; ref. 24) gene expression, while the MM173

metabolic subpopulation exclusively emerged during extramedullary

progression (Supplementary Fig. S3B). MM26EM effusion myeloma

contained WFDC2þ (cluster 3) subpopulations recently identified by

single-cell RNA-seq (25) and additional ADMþ (cluster 4) hypoxia-

induced subpopulations (26).We suspect that the number ofmyeloma

subpopulations and their transcriptional states likely differ for indi-

vidual patients and their disease status. Nonetheless, intratumoral

heterogeneity suggests that myeloma survival and progression is a

collaborative process between heterogeneous myeloma subpopula-

tions that drive cancer cell proliferation, migration, immune evasion,

and/or drug resistance.

Molecular pathway activation in aggressive extramedullary

myeloma cells

To understand the molecular pathways activated during the pro-

gression of aggressive myeloma, we focused on the single-cell tran-

scriptome analysis of CD138-purified myeloma cells (Fig. 1

and Table 1). We obtained bone marrow biopsies from nine patients

with stable or primary refractory disease and extramedullary samples

of pleural effusion or ascites from four patients. Bone marrow and

extramedullary samples were serially collected from two patients.

Single-cell transcriptome data were generated using the C1 Single-

Cell AutoPrep System, which allowed full-length RNA-seq with a

higher coverage of lowly expressed genes than 10X system (Supple-

mentary Fig. S4A). Themutational landscape of our patient cohort was

determined by whole-exome sequencing, which identified KRAS and

NRAS mutations as the most frequent genetic aberrations (Table 1).

Many patients carried oncogenic translocations such as t(4;14) IgH–

WHSC1, t(11;14) IgH–CCND1, or t(14;20) IgH–MAFB fusions. Thus,

most patients had well-characterized genetic aberrations frequently

found in multiple myeloma (27).

Following data quality filtration, we acquired full-length RNA-seq

data from492 cells, with an average of 4.7million sequencing reads and

4,924 genes in eachmyeloma cell. Externally spiked-in RNA sequences

(Supplementary Fig. S4B) show a constant level of detection across all

cells and patients, ensuring high-quality single-cell sequencing with a

low batch effect. Individual myeloma cells expressed clonotypic

immunoglobulin sequences within a single patient (Supplementary

Fig. S4C left; ref. 28) and plasma cell–specific transcription factors

(PRDM1, IRF4, and XBP1) with a lack of mature B cells (PAX5 and

Transcriptional Programs for Myeloma Progression
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BACH2; Supplementary Fig. S4C, right; ref. 29). Transcripts for plasma

cell-surface molecules, such as SDC1 (CD138), CD38, and SLAMF7,

were consistently expressed in most myeloma cells and are candidate

therapeutic targets for multiple myeloma (30).

Using the full-length single-cell transcriptome data, we per-

formed clustering analysis on all the bone marrow and extrame-

dullary myeloma cells from 11 patients (Fig. 3A). We eliminated

immunoglobulin genes from the clustering analysis as their high

Figure 1.

Myeloma sample configuration for single-cell RNA-seq. Myeloma samples from 15 patients were collected from the bone marrow (gray) or extramedullary sites

(magenta) and subjected to single-cell RNA-seq using the 10X or C1 platform (pale gray: bone marrow; dark gray: primary refractory bone marrow; pale magenta:

pleural effusion; darkmagenta: ascites). All 10Xdatawere generated fromcryopreserved samples, whereas fresh sampleswere used for C1 data (except forMM26EM,

cryopreserved). On the right, sampling time points (arrows) at initial diagnosis or during disease progression. Periods of bortezomib treatment (red lines) and the

treatment response (parentheses) are indicated. Black dotted lines mark pretreatment and red solid lines mark bortezomib posttreatment periods. Patient death is

marked as “||.”BM, bonemarrowwith survival periods over 6months; primary refractoryBM (PRBM),with survival periods under 6months (MM17,MM34, andMM173);

EM, extramedullary (MM02, MM26, MM34, MM36, and MM173); nCR, near complete response; PD, progressive disease; PR, partial response.

Table 1. Clinical and genomic characteristics for the patients with myeloma.

Patients Sex Age ISS

Survival time

(months)

Heavy

chain

Light

chain Cytogenetics FISH Mutations

MM02 M 50 II 20(3)a IgG k N tri1q KRAS(NM_004985:p.G13C)

MM16 F 31 II 13 IgG k NH del13, del17p13 KRAS(NM_004985:p.G13D), TP53(NM_000546:

p.L344R,p.R110L), NFKB2(NM_002502:p.

