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ABSTRACT
◥

In the last decade, large-scale genomic studies in patients with
hematologic malignancies identified recurrent somatic alterations
in epigenetic modifier genes. Among these, the de novo DNA
methyltransferase DNMT3A has emerged as one of the most
frequently mutated genes in adult myeloid as well as lymphoid
malignancies and in clonal hematopoiesis. In this review, we discuss
recent advances in our understanding of the biochemical and
structural consequences of DNMT3A mutations on DNA methyl-

ation catalysis and binding interactions and summarize their effects
on epigenetic patterns and gene expression changes implicated in
the pathogenesis of hematologic malignancies. We then review the
role played by mutant DNMT3A in clonal hematopoiesis, accom-
panied by its effect on immune cell function and inflammatory
responses. Finally, we discuss how this knowledge informs thera-
peutic approaches for hematologic malignancies with mutant
DNMT3A.

Introduction
Since the discovery of recurrent DNA methyltransferase 3A

(DNMT3A) mutations in acute myeloid leukemia (AML) a decade
ago (1–3), the role of DNMT3A defects in hematologic malignancies
has been a subject of intense investigation. In subsequent studies,
DNMT3A alterations were identified at various frequencies inmultiple
myeloid and lymphoid neoplasms, often associated with poor prog-
nosis, yet were virtually absent outside of the blood system (3–6).
Mechanistic and functional studies established a role for DNMT3A
in enforcing a tight balance between the hematopoietic stem cell
(HSC) differentiation and self-renewal, through the maintenance of
specific DNA methylation profiles that control gene expression
programs (7–10). Patterns of co-occurrence with other leukemia-
associated genetic lesions and evidence from pre–single-cell, bulk
sequencing studies aiming to reconstruct clonal architecture impli-
cated DNMT3A mutations as an early, preleukemic event (11–14).
This was later confirmed by detection of mutant DNMT3A in non-
malignant, preleukemic HSCs isolated from patients with AML (15),
and culminated in the discovery of frequent somatic DNMT3A
mutations in age-related clonal hematopoiesis (CH; refs. 16–19). At
the same time, de novo mutations in DNMT3A were detected in
individuals with a recently described Tatton-Brown-Rahman over-
growth and intellectual disability syndrome (20). Studies into the
molecular mechanisms of these phenotypes effected by DNMT3A
alterations, mostly believed to be loss of function, supplied a wealth of
granular methylomic data including evidence of erosion of the DNA
methylation canyons and explored cross-talk with other layers of
epigenetic regulation (21–25). These early advances are already sum-
marized in a number of excellent reviews (26–28). Since then, there
were a plethora of studies in two key areas. First, structural determi-
nants of the binding specificity of DNMT3A to DNA and chromatin,
as well as protein–protein interactions. Second, the involvement
of DNMT3A in hematopoietic lineage fate determination during

differentiation, and its central role in CH, regulation of inflammatory
states, and immune cell function. These recent advances, as well as
emerging therapeutic approaches for hematologic conditions with
mutant DNMT3A, are the main focus of this review.

DNMT3A Structure and Regulation of
Catalysis

DNMT3A is a 130 kDa protein encoded by the DNMT3A gene
spanning 23 exons on human chromosome 2 (or chromosome 12 in
the mouse). It is expressed as two alternatively spliced isoforms: the
ubiquitous DNMT3A1 (long), and DNMT3A2 (short), detected in the
embryonic stem cells (ESC), early embryonic tissues, as well as testes,
ovaries, spleen, and thymus. The long isoform contains extra amino
acids that enhance anchoring to nucleosomes and binding to DNA
in vitro (29–31).

Domain structure of mammalian DNMTs, also reviewed
elsewhere (32–35), comprises the N-terminal regulatory part consist-
ing of the PWWP and the ADD domains that promotes nuclear
localization of the enzyme, targeting to chromatin and interactions
with allosteric regulators, and the C-terminal domain that is mainly
involved in DNA binding and methylation catalysis.

The Pro-Trp-Trp-Pro (PWWP) domain is required for targeting
to tri- and especially dimethylated histone H3 lysine 36 (H3K36)
marking gene bodies and intergenic regions respectively (36, 37).
Binding to these marks allosterically increases the methyltransferase
activity of DNMT3A and thus protects these genomic regions from
spurious transcription initiation (38, 39). Conversely, phosphorylation
by CK2 reduces DNMT3A activity while targeting it to heterochro-
matic regions (40). The ATRX-DNMT3L-DNMT3A (ADD) domain
binds to unmethylated H3K4 that marks inactive chromatin and
allosterically releases the autoinhibition of the enzymatic activity
of DNMT3A (41). The ADD domain additionally interacts with
epigenetic factors involved in transcriptional gene silencing such as
polycomb-repressive complex (PRC) 2 catalytic subunit EZH2, H3K9-
specific histone methyltransferase SUV39H1, and histone-lysine dea-
cetylase HDAC1, and with transcription factors p53, PU.1, and
MYC (42, 43). Conversely, a recent study in mouse neurons showed
the interaction of the methylated DNA-binding protein MeCP2 with
the ADD domain causes autoinhibition of the catalytic activity of
DNMT3A (44).

