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Abstract

Background: The microbiomes of humans are associated with liver and lung inflammation. We identified and

verified alterations of the oropharyngeal microbiome and assessed their association with cirrhosis and pneumonia.

Methods: Study components were as follows: (1) determination of the temporal stability of the oropharyngeal

microbiome; (2) identification of oropharyngeal microbial variation in 90 subjects; (3) quantitative identification of

disease-associated bacteria. DNAs enriched in bacterial sequences were produced from low-biomass oropharyngeal

swabs using whole genome amplification and were analyzed using denaturing gradient gel electrophoresis analysis.

Results: Whole genome amplification combined with denaturing gradient gel electrophoresis analysis monitored

successfully oropharyngeal microbial variations and showed that the composition of each subject’s oropharyngeal

microbiome remained relatively stable during the follow-up. The microbial composition of cirrhotic patients with

pneumonia differed from those of others and clustered together in subgroup analysis. Further, species richness and

the value of Shannon’s diversity and evenness index increased significantly in patients with cirrhosis and pneumonia

versus others (p < 0.001, versus healthy controls; p < 0.01, versus cirrhotic patients without pneumonia). Moreover,

we identified variants of Bacteroides, Eubacterium, Lachnospiraceae, Neisseria, Actinomyces, and Streptococcus through

phylogenetic analysis. Quantitative polymerase chain reaction assays revealed that the populations of Bacteroides,

Neisseria, and Actinomycetes increased, while that of Streptococcus decreased in cirrhotic patients with pneumonia

versus others (p < 0.001, versus Healthy controls; p < 0.01, versus cirrhotic patients without pneumonia).

Conclusions: Alterations of Bacteroides, Neisseria, Actinomyces, and Streptococcus populations in the oropharyngeal

microbiome were associated with liver cirrhosis and pneumonia.
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Background
Liver disease and associated complications represent a

major healthcare burden in China. Pneumonia is a far

more common complication in patients with decompen-

sated cirrhosis. Increasing awareness of the role of the

microbiome of humans in the progression of liver [1]

and lung inflammation [2, 3] raises the importance of

assessing the composition of the respiratory microbiome

as well as the nature of disease-induced changes caused by

these microbiomes during disease progression. Current

treatment strategies for pneumonia are based on the rou-

tine identification of cultured bacteria, including the isola-

tion of clinically significant bacterial species from sputum.

However, the upper and lower respiratory tracts harbor a

vast range of commensal and potentially pathogenic bac-

teria that forms an indispensable part of the human

microbiome [4]. These organisms live in a complex, yet

balanced relationship, and therefore manipulation of one

may affect the other members of the community. Al-

though the presence of pathogens is a prerequisite for

infections and alterations of the community, which

may lead to overgrowth and invasion, it is a key factor

leading to infection [5].

Studying the microbial variations of patients with

pneumonia is challenging, because sampling the lung

microbiome requires an invasive surgical procedure that

may harm subjects. The oropharynx serves the respira-

tory and digestive systems and is colonized by bacterial

pathogens that affect healthy or immunocompromised

individuals [6]. The importance of the microbial com-

position of the oral and respiratory tracts is increasingly

considered as a source of biomarkers to facilitate nonin-

vasive detection of disease [7, 8]. A better understanding

of the significance of variations of the oropharyngeal

mucosal microbiome in preclinical conditions and dis-

ease may provide insights into selective oropharyngeal

decontamination that is used to prevent susceptible pa-

tients from contracting pneumonia [9]. Moreover, sam-

ples are acquired with minimal disturbance of the

microbiome, and the technique exposes patients to min-

imal risk.