H639P)

MM17 F 65 II 6 IgG k NH tri1q, t(4;14)

MM25 M 74 - 40 - l NH tri1q, del17p13, t

(11;14)

NRAS(NM_002524:p.Q61K), CCND1

(NM_053056:p.Y44C,p.K114R,p.E122D)

MM26 F 51 III 58(1)a IgG k N t(4;14)

MM28 M 77 II 41b - k N NRAS(NM_002524:p.G13R)

MM30 F 62 II 41b IgG k HD tri1q NRAS(NM_002524:p.Q61H)

MM33 F 50 III 55 - l NH

MM34 F 42 III 3(1)a IgG k NH tri1q, del13,

del17p13, t

(14;20)

MM36 M 57 I 20(1)a IgG l NH tri1q, del13, t(4;14) BRAF(NM_004333:p.V600E), MYO10

(NM_012334:p.R147C)

MM38 F 66 I 39b IgG k HD NRAS(NM_002524:p.Q61K)

MM126 M 64 II 14b IgG l HD del13 MYO10(NM_012334:p.E973K)

MM135 F 58 II 13b IgA l NH del13, del17p13, t

(4;14)

MM140 M 56 II 12b IgG l N

MM173 M 64 III 5(0)a IgD l NH KRAS(NM_004985:p.Q61H)

Note: Parentheses indicate survival time from EM sampling to death.

Abbreviations: EM, extramedullary; HD, hyperdiploid; N, normal; NH, nonhyperdiploid.
aPatients with EM sampling.
bPatients alive at the most recent follow-up. For survival time: from the date of diagnosis to death or follow-up periods for b.

Ryu et al.
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levels of clonotypic expression hinder the identification of other

molecular pathways causing intertumoral or intratumoral hetero-

geneity. tSNE projection visualized extramedullary myeloma cells

with distinctive patient-specific clusters, whereas most of the

bone marrow cells formed common multipatient clusters

(Fig. 3A). The expression of the myeloma driver genes partially

contributed to the clustering results (Fig. 3B). Correlation analysis

at the gene expression (Fig. 3C, left) or pathway level (right)

substantiated the overall separation of the extramedullary mye-

loma cells from the bone marrow myeloma cells. At the pathway

level, the primary refractory bone marrow myeloma cells (MM17

and MM34) resembled those of the extramedullary myeloma cells.

To extract features of aggressive extramedullary myeloma progres-

sion, we made pair-wise comparisons between the bone marrow and

extramedullary myeloma cells (Fig. 3D and Supplementary

Table S3). We identified transcriptional changes in the upregulation

of proliferation/cell-cycle progression, glycolysis, oxidative phos-

phorylation, proteasome, and antigen presentation genes upon

aggressive extramedullary myeloma progression, while bone mar-

row myeloma cells expressed higher levels of “TNFa-induced NF-

kB pathway” genes. All pathways have also been identified by other

single-cell analysis methods (Supplementary Fig. S4D; ref. 31).

Intriguingly, we found gradual unidirectional changes in most

pathway signatures of bone marrow cells from stable disease toward

primary refractory and extramedullary progression (Fig. 3E). The

NF-kB pathway was the exception, being upregulated in primary

refractory bone marrow cells but downregulated in most extra-

medullary cells. Complex regulation of the NF-kB pathway was

observed from correlation analysis between the pathways (Fig. 3F),

suggesting that the NF-kB pathway plays a differential role in

myeloma progression within the bone marrow or extramedullary

microenvironment.

Figure 2.

Transcriptome landscape of multiple myeloma drawn from 30 scRNA sequencing. The 30 scRNA sequencing data from seven myelomatous samples (four bone

marrow, one ascites, and two pleural effusion) were aggregated and subjected to clustering using the Seurat package with the default parameters. A, t-SNE

plots showing multiple cell-type clusters. Left, t-SNE plot of 22,640 cells color-coded by cluster. Middle, t-SNE plot color-coded by sample. Right, Plasma cell

score using the average expression of 9 genes (BACH2, PAX5, BCL6, PRDM1, IRF4, XBP1, SDC1, CD38, and SLAMF7). B, t-SNE plot of 6,782 immune cells in the

myeloma microenvironment, color-coded by cell type. Cell type specification was validated by SingleR. C, Proportion of MPCs in each sample (left). Immune

cell composition of the myeloma microenvironment compared with healthy bone marrow (right). D, Scores for ratio of exhaustion to cytotoxicity, exhaustion,

and cytotoxicity in CD8þ T cells and NK cells. Scores were calculated by single-sample GSEA (ssGSEA) using gene sets provided by Tirosh and colleagues (16).