The highly conserved catalytic domain of DNMT3A catalyzes 5-
cytosine methylation within CpG dinucleotides using S-adenosyl-
methionine as a methyl donor. Unlike the highly related enzyme
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DNMT3B that methylates multiple adjacent CpG sites processively
through a noncooperative mechanism (45), DNMT3A forms large
multimeric protein/DNA complexes with itself or other DNMT3s
necessary for cooperative binding and efficient distributive cataly-
sis (46). Most characterized is a heterotetrameric complex composed
of a DNMT3A homodimer bound by two noncatalytic stimulatory
DNMT3L subunits in a 3L-3A-3A-3L structure (47, 48). The
DNMT3A–DNMT3A dimerization interface is stabilized by hydro-
phobic interactions between the phenylalanine residues, whereas the
DNMT3A–DNMT3L interface is mediated by salt bridges and hydro-
gen bonding interactions. TwoDNMT3Amonomers comethylate two
adjacent CpG sites separated by 14bp within the same DNA
duplex (49). DNMT3B may also stimulate the activity of DNMT3A,
especially in the absence of DNMT3L (47, 50, 51).

DNMT3A Mutations and Their
Functional Consequences

Somaticmutations inDNMT3A found in hematologicmalignancies
are distributed throughout the open reading frame and generally fall
into one of the following categories. First, nonsense, frameshift (splice
and indel), and missense alterations in key residues, which are
consistent with a loss of function. Second, a specific hotspot point
mutation at arginine 882 (R882) at the dimerization interface, most
often converted to histidine or cysteine. Finally, variants of unknown
significance were represented by single amino acid substitutions with
only sparse biochemical characterization. De novo germline or rare
inherited mutations found in Tatton-Brown-Rahman overgrowth and
intellectual disability syndrome (TBRS) have been shown to follow a
similar distribution (20, 27, 52–54). The R882 mutations are believed
to have a dominant-negative effect on the methyltransferase activity
due to impaired oligomerization, although this notion is debated (55).
Structural efforts found the R882 residue stabilizes the target
recognition domain (TRD) through H-bonding within the DNA-
binding domain. Consequently, R882 substitutions lead to defective
DNA binding and impaired TRD-loop–mediated CpG recogni-
tion (49, 56, 57). This results in focal hypomethylation at specific
loci that usually include developmental genes, resulting in increased
HSC self-renewal and reduced differentiation, eventually driving
leukemogenesis (28, 58).

Interestingly, the conformational change in the TRD loop of
DNMT3AR882H resulted in an altered flanking sequence preference
at positionsþ1,þ2, andþ3 that resembles theDNA substrates usually
favored byDNMT3B (57, 59, 60). Consistently, DNMT3AR882-specific
hypermethylation of such DNMT3A/DNMT3B chimeric sub-
strates (61) can be detected in primary AML samples along with
hypomethylation of disfavored sequences, both of which are associated
with a unique subset of genes (62), implying a gain-of-function
effect (60). On the other hand, tetramerization interface mutations
R736H and R771G or an internal W893S substitution exhibit a
preference to methylating cytosines at non-CpG positions
in vitro (63), which cannot be maintained at DNA replication and
has also been observed for R882H (57).

In addition to multimerization and binding to DNA, other binding
interactions can be affected byDNMT3Amutations. Examples include
an increased interaction of DNMT3AG543C with histone H3 (1) and of
DNMT3AR882H with the PRC1 components (64). Conversely,
DNMT3AR882 exhibited decreased binding to HDAC1 and 2, and
haploinsufficient loss of DNMT3A was associated with a gain of
H3K27ac histone acetylation and increased expression of PD-L1 in
a TF-1 cell linemodel (65).Moreover, whereas a tumor suppressor p53

can compete with DNMT3L for binding at the tetramer interface and
inhibit catalytic activity of wild-type DNMT3A, R882H allosterically
relieves such negative regulation (63).

The PWWP domain preferentially targets DNMT3A toH3K36me2
and to a lesser extent to H3K36me3 (36). Loss of H3K36me2 marks
resulting from NSD1 haploinsufficiency leads to decreased DNA
methylation observed in Sotos syndrome (66) and tracks closely with
TBRS (67). Conversely, de novo missense mutations in the PWWP
domain that do not impair protein stability, W330R or D333N, were
identified in patients withmicrocephalic dwarfism (68).Mousemodels
(W326R or D329A) demonstrated a postnatal growth delay due to loss
of interaction with H3K36me2/me3 and progressive hypermethyla-
tion of H3K27me3-marked bivalent chromatin and of DNA methyl-
ation canyons. This gain-of-function phenotype led to a transcrip-
tional imbalance between key developmental genes, resulting in
premature neuronal differentiation, impaired self-renewal, and
growth retardation (68, 69).