Denaturing gradient gel electrophoresis (DGGE) is a

DNA fingerprinting technique used to accurately assess the

members of a microbial community by generating patterns

or profiles of genetic diversity [10]. DGGE facilitates rapid

analyses and comparisons of microbial communities. More-

over, polymerase chain reaction (PCR) amplicons are iso-

lated from the DGGE profile, which can be further

amplified and sequenced [10, 11]. Therefore, it is a pre-

ferred technique for studies of the composition, structure,

and stability of complex microbial communities. However,

the low biomass obtained from oropharyngeal swabs im-

pedes the application of the DGGE technique for character-

izing microbial populations of the oropharyngeal mucosa.

Whole genome amplification (WGA) using phi29 DNA

polymerase overcomes insufficient sample sizes [12]. For

example, numerous studies of microbial ecology show that

WGA using phi29 DNA polymerase enriches environ-

mental template DNAs with the highest amplification effi-

ciency [13, 14], and the amplified DNA can be used to

characterize the microbial community structure in low-

biomass environments [15–17]. Here, we applied phi29

DNA polymerase to generate sufficient quantities of DNA

from oropharyngeal mucosal swabs to analyze and moni-

tor the microbial community associated with liver cirrho-

sis and pneumonia, which was accompanied by further

DGGE analysis of the V3 region of the 16S rDNA. We

aimed to conduct a preliminary assessment of the varia-

tions of the predominant oropharyngeal mucosal among

cirrhotic patients with or without pneumonia and healthy

controls as well as the microbial alterations during the

follow-up. Our ultimate goal was extend our knowledge of

the contributions of the respiratory microbiome in the

human lung in health and disease.

Methods
Study design, patients, and samples

From September 2011 to August 2012, the study recruited

90 subjects, including 30 with hepatitis B virus (HBV)-de-

compensated cirrhosis with confirmed pneumonia (Group

CI), 30 with HBV-decompensated cirrhosis without re-

spiratory infection (Group CC), and 30 healthy adult con-

trols matched for age and sex to the cirrhotic group

(Group HC). The clinical characteristics collected from

medical records of the subjects are shown in Table 1. A

subset of subjects was randomly chosen to provide swab

specimens every 5 days within the 3-week follow-up

period after a positive swab confirmation. The follow-up

study included 12 patients with HBV-decompensated cir-

rhosis with pneumonia, 10 without respiratory infection,

and 10 healthy controls. None of the controls had a de-

tectable infection during the follow-up. The patients ful-

filled the criteria as follows: (i) liver cirrhosis detected

using ultrasound with or without pneumonia, which was

confirmed using computerized tomography of the chest;

(ii) physician’s diagnosis of ascites, gastrointestinal bleed-

ing, and malnutrition; (iii) not treated with antibiotics, lac-

tulose, prokinetic drugs, or proton pump inhibitors

3 weeks before hospitalization; (iv) absence of other organ

dysfunction, except the liver, lung, and previous related

surgery. Exclusion criteria included other infections such

as peritonitis and bacteremia confirmed using ascites fluid

and routine bacteriological analysis of blood. A physician

supervised the collection of the first swab specimens of

the unstimulated oropharynx within 2 h after the patients’

hospitalization, and antibiotics were not administered.

Written informed consent and questionnaires (Additional

file 1: Table S1) were obtained from all subjects who
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voluntarily underwent sample collection using oropharyn-

geal mucosal swabs. The Ethics Committee of the First Af-

filiated Hospital, School of Medicine, Zhejiang University

approved this study.

Sampling and DNA extraction

Microbial samples were obtained from the posterior wall of

the oropharynx using sterile Copan swabs (Copan Diagnos-

tics Inc., California, USA). The swab sample was immersed

in phosphate-buffered saline, transferred to the laboratory,

shaken, centrifuged immediately, and the supernatant was

discarded. The pellets were stored at −80 °C within an hour.

Microbial DNA was extracted using a Qiagen Mini Kit

(Qiagen, Hilden, Germany) following the manufacturer’s in-

structions. The DNA was quantified using a Qubit 2.0

Fluorometer (Invitrogen, Carlsbad, CA, USA), and all

oropharyngeal microbial DNAs were diluted to 3 ng/μL

for WGA.