E, t-SNE plot of 15,858 MPCs in the seven myeloma samples color-coded by cluster (left) or sample origin (right). Cluster proportions per sample are provided

(bottom). F, Number of cells per cluster, color-coded by sample (top). Average expression map of top 10 DEGs (excluding ribosomal protein, immunoglobulin,

and hemoglobin genes) for 13 clusters. The expression of each gene was centered at its average expression across all MPCs on a scale of 2 to�2 (middle). Gene-

expression scores (mean expression) for multiple myeloma proliferation (MSigDB) are provided (bottom).
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Effect of single-cell transcriptome signatures on patient

survival

To assess the importance of five gene-expression signatures

(proliferation, glycolysis, oxidative phosphorylation, antigen pro-

cessing and presentation, and proteasome) selected from the single-cell

transcriptome data, we determined their impacts on patient survival

using two cohorts with extensive clinical annotation: GSE24080 (32)

and GSE9782 (33). In the newly diagnosed multiple myeloma

GSE24080 cohort, the proliferation signature had poor prognostic

value for overall survival (Fig. 4A; Supplementary Table S4A), while in

the relapsed multiple myeloma GSE9782 cohort, antigen presentation,

proteasome, glycolysis, and oxidative phosphorylation signatures pre-

dicted poor prognosis (Fig. 4B; Supplementary Table S4B). The

proliferation signature had less of an impact on overall survival in

relapsed myeloma, suggesting that increased proliferation is involved

in primary relapse, whereas upregulated antigen presentation, protea-

some, glycolysis, and oxidative phosphorylation have amore profound

effect on the later aggressive progression and/or treatment resistance of

relapsed myeloma.

Mechanisms driving massive myeloma proliferation

To elucidate the mechanisms driving massive proliferation in

aggressive extramedullary myeloma cells, we examined the expression

levels ofmyeloma growth and survival factors. Of the 148 genes known

to affect myeloma cell growth (6, 34), we detected 32 genes expressed

by the myeloma cells (Fig. 5A). Most of the growth factors, including

Figure 3.

Molecular pathway activation associatedwith extramedullary progression. Transcriptomic changes during aggressivemyeloma progressionwere analyzed from the

full-length scRNA sequencing data of purifiedmyeloma cells.A, tSNE plots, colored by sample and cluster (k-means clustering, k¼ 8).B,Gene expression associated

with genetic aberrations in the myeloma patients. C, Clustering by Pearson correlation between cells using gene expression (left) or CGP pathways (right). D,

Selected GSEA results between myeloma cells in the bone marrow (BM) versus extramedullary (EM) sites. E, Density plots showing changes in GSEA scores for the

BM, primary refractory bone marrow (PRBM), and EM groups (top) or by patient (bottom). F, Scatter plots of GSVA demonstrate relationships between glycolysis,

oxidative phosphorylation, proliferation, and NF-kB signaling activation.

Figure 4.

Impact of single-cell transcriptome signatures on patient survival. In univariate analyses, the associations between five gene-expression sets (multiple myeloma

proliferation, glycolysis, oxidative phosphorylation, antigen processing and presentation, and proteasome complex) and overall survival were evaluated using

GSE24080 (A) and GSE9782 (B) microarray data sets. Patients were grouped into upper and lower quartiles for high and low gene signature groups, respectively.
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CCL3 and IL6, were more prominently expressed in the extramedul-

lary myeloma cells (Fig. 5B). Cognate receptor expression for these

growth/survival factorsmay stimulate tumor growth in an autocrine or

paracrine manner independently of the bone marrow microenviron-

ment. Indeed, many extramedullary myeloma cells simultaneously

expressed CCL3 and CCR1 or IL6 and IL6R, suggesting a potential

auto-/paracrine loop in the growth factor signaling axis (Fig. 5C). The

expression of theCCL3 and IL6 genes was also assessed in the 10X data

set (Supplementary Fig. S4E).

VLA4 (a4b1), formed by the ITGA4 and ITGB1 gene products,

is the major integrin in the bone marrow and mediates myeloma

cell homing and survival by interacting with the bone marrow

microenvironment (35). The primary ligands of VLA4 are VCAM1

and fibronectin (FN1 gene). We found that ITGA4 and ITGB1 are

often coexpressed by extramedullary myeloma cells (Fig. 5C right),

whereas FN1 expression was detected in the CD138-negative

nonmyeloma cell fractions of myelomatous ascites (Supplementary

Fig. S4F), suggesting that myeloma growth signals are delivered to

VLA4 by the extramedullary microenvironment (36). Altogether,

these multiple auto- and paracrine growth signals could alleviate

the dependency of myeloma growth on the bone marrow

microenvironment (3, 34).