The clinical and molecular overlap between overgrowth and intel-
lectual disability syndromes caused by inactivating mutations in
DNMT3A (Tatton-Brown-Rahman), NSD1 (Sotos), PRC2 catalytic
subunit EZH2 (Weaver), as well as SETD2 (Luscan–Lumish) and
histone H1 (Rahman) highlights the molecular relationship between
different layers of epigenetic regulation and chromatin. Disruption of
these genes, characterized by shared yet unique DNA methylation
landscapes (70), is inextricably related to hematologic malignancies.
Further studies into the complexities of this cross-talk will be vital to
our understanding of the DNMT3A-mutant–driven pathology.

DNA Methylation and Gene Expression
Studies

DNMT3A mutations are now commonly considered preleukemic
events, yet the consensus over their effects on DNA methylation
landscapes and gene expression programs only recently emerged, due
in part to the differences between model systems. Studies of complete
hematopoietic-specificDnmt3a loss inmice foundhypomethylation of
HSC-related genes that resulted in enhanced stem cell self-renewal at
the expense of differentiation (7, 8, 10), even when other cooperating
genetic lesions were present (22, 71–74). This leads to competitive
advantage over normal HSCs andmay predispose to the acquisition of
cooperating proleukemogenic mutations in the expanded clone. Par-
tialDnmt3a loss or point mutations produced more subtle phenotypes
such as focal hypomethylation of specific CpGs (24) with modest
changes to global DNA methylation and transcriptional activity of
genes nearest to differentiallymethylated regions. This was observed in
the HSCs from both leukemic and nonleukemic primary samples with
DNMT3AR882H, suggesting that hypomethylation predates the onset of
leukemia (23).

Studies focusing on the most common DNMT3AR882 hotspot
mutation found in AML or its mouse counterpart Dnmt3aR878H

reported less consistent and highly context-specific phenotypes, which
included focal hypomethylation at enhancer regions and undermethy-
lated canyon edges, particularly at SMAD3- and NFkB-binding
motifs (62). This was occasionally associatedwith increased expression
of HSC-related, Hoxa cluster, Meis1 (75), and Mycn genes (25),
although negative enrichment of MYC and E2F target gene signatures
was also reported in a variety of contexts (62, 71, 76). In addition,
activation of mTOR and AML signaling pathways (77) and deregu-
lation of cell-cycle–related gene signatures such as G2–M check-
point (71, 76) were identified. Downregulation of differentiation-
associated genes (Cepba, Cepbe, andPu.1) as a consequence of aberrant
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DNMT3AR882 interaction with the PRC1 complex at target loci was
also proposed (64). Overall, DNMT3AR882 resulted in deregulation of
transcriptional programs related to cell identity and normal hemato-
poietic function, which may contribute to leukemogenesis (71).

Among these studies of hematopoiesis with altered DNMT3A,
hypomethylation of active hematopoietic lineage-specific enhancers
(10, 22, 62, 71–73, 78) as well as erosion at the DNA methylation
canyon edges (21, 22) emerged as a unifying theme that could be
extended to both lymphoid and myeloid malignancies with various
comutational contexts, and even nonhematopoietic tissues (79). Con-
sistently, in a T-cell acute lymphoblastic leukemia (T-ALL) model
driven byDnmt3a�/� combined with Flt3ITD, hypomethylated enhan-
cers were enriched for active histone marks H3K27ac and
H3K4me1 (71). In Dnmt3a knockout with neomorphic Idh2R140Q,
this was accompanied by an increase in repressive H3K9me3 marks
exacerbating the differentiation block (74). The DNAmethylation and
gene expression changes alongwithmyeloid skewing could be partially
restored upon re-expression of wild-typeDnmt3a, demonstrating that
these phenotypes are reversible (72, 80).

In recent years, numerous RNA-sequencing studies supplied
growing evidence for Dnmt3a involvement in megakaryocyte-
erythroid differentiation and immune cell function, supporting
previous more laborious phenotypic and functional observa-
tions (10, 81). Leukemia-initiating cells from Dnmt3a�/�:Idh2R140Q

or Dnmt3a�/�:Tet2�/� double knockout mice have a megakaryo-
cyte-erythroid progenitor immunophenotype and repress corre-
sponding gene expression programs (22, 74). Single-cell multiomics
studies in Dnmt3a�/�HSCs showed skewed transcriptional priming
toward erythroid over myelomonocytic lineage. This was due to
hypomethylation and higher accessibility of the CpG-rich erythroid
transcription factor motifs (82). In a T-ALL model driven by
Dnmt3a�/� and constitutively