Whole genome amplification (WGA)

Bacterial genomic DNA was subjected to multiple dis-

placement amplification using the GenomiPhi V2 DNA

Amplification Kit [12] (GE Healthcare, Amersham Place,

Buckinghamshire, UK) according to the manufacturer’s

protocol. After WGA, the amplicons were quantified

using a Qubit 2.0 Fluorometer. Each sample was ampli-

fied in triplicate, and the three reaction products per

sample were diluted 1:10 and stored at −30 °C.

PCR amplification of the 16S rDNA V3 region

The V3 variable region of 16S rDNA was amplified using

a hot-start touchdown protocol with primers specific for

the conserved regions of the 16S rRNA gene [18]. The

reaction mixture contained 400 ng of genomic DNA, 25

pmol of each primer, 0.2 μM dNTPs, 1 × Ex Taq buffer,

and 2.5 U of Ex Taq polymerase (Takara, Dalian, China),

and the final volume was adjusted to 50 μL with sterile

deionized water. To minimize hetero duplex formation,

five-cycle reconditioning PCR was conducted using 5 μL

of amplification mixture in a fresh reaction mixture as

previously described [19]. The reamplified products

(25 μL) were analyzed using DGGE.

DGGE profiling

Parallel DGGE profiling was performed as previously de-

scribed [11, 20]. Electrophoresis was conducted at a con-

stant 70 V at 60 °C for approximately 16 h. DGGE

profiles were processed using BioNumerics software ver-

sion 6.01 (Applied Maths, St-Martens-Latem, Belgium)

in a multistep procedure following the manufacturer’s

instructions. Parameters for allocating band-classes were

set according to Joossens et al. [20]. Cluster analysis of

DGGE profiles used the unweighted pair-group method

with an arithmetic mean (UPGMA) based on the Dice

similarity coefficient [21]. Multidimensional scaling

(MDS) and principal component analysis (PCA) were

conducted according to their respective manuals in Bio-

Numerics software. Past software was used to derive the

Table 1 Subject characteristics

Characteristics Group HC (n = 30) Group CC (n = 30) Group CI (n = 30)

Age 62.80 ± 3.19 63.47 ± 2.29 65.23 ± 3.42

Sex: Male/female 23/7 21/9 22/8

Hospital days -a 10.5 25.5

Primary blood parameters at first follow-up:

WBC (109/L) 8.48 ± 1.13 7.72 ± 5.33 14.60 ± 18.47

CRP (mg/L) <10 21.97 ± 7.54 136.02 ± 79.39

ALB (g/L) 50.19 ± 2.84 29.97 ± 7.54 32.88 ± 3.31

ALT (U/L) 18.77 ± 7.65 140.53 ± 53.04 117.55 ± 30.27

AST (U/L) 17.90 ± 5.26) 173.07 ± 62.10) 109.29 ± 38.47

TBIL (mol/L) 9.63 ± 1.65 49.03 ± 16.63 51.37 ± 23.44

Infection with

Candida - - 5

Streptococcus pneumoniae - - 14

Mycoplasma pneumoniae - - 3

Pseudomonas aeruginosa - - 3

Staphylococcus - - 5

Mean ± SD

WBC white blood cell, CRP C-reactive protein, ALB albumin, ALT alanine aminotransferase, AST aspartate aminotransferase, TBIL total bilirubin
aNot applicable
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Shannon H scores (diversity index), Shannon’s evenness

index, and species richness [22].