Mechanisms of immune evasion accompanying myeloma

progression

The bone marrow niche provides myeloma survival signals and

an immune-suppressive microenvironment (6). Hematopoietic

cells, including myeloid-derived suppressor cells and regulatory

T cells, are known to be strongly involved in creating an

immune-suppressive microenvironment (37). In Fig. 2, we dem-

onstrated a significant number of cytotoxic T lymphocytes and NK

cells in the myelomatous bone marrow and ascites, despite the

elevated expression of exhaustion molecules. In myeloma, various

mechanisms of immune evasion were detected at the gene-

expression level. First, MPCs demonstrated consistent classic

(HLA-A, B, and C) and nonclassic (HLA-E and CD1D) MHC class

I molecule expression (Fig. 5D), which could provide a mechanism

of protection from NK-mediated cytotoxicity (38, 39). Sustained

classic and nonclassic MHC I expression in myeloma contrasts with

the frequent loss observed in other types of solid cancers (40). The

expression of leukocyte immunoglobulin-like (LIL) family proteins

LILRB1 and LILRB4 may also deliver inhibitory signals to NK

cells (41, 42). Immunomodulatory gene expression by myeloma

cells was also assessed in the 10X data set (Supplementary Fig. S4E),

demonstrating that myeloma progression elicits multiple and

heterogeneous NK-evasion pathways for tumor cells.

Overall, patients with myeloma demonstrated a shift in T-cell

composition from a na€�ve toward a cytotoxic/exhausted phenotype,

suggesting T-cell activation followed by a gradual waning (Fig. 2D).

In myeloma samples, we found several gene-expression character-

istics associated with evasion from cytotoxic T lymphocytes

(CTL; Fig. 5D). First, MHC class I gene expression was variably

regulated in the paired extramedullary samples, suggesting that

myeloma cells flexibly balance MHC class I levels to avoid NK- or

T-cell–mediated cytotoxicity. Second, some extramedullary myelo-

ma cells expressed the TRAIL gene (TNFSF10), which may engage

TRAIL receptors on T cells and trigger their aberrant activation (22).

Finally transcription factor hypoxia-inducible factor-1-alpha

(HIF1A) gene expression was upregulated in extramedullary mye-

loma; the exposure of cancer cells to hypoxia is known to induce the

expression of programmed cell death ligand-1 (PD-L1), which

increases tumor cell resistance to CTL-mediated lysis (43). Overall,

these data suggest that heterogeneous mechanisms of immune

evasion accompany myeloma progression.

Intratumoral heterogeneity and tumor evolution in multiple

myeloma

After primary bone marrow biopsy, most patients received a

combination treatment including the proteasome inhibitor bortezo-

mib (Fig. 1). All primary refractory bone marrow myeloma (MM17,

MM34, and MM173) and extramedullary samples were collected

during the refractory (relapsed) phase. Multiple mechanisms can

Figure 5.

Growth factor and immunomodulatory gene expression in extramedullary myeloma cells. A, Heatmap of myeloma growth factor and receptor expression;

B, Comparisons between the bone marrow (BM), primary refractory bone marrow (PRBM), and extramedullary (EM) cells for selected myeloma growth factor/

receptor gene expression. C, Paired growth factor receptor for a4b1 integrin genes in the BM, PRBM, and EM myeloma cells. Scales are log2(TPMþ1). D, NK and

cytotoxic T-cell inhibitory molecular expression by myeloma cells. Circle size denotes the mean expression level in each patient. Color key represents the log2-fold

change of each patient over the mean expression of all patients.
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confer bortezomib resistance, among which proteasome activation

occurs most frequently, involving the overexpression of proteasome

components or mutations in the PSMB5 gene (44). GSEA detected the

overexpression of proteasome components in myeloma subpopula-

tions (Fig. 3D). Some also expressed high levels of proliferation-

associated genes, which is the most validated myeloma signature for

poor prognosis (45). Therefore, myeloma cell subsets with both

proliferation and proteasome signature expression may be highly

aggressive and drug resistant (Fig. 6A and B). Single-cell analysis

revealed that heterogeneity in gene expression reflects the state of

myeloma subpopulations and potentially drug resistance and disease

progression (46).

To examine the relationship between tumor heterogeneity and

evolution in extramedullary disease, we performed a trajectory analysis

for paired bonemarrow–extramedullary samples,MM02(EM),MM34

(EM), and MM173(EM; Fig. 6C). Both bone marrow and ascites/

effusion samples from MM34 and MM173 patients were obtained

during the highly aggressive refractory disease state, with an extremely

short interval between the two biopsies (Fig. 1). In comparison, the

MM02 bone marrow biopsy was obtained during an early disease

phase and the effusion sample was collected during the relapsed

refractory phase two years later. Trajectory analysis (13) of each

patient revealed 3 to 5 states and visualized the evolution of the

myeloma transcriptome (Fig. 6C). Pseudotime analysis indicated a

branched evolution from the bone marrow to the extramedullary

myeloma. Intriguingly, one of the extramedullary branches was more

remotely related to bone marrow myeloma and was enriched in

proliferation or proteasome gene expression compared with the others

(Fig. 6C, bottom). These results suggest that intratumoral heteroge-

neity is linked with the evolution of more aggressive myeloma sub-

populations and disease progression.

Discussion
By combining massively parallel 30 scRNA sequencing (10X

platform) and low-throughput full-length RNA-seq (C1 platform),

we characterized the molecular events accompanying aggressive

extramedullary myeloma progression in the context of the tumor-

immune microenvironment. Massively parallel RNA-seq illustrat-

ed the overall tumor landscape encompassing the myeloma and

immune microenvironment, whereas in-depth analyses of purified

myeloma cells allowed the molecular characterization of individual

myeloma cells. The two approaches also compensated limitations

in each method, the small number of cells and cell size limitations

in the C1 or extremely sparse gene expressions in the 10X

platform.

Visualization of the global transcriptome landscape demonstrat-

ed the presence of diverse myeloma subpopulations surrounded by

cytotoxic CD8þ T cells and NK cells. In previous studies, T-cell and

NK-cell defects were demonstrated in numbers, phenotypes, and

function for advanced myeloma patients (47). Importantly, thera-

peutic strategies reversing NK or T-cell dysfunction or enhancing

their activity have gained much attention and achieved clinical

benefits in some cases. By comprehensive transcriptome profiling at

a single-cell resolution, we demonstrated differences in T cells and

NK cells, with a shift from na€�ve toward an activated/exhausted

state. We also identified dynamic regulation of MHC class I gene

expression in myeloma cells and suggested additional mechanisms

of NK and T-cell inhibition, including LILRB1/4-mediated NK

inhibition, TRAIL (TNFSF10)-mediated immune cell regulation,

and HIF1A-mediated resistance from cytotoxic T-cell killing. These

potential mechanisms varied among patients, suggesting differential

immune cell status and the susceptibility of cytotoxic T cells and NK

cells to reactivation strategies.

Figure 6.

Intratumoral heterogeneity as a potential mechanism of myeloma progression. Scatter plots of GSVA scores for “multiple myeloma proliferation” and “proteasome

complex” are presented formyeloma cells fromC1 (A) and 10X (B) platformdata. Quadrants are set as the third quartile of the total GSVA score on the same platform.

The proportion ofmyeloma cells in the top right quadrant (red circles) is indicated in parentheses next to the sample name.C, Trajectory analysis of paired samples by

monocle 2 shows gene expression changes along with myeloma progression. Arrows are drawn from the bone marrow to extramedullary samples. Overlay of GSVA

scores (color key) for “multiple myeloma proliferation” and “proteasome complex” shows a heterogeneous pattern between branches.
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The most dramatic changes accompanying aggressive myeloma

progression were the autocrine and pleiotropic gene-expression

phenotype for myeloma growth factor receptors. In particular, the

vast majority of extramedullary myeloma cells and refractory bone

marrow myeloma cells expressed IL6 receptor transcripts, unlike

the sparse expression among primary myeloma cells in the bone

marrow (48). Many extramedullary myeloma cells simultaneously

expressed IL6, suggesting autocrine activation and growth inde-

pendency. In the bone marrow, IL6 is mainly provided from the

myeloma niche by a paracrine source (34). IL6 production and

downstream IL6R signaling can be amplified via other molecular

interactions; for instance, the VLA4 integrin (ITGA4 and ITGB1

gene expression) in myeloma cells and fibronectin (FN1 gene expres-

sion) in the CD138-negative compartment of extramedullary

myeloma can augment IL6-mediated growth (49). Overall, these

data demonstrate multiple mechanisms of IL6 signaling reinforce-

ment involvingmyeloma cells and the hematologicmicroenvironment

during extramedullary progression. Despite the prominent role of

IL6 in myeloma progression, a clinical trial adding the anti-IL6

monoclonal antibody siltuximab to the bortezomib–melphalan–

prednisone regimen did not improve the complete response rate or

long-term outcome of transplant-ineligible patients with newly diag-

nosed multiple myeloma (50). Our study suggests this may be due to

heterogeneity of the IL6 receptor expression among myeloma cells in

those patients. For aggressive extramedullary myeloma, therapeutic

strategies targeting multiple growth factors would be required to

control pleiotropic growth stimulation.