The samples were fractionated using 19 gels, and three

standard reference lanes were included on the sides and in

the middle of each DGGE gel to allow comparisons

among gels using BioNumerics software. We excised as

many bands as possible from each gel. Gel slices were

placed in sterile Eppendorf tubes, washed three times in

TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0), dis-

rupted, and incubated in 50 μL of TE buffer for 30 min at

80 °C. DNA in 5 μL of buffer solution was used as a tem-

plate for PCR re-amplification with universal bacterial

primers F357 + GC clamp and R518 as described above

for DGGE. Amplicons were analyzed using DGGE, excised

until a single band was obtained, stored at − 20 °C, and

verified according to their reference site in DGGE gels by

comparing gels using BioNumerics software. Two or three

amplicons from the same band-class were selected and

purified using a QIA quick PCR purification Kit (Qiagen,

Hilden, Germany), ligated to pGEM-T Easy Vector DNA

(Promega, Madison, WI, USA), and used to transform

competent Escherichia coli DH5. Positive colonies were

verified and sequenced (Invitrogen, Shanghai, China). The

sequences were deposited into the European Nucleotide

Archive (ENA) database (Submission ID: Hx200004778).

Sequence similarities were determined using BLAST

to search the GenBank DNA database [14]. Based on the

BLAST results, reference sequences of phylogenetic

neighboring species (97 % similarity) were included for

cluster analysis according to multiple sequence align-

ments generated using MEGA5 software (Molecular

Evolutionary Genetics Analysis version 5) [10].

Quantitative PCR

Quantification of the bacterial species of interest in each

original (non-WGA) sample DNA was performed using

qPCR as described previously [11, 20]. The primers

(Shanghai Invitrogen Biotechnology Limited Company,

Shanghai, China) and annealing temperatures are shown in

Additional file 2: Table S2. Quantification of Lachnospira-

ceae and Bacteroides was performed using a Taqman assay,

and other species-specific assays employed SYBR Green.

The copy number of bacterial species was determined

by comparison with serially diluted plasmid DNA stan-

dards run on the same plate. The plasmid DNA stan-

dards were prepared from known concentrations of

plasmid DNA [23]. The protocol to determine the detec-

tion limit was performed as described previously [24].

The abundances of bacterial species were expressed as

log 10 values per 10 ng original DNA template.

Statistical analysis

Statistical analysis was conducted according to Joossens

et al. [10]. Mann–Whitney tests were performed to

compare differences in oropharyngeal microbiomes across

the groups using SPSS version 17.0 for Windows (SPSS

Inc., Chicago, IL, USA).

Results

The applicability, feasibility, and validity of the WGA

method to enrich microbial DNA

We first analyzed the applicability of the WGA method

for characterizing oropharyngeal microbial DNA sam-

ples. We compared the DGGE profiles between WGA-

amplified DNA (Fig. 1a, lanes A1, B1, C1, and D1) and

the original DNA (Fig. 1a, lanes A0, B0, C0, and D0) and

found that the WGA-positive samples comprised more

bands than those of WGA-negative samples, suggesting

that the WGA method was capable of enriching oropha-

ryngeal microbial DNA samples for DGGE analysis.

We then determined the reproducibility of the WGA

method. Two fecal microbial DNAs were diluted 1:100

(3 ng/μL) and amplified in triplicate using the WGA

method. The DGGE profile analysis indicated that the

WGA method amplified fecal DNA (Fig. 1b, lanes A1–3

and B1–3), the most predominant bands were similar to

those of the original fecal DNA (Fig. 1b, lanes A0 and B0),

and the results were reproducible. These results prove that

the WGA method effectively enriched low concentrations

of microbial DNA suitable for DGGE analysis.

The validity of the WGA method was further charac-

terized using DGGE profiling and cluster analysis. Seven

oropharyngeal microbial DNA samples were amplified in

duplicate using WGA. Cluster analysis showed that the

DGGE profiles were >90 % similar between duplicates

(Fig. 1c), suggesting the validity and reproducibility of

the WGA method for preparing small quantities of

DNA for DGGE analysis.