In summary, we were able to demonstrate distinct gene-expression

characteristics in refractory (relapsed) myeloma from pleural effusion

or ascites consisting of pleiotropic auto- and paracrine-driven prolif-

eration accompanied by the weakening of and evasion from the

activated immune microenvironment. Analysis of intratumoral het-

erogeneity further demonstrated that preexisting myeloma cells had

the potential for tumor progression and drug resistance. Our study has

limitations of the small number of patients and zero-inflated gene-

expression patterns in the single-cell RNA-seq data, in addition to the

confounding factors for bonemarrow versus extramedullary myeloma

groups including the nature of microenvironment and the drug

treatment for the extramedullary myeloma. Despite these limitations,

our comparative profiling of myeloma and the immune microenvi-

ronment revealed aspects and limitations of therapeutic interventions

that could be used to design molecular therapeutic strategies for

myeloma patients with aggressive extramedullary involvement.

Data availability

The scRNA sequencing and transcriptomic data in this paper

have been submitted to the NCBI Gene-Expression Omnibus (GEO;

http://www.ncbi.nlm.nih.gov/geo/) under accession numbers

GSE106218 and GSE110499.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: H.-O. Lee, K. Kim, W.-Y. Park

Acquisition of data (provided animals, acquired and managed patients, provided

facilities, etc.): S.J. Kim, H.-J. Kim, H.-O. Lee, K. Kim

Analysis and interpretation of data (e.g., statistical analysis, biostatistics,

computational analysis): D. Ryu, S.J. Kim, Y. Hong, N. Kim, H.-J. Kim,

H.-O. Lee, K. Kim, W.-Y. Park

Writing, review, and/or revision of the manuscript: D. Ryu, S.J. Kim, H.-O. Lee,

K. Kim, W.-Y. Park

Administrative, technical, or material support (i.e., reporting or organizing data,

constructing databases): A. Jo, K. Kim, W.-Y. Park

Study supervision: H.-O. Lee, K. Kim, W.-Y. Park

Acknowledgments
This work was supported by grants from the Ministry of Education

(NRF-2017R1D1A1B03032194), the Ministry of Science and ICT (NRF-

2016R1A5A1011974, NRF-2017M3A9A7050803, NRF-2017M3C9A6044636,

and 2018M3C9A6017315), and the Ministry of Food and Drug Safety

(16173MFDS004), Republic of Korea.

The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby marked advertisement in accordance

with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 26, 2019; revised July 2, 2019; accepted September 23, 2019;

published first September 26, 2019.

References
1. Kuehl WM, Bergsagel PL. Molecular pathogenesis of multiple myeloma and its

premalignant precursor. J Clin Invest 2012;122:3456–63.

2. Madan S, Kumar S. Review: extramedullary disease in multiple myeloma.

Clin Adv Hematol Oncol 2009;7:802–4.

3. Braggio E, Kortum KM, Stewart AK. SnapShot: multiple myeloma. Cancer Cell

2015;28:678e1.

4. Billecke L, Murga Penas EM, May AM, Engelhardt M, Nagler A, Leiba M, et al.

Cytogenetics of extramedullary manifestations in multiple myeloma. Br J Hae-

matol 2013;161:87–94.

5. Decaux O, Lode L, Magrangeas F, Charbonnel C, Gouraud W, Jezequel P, et al.

Prediction of survival in multiple myeloma based on gene expression profiles

reveals cell cycle and chromosomal instability signatures in high-risk patients

and hyperdiploid signatures in low-risk patients: a study of the Intergroupe

Francophone du Myelome. J Clin Oncol 2008;26:4798–805.

6. Manier S, Sacco A, Leleu X, Ghobrial IM, Roccaro AM. Bone marrow micro-

environment in multiple myeloma progression. J Biomed Biotechnol 2012;2012:

157496.

7. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW,Wilson R, et al. Massively

parallel digital transcriptional profiling of single cells. Nat Commun 2017;8:

14049.

8. Haber AL, BitonM, Rogel N, Herbst RH, Shekhar K, Smillie C, et al. A single-cell

survey of the small intestinal epithelium. Nature 2017;551:333–9.

9. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell

transcriptomic data across different conditions, technologies, and species.

Nat Biotechnol 2018;36:411–20.

10. Aran D, Looney AP, Liu L, Wu E, Fong V, Hu A, et al. Reference-based analysis

of lung single-cell sequencing reveals a transitional profibrotic macrophage.