Determination of the temporal stability of the

oropharyngeal microbiome in a 3- week follow-up study

To investigate the associations between the oropharyn-

geal microbiome and disease, we first confirmed the

temporal stability of oropharyngeal microbiomes of the

HC and CC groups during a follow-up period. We chose

randomly 32 subjects, including 10 volunteers from the

HC group (three times), 10 patients from the CC group

(three times, most were discharged from our hospital be-

fore the fourth appointment.), and 12 patients from the

CI group (four times). The first sample from the patients

in the CI group were before antibiotic treatments, the

second samples were during antibiotic treatments, and

the third and fourth were after antibiotic treatments.

The DGGE profiles and cluster analysis demonstrated

that three follow-up samples of each individual from the

HC or CC groups (n = 10) clustered together, respect-

ively (Fig. 2a). These results suggest that the oropharyn-

geal mucosal microbiome of each control individual
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Fig. 1 The applicability, feasibility, and validity of the WGA method for enriching microbial DNA. (a) DGGE profiles of WGA-amplified oropharyngeal

DNAs (lanes A1, B1, C1, and D1) and the original oropharyngeal DNA (lanes A0, B0, C0, and D0); (b) the WGA-amplified fecal DNA (lanes A1–3 and

B1–3) represented the most predominant microbial bands that were similar to those detected in the original fecal DNA (lanes A0 and B0), and were

reproducible; (c) Seven oropharyngeal microbial DNA samples were amplified in duplicate using WGA for DGGE analysis. Clustering was performed

using Dice’s coefficient and UPGMA with BioNumerics software

Fig. 2 Confirmation of the temporal stability of the oropharyngeal microbiome in a 5-day follow-up study. Cluster analysis of DGGE profiles of

oropharyngeal bacteria in groups HC (a), CC (a), and CI (b). Cluster analysis was performed using Dice’s coefficient and UPGMA. Lanes were

designated by patient number (1, 2, 3, 4), and visit number (1, 2, 3, and 4).CIn-1, before antibiotic treatment; CIn-2, during antibiotic treatment;

CIn-3 and -4, after antibiotic treatment. The diversity index of these follow-up samples is shown (c). *p < 0.01; **p < 0.001
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exhibited relatively stable patterns during the follow-up

(Fig. 2a). In contrast, because of antibiotic treatment,

four follow-up samples from patients with pneumonia

from the CI group (n = 12) did not cluster together

(Fig. 2b). However, the DGGE profiles of each patients

with pneumonia were similar between their third and

fourth visits (Fig. 2b), suggesting that the oropharyngeal

microbiome was relatively stable in patients after antibi-

otics treatments.

Moreover, the diversity of the oropharyngeal microbiome

among different groups was calculated using Past software.

The predominant microbiome of patients with pneumonia

from group CI had the highest diversity (CI-1), followed by

control patients with liver cirrhosis (group CC) (Fig. 2c).

The diversities of groups CI and CC were higher compared

with that of the group HC. Notably, oropharyngeal micro-

bial diversity was decreased in group CI-2 during antibiotic

treatments versus group CI-1 before antibiotic treatments.

To investigate oropharyngeal microbial variation and

identify the key bacteria associated with liver cirrhosis

and pneumonia, we analyzed the DGGE profiles of the

90 subjects.

Cluster analysis of DGGE profiles

Cluster analysis of DGGE profiles indicates that almost all

individuals in each group (except for three samples from

the group CC) clustered together, suggesting that the mi-

crobial composition of each individual in the same group

was similar to the others and that the microbial compos-

ition of patients in the group CI differed from those of both

control groups. Notably, the DGGE profiles of all patients

in group CI clustered together at high UPGMA coefficient

values ranging from 57.7 to 94.0 % (average, 82.30 ± 9.85,

Fig. 3a). These results were confirmed using MDS analysis

(Fig. 3b) and PCA (Fig. 3c). For example, note the overlap

of symbols representing the microbiomes of patients in-

fected with the same pathogen in the group CI.

Analysis of microbial diversity

We used Past software to assess the microbial diversity of

the oropharyngeal mucosa using Shannon’s diversity index,

Species richness, and Shannon’s evenness index. The values

of Shannon’s diversity index, Species richness, and Shannon’s

evenness index were obviously higher in group CI compared

with those in groups CC and HC (p < 0.01) (Fig. 3d). Further,

Fig. 3 Cluster and diversity analyses of DGGE profiles of the oropharyngeal mucosal microbiomes of 90 PCR-DGGE profiles. (a) Cluster analysis of

DGGE profiles of the oropharyngeal mucosal microbiome; (b) Multidimensional scaling analysis (MDS) based on the predominant oropharyngeal

bacterial PCR-DGGE profiles. The plot is an optimized three-dimensional representation of the similarity matrix obtained using BioNumerics

software, and the x-, y-, and z-axes represent three different dimensions (Dim 1, Dim 2, and Dim 3, respectively). (c) Principal component analysis

(PCA) based on bacterial PCR-DGGE profiles. The plots were reoriented to maximize the variation among lanes along the first three principal

components (contributions: 18.2, 8.2, and 7.4 %, respectively) obtained using BioNumerics software. Cubes, group CI; spheres, group CC; cylinders,

group HC. (d) Comparison of the diversity index, species richness, and evenness index of oropharyngeal mucosal microbiomes. *p < 0.01; **p < 0.001
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Shannon’s diversity index and Species richness were higher

in group CC compared with group HC (p < 0.01).

Phylogenetic analysis of DNAs isolated from DGGE profiles

In the 90 PCR-DGGE profiles analyzed in this study, 39

band-classes were identified (Fig. 4a). Firmicutes (20 band-

classes) was the most common phylum, followed by Actino-

bacteria (8 band-classes), Bacteroidetes (4 band-classes),

Proteobacteria (4 band-classes), and Fusobacteria (3 band-

classes) (Fig. 4b). Seven band-classes were highly prevalent

(median intensity in at least one of the groups was >2 %),

including band-classes 30.1, 33.0, and 65.6 of Streptococcus,

band-class 8.3 of Fusobacterium, band-class 59.4 of Veillo-

nella, as well as band-classes 80.6 and 63.0 of Actinomyces,

in which there was little variance among band-classes 65.6,

59.4, and 80.6 (Additional file 3: Table S3).

Identification of bacterial species that account for the

variation in the oropharyngeal microbiome

To identify the key bacterial species that shifted com-

position, we calculated the intensity and the frequency

of each band in the 90 PCR-DGGE profiles and ana-

lyzed the variation of each band-class. We found that

the intensities of 19 band-classes differed significantly

(Fig. 5a), and the frequencies of 14 band-classes varied

(Fig. 5b) among the three groups. According to our

analysis of the intensities and frequencies of the vari-

able band-classes, six key band-classes were identified

that reflected the differences between the CI and each

control group. The abundances of five band-classes

4.8 (Bacteroides sp.), 36.8 (Eubacterium sp.), 43.3

(Lachnospiraceae sp.), 54.9 (Neisseria sp.), and 63.0

(Actinomyces sp.) were much higher in the group CI

compared closely with those in each control group,

while the abundance of band-class 30.1 (Streptococcus

sp.) in group CI was significantly lower compared

with each control group (P < 0.017 with modified Bon-

ferroni correction the P –values were shown in Sup-

plementary Table S3.)

To assess the effects of liver cirrhosis on band-class dis-

tribution, we analyzed the differences in the abundances of

the band-classes between groups CC and HC and found

that five band-classes, including 26.5 (Bulleidia sp.), 33.0

(Streptococcus sp.), 34.5 (Haemophilus sp.), 45.4 (Lactoba-

cillus sp.), and 90.9 (Olsenella sp.) were higher in abun-

dance in group CC versus group HC, while the abundances

Fig. 4 Phylogenetic tree analysis based on bacterial PCR-DGGE profiles. (a) Nucleotide sequence identification of the bands from the PCR-DGGE profiles.