Nat Immunol 2019;20:163–72.

11. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for

microarray and RNA-seq data. BMC Bioinformatics 2013;14:7.

12. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,

et al. Gene set enrichment analysis: a knowledge-based approach for inter-

preting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:

15545–50.

13. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed

graph embedding resolves complex single-cell trajectories. Nat Methods

2017;14:979–82.

14. Hay SB, Ferchen K, Chetal K, Grimes HL, Salomonis N. The Human Cell

Atlas bone marrow single-cell interactive web portal. Exp Hematol 2018;

68:51–61.

Transcriptional Programs for Myeloma Progression

AACRJournals.org Clin Cancer Res; 26(4) February 15, 2020 943

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

6
/4

/9
3
5
/2

0
6
3
4
0
8
/9

3
5
.p

d
f b

y
 g

u
e
s
t o

n
 2

7
 A

u
g

u
s
t 2

0
2
2

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


15. Bruns I, Cadeddu RP, Brueckmann I, Frobel J, Geyh S, Bust S, et al. Multiple

myeloma-related deregulation of bonemarrow-derived CD34(þ) hematopoietic

stem and progenitor cells. Blood 2012;120:2620–30.

16. Tirosh I, Izar B, Prakadan SM,Wadsworth MH, Treacy D II, Trombetta JJ, et al.

Dissecting the multicellular ecosystem of metastatic melanoma by single-cell

RNA-seq. Science 2016;352:189–96.

17. Miannay B,Minvielle S, RouxO, Drouin P, Avet-Loiseau H, Guerin-Charbonnel

C, et al. Logic programming reveals alteration of key transcription factors in

multiple myeloma. Sci Rep 2017;7:9257.

18. Tai YT, Acharya C, An G, Moschetta M, Zhong MY, Feng X, et al. APRIL and

BCMA promote human multiple myeloma growth and immunosuppression in

the bone marrow microenvironment. Blood 2016;127:3225–36.

19. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J Jr. Cyclin

D dysregulation: an early and unifying pathogenic event in multiple myeloma.

Blood 2005;106:296–303.

20. Vallet S, Pozzi S, Patel K, Vaghela N, Fulciniti MT, Veiby P, et al. A novel role

for CCL3 (MIP-1alpha) in myeloma-induced bone disease via osteocalcin

downregulation and inhibition of osteoblast function. Leukemia 2011;25:

1174–81.

21. Philp D, Scheremeta B, Sibliss K, Zhou M, Fine EL, Nguyen M, et al. Thymosin

beta4 promotes matrix metalloproteinase expression during wound repair. J Cell

Physiol 2006;208:195–200.

22. Lehnert C, Weiswange M, Jeremias I, Bayer C, Grunert M, Debatin KM,

et al. TRAIL-receptor costimulation inhibits proximal TCR signaling and

suppresses human T cell activation and proliferation. J Immunol 2014;

193:4021–31.

23. Wu Y, Wang H. LncRNA NEAT1 promotes dexamethasone resistance in

multiple myeloma by targeting miR-193a/MCL1 pathway. J Biochem Mol

Toxicol 2018;32:e22008.

24. DongG,MaoQ, XiaW,XuY,Wang J, Xu L, et al. PKM2 and cancer: the function

of PKM2 beyond glycolysis. Oncol Lett 2016;11:1980–6.

25. Ledergor G, Weiner A, Zada M, Wang SY, Cohen YC, Gatt ME, et al. Single cell

dissection of plasma cell heterogeneity in symptomatic and asymptomatic

myeloma. Nat Med 2018;24:1867–76.

26. Keleg S, KayedH, Jiang X, Penzel R, Giese T, BuchlerMW, et al. Adrenomedullin

is induced by hypoxia and enhances pancreatic cancer cell invasion. Int J Cancer

2007;121:21–32.

27. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, et al.

Widespread genetic heterogeneity in multiple myeloma: implications for tar-

geted therapy. Cancer Cell 2014;25:91–101.

28. Thiele B,KlosterM,AlawiM, IndenbirkenD,TrepelM,Grundhoff A, et al. Next-

generation sequencing of peripheral B-lineage cells pinpoints the circulating

clonotypic cell pool in multiple myeloma. Blood 2014;123:3618–21.

29. Nutt SL,Hodgkin PD, TarlintonDM,Corcoran LM. The generation of antibody-

secreting plasma cells. Nat Rev Immunol 2015;15:160–71.