The number corresponds to the number of band-classes in the phylogenetic tree. (b) The phylogenetic tree generated using a neighbor-joining method

of the sequences derived from the DGGE profiles. The fragment sequences were designated according to their positions in gels using the band-matching

tool with BioNumerics software version 6.01. The plot was prepared using MEGA5 software
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of band-classes 32.4 (Campylobacter sp.) and 63.0 (Actino-

myces sp.) decreased in group CC versus group HC.

Quantitative analysis of the disease-associated differences

in the original (non-WGA) DNA

To verify the key bacteria present in infected subjects,

which were associated with oropharyngeal microbial

variation, quantitative PCR was used to analyze the ori-

ginal (non-WGA) DNA samples using bacterial species-

specific primers. The abundances of Bacteroides sp.,

Neisseria sp., and Actinomycetes sp. and those of Strepto-

coccus sp. in the oropharyngeal mucosa of group CI

were higher and lower, respectively, compared with

those of groups CC and HC (3.23, IQR 2.07–4.10 versus

1.08, IQR 0–1.91 and 1.97, IQR 1.27–2.85 for Bacter-

oides sp.; 1.78, IQR 1.33–3.60 versus 0, IQR 0–1.10 and

0 IQR 0–0 for Neisseria sp.; 2.42, IQR 0–3.77 versus 0,

IQR 0–3.02 and 0, IQR 0–3.18 for Actinomycetes sp.;

3.26, IQR 2.48–4.66 versus 4.74, IQR 4.08–6.03 and

4.03, IQR 3.01–5.44 for Streptococcus sp.) (p < 0.05)

(Fig. 6). The abundances of Bacteroides sp. and Strepto-

coccus mitis were higher in group CC versus group HC

(p < 0.05).

Discussion

WGA enables discovery of genomic information in the

field of microbial ecology that was not previously access-

ible [25]. In the present study, each swab of microbial

DNA was amplified in triplicate using phi29 V2 DNA

polymerase and analyzed using PCR-DGGE. The sequences

of 39 band-classes representing commensal bacterial spe-

cies were found to differ and were identified using BLAST

Fig. 5 Identification and analysis of the key band-classes based on bacterial PCR-DGGE profiles of the groups. (a) Comparisons intensities of the key

band-classes based on bacterial PCR-DGGE profiles of the different groups. (b) Analysis of the frequencies of key band-classes based on bacterial

PCR-DGGE profiles of the different groups. (P-values for the comparison between the groups were shown in supplementary table S3)
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to represent Streptococcus, Actinomyces, Neisseria, Prevo-

tella, Rothia,Veillonella, Eubacteriaceae, and Fusobacteria.

The oropharyngeal mucosal microbiome comprised Firmi-

cutes, Actinobacteria, Bacteroidetes, Proteobacteria, and

Fusobacteria, which is consistent with the results of

others using high-throughput sequencing of the oral

microbiome [26, 27].

The species listed above are always present at high fre-

quency, typically in a balanced population in healthy indi-

viduals, and changes in their composition cause subsequent

respiratory tract infections [28]. Therefore, the validity and

reproducibility of the WGA method suggests that it is an

appropriate technique for conducting subsequent PCR-

DGGE analysis to determine and monitor the predominant

differences in oropharyngeal microbiota in a large cohort of

patients with respiratory tract infections.

The human microbiome, including oropharyngeal bac-

teria, is an essential component of immunity that influ-

ences pathogenesis [29] and determines the body’s

physiological responses and susceptibility to disease [30].

Farrell and Zhang et al. [7] found that salivary microbiota

serve as an informative source for discovering noninvasive

biomarkers of pancreatic cancer and chronic pancreatitis.

Here, our DGGE profiling results reveal considerable dif-

ferences in the composition of oropharyngeal mucosal

bacterial groups CI, CC, and HC. Further, increased diver-

sity was detected in groups CI and CC compared with

group HC, particularly for group CI. It is important to

note that quantitative PCR analysis verified that the abun-

dances of Bacteroides sp., Neisseria sp., and Actinomycetes

sp. were high compared with that of Streptococcus sp. in

group CI versus groups CC and HC. Therefore, we con-

clude that alterations of the populations of these four bac-

terial species in the oropharyngeal microbiome were

associated with liver cirrhosis and pneumonia.

The mechanisms responsible for alterations of the

microbiome are multifactorial and complex. First, viral

infection modifies the systemic effects of the host by

modulating the host’s immune response, which impairs

mucosal immunity. Moreover, impaired local immunity

and physical damage to the epithelium might enhance

bacterial adherence and invasion. Accumulated evidence

shows that infection is associated with polymicrobial in-

teractions on mucosal surfaces that include commensal

bacteria and exogenous pathogens [31]. For example,

some pathogenic Candida species aggregate with Fuso-

bacterium sp. [32], Actinomyces sp. [33], which may in-

crease the colonization of mucosal epithelial cells.

Here, our quantitative PCR analysis indicates that the

populations of Bacteroides sp., Neisseria sp., and Acti-

nomycetes sp. increased dramatically and became the

most prevalent species in group CI. These species ori-

ginate in the oropharyngeal flora, and pathogenic and

nonpathogenic Bacteroides sp. [34], Neisseria sp. [35]

and Actinomycetes sp. [36] secrete outer-membrane

vesicles that interact with neighboring cells through

Fig. 6 RT-qPCR analysis of the key bacterial species accounting for variations in microbiome compositions. Number of key bacteria: log # per 10 ng

original swab DNA. The figure shows the numbers of key bacteria, including Streptococcus, Streptococcus mitis, Actinomycetes, Lachnospiraceae,

Eubacterium, Bacteroides, and Neisseria
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fusion or adherence. These microvesicles may impart a

growth advantage, causing an imbalance in the com-

position of the oropharyngeal microbiota [37, 38] and

subsequently impairing the barrier function of the mu-

cosal biofilm, leading to the emergence of potentially

pathogenic bacteria.

Moreover, host innate immune responses involve in

competitive interactions between species and influence

the structure and function of the flora [39]. Immune dys-

function is the most common clinical characteristic of pa-

tients with cirrhosis [40, 41] and is accompanied by

alterations in the intestinal microbiota [42]. Intestinal mi-

crobes might interact with the microbiomes of other dis-

tant sites, including the respiratory tract and oral cavity

[43] by activating the innate immune response. Therefore,

we hypothesize that immune dysfunction might promote

the growth of disease-associated oropharyngeal mucosal

bacteria and subsequently cause an imbalance of oropha-

ryngeal microbiota and enhanced susceptibility to infec-

tion by pathogens and facultative bacteria.

Moreover, the infection might inversely enhance the

destruction of oropharyngeal microbiota. The destruc-

tion of oropharyngeal microbiota and infection might

exert a synergetic effect on disease progression [31].

Strikingly, compared with group HC, the abundance

of bacteria closely related to Streptococcus increased

remarkably in group CC but decreased in group CI.

In contrast, the population of bacteria closely related

to Actinomyces decreased dramatically in group CC

but increased in group CI. Bacterial colonization is

determined by the ability to compete with co-

inhabitants of a niche [44]. Understanding the import-

ance of interspecies interactions and intra-species gen-

etic and phenotypic variation might serve to control

disease progression and influence treatment [45].

Conclusions
The combination of WGA and DGGE analysis success-

fully monitored oropharyngeal microbial variations, and

established that oropharyngeal microbiome of each sub-

ject maintained a relatively stable composition during

the follow-up. However, it will be challenging to demon-

strate a direct link between the species that populate the

microbiota and the pathogenesis of pneumonia. Further

studies using metagenomic approaches are required to

identify the variations in more depth.
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