30. Lonial S, Durie B, Palumbo A, San-Miguel J. Monoclonal antibodies in the

treatment ofmultiplemyeloma: current status and future perspectives. Leukemia

2016;30:526–35.

31. Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-

sequencing experiments. Genome Biol 2016;17:63.

32. Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ, et al. The

MicroArray quality control (MAQC)-II study of common practices for the

development and validation of microarray-based predictive models.

Nat Biotechnol 2010;28:827–38.

33. Mulligan G, Mitsiades C, Bryant B, Zhan F, Chng WJ, Roels S, et al. Gene

expression profiling and correlation with outcome in clinical trials of the

proteasome inhibitor bortezomib. Blood 2007;109:3177–88.

34. Mahtouk K, Moreaux J, Hose D, Reme T, Meissner T, Jourdan M, et al. Growth

factors in multiple myeloma: a comprehensive analysis of their expression in

tumor cells and bone marrow environment using Affymetrix microarrays.

BMC Cancer 2010;10:198.

35. Sanz-Rodriguez F, Teixido J. VLA-4-dependent myeloma cell adhesion.

Leuk Lymphoma 2001;41:239–45.

36. Meads MB, Fang B, Mathews L, Gemmer J, Nong L, Rosado-Lopez I, et al.

Targeting PYK2 mediates microenvironment-specific cell death in multiple

myeloma. Oncogene 2016;35:2723–34.

37. Shiozawa Y, Havens AM, Pienta KJ, Taichman RS. The bone marrow niche:

habitat to hematopoietic and mesenchymal stem cells, and unwitting host to

molecular parasites. Leukemia 2008;22:941–50.

38. Carbone E,Neri P,MesuracaM, FulcinitiMT,Otsuki T, PendeD, et al.HLA class

I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell

recognition by natural killer cells. Blood 2005;105:251–8.

39. Carbone E, Terrazzano G, Melian A, Zanzi D, Moretta L, Porcelli S, et al.

Inhibition of human NK cell-mediated killing by CD1 molecules. J Immunol

2000;164:6130–7.

40. Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-

Keen M, et al. Implications for immunosurveillance of altered HLA class I

phenotypes in human tumours. Immunol Today 1997;18:89–95.

41. Zhang Y, Lu N, Xue Y, ZhangM, Li Y, Si Y, et al. Expression of immunoglobulin-

like transcript (ILT)2 and ILT3 in human gastric cancer and its clinical

significance. Mol Med Rep 2012;5:910–6.

42. Kang X, Kim J, Deng M, John S, Chen H, Wu G, et al. Inhibitory leukocyte

immunoglobulin-like receptors: immune checkpoint proteins and tumor sus-

taining factors. Cell Cycle 2016;15:25–40.

43. Barsoum IB, Smallwood CA, Siemens DR, Graham CH. A mechanism of

hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res

2014;74:665–74.

44. Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR, et al.

Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5)

gene mutation and overexpression of PSMB5 protein. Blood 2008;112:2489–99.

45. Hose D, Reme T, Hielscher T, Moreaux J, Messner T, Seckinger A, et al.

Proliferation is a central independent prognostic factor and target for personalized

and risk-adapted treatment in multiple myeloma. Haematologica 2011;96:87–95.

46. Mitra AK, Mukherjee UK, Harding T, Jang JS, Stessman H, Li Y, et al. Single-cell

analysis of targeted transcriptome predicts drug sensitivity of single cells within

human myeloma tumors. Leukemia 2016;30:1094–102.

47. Pittari G, Vago L, FestucciaM, Bonini C, Mudawi D, Giaccone L, et al. Restoring

natural killer cell immunity against multiple myeloma in the era of new drugs.

Front Immunol 2017;8:1444.

48. Burger R. Impact of interleukin-6 in hematological malignancies. Transfus Med

Hemother 2013;40:336–43.

49. Shain KH, Yarde DN, Meads MB, Huang M, Jove R, Hazlehurst LA, et al. Beta1

integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells:

implications for microenvironment influence on tumor survival and prolifer-

ation. Cancer Res 2009;69:1009–15.

50. San-Miguel J, Blade J, Shpilberg O, Grosicki S, Maloisel F, Min CK, et al. Phase 2

randomized study of bortezomib-melphalan-prednisone with or without siltux-

imab (anti-IL-6) in multiple myeloma. Blood 2014;123:4136–42.

Clin Cancer Res; 26(4) February 15, 2020 CLINICAL CANCER RESEARCH944

Ryu et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

6
/4

/9
3
5
/2

0
6
3
4
0
8
/9

3
5
.p

d
f b

y
 g

u
e
s
t o

n
 2

7
 A

u
g

u
s
t 2

0
2
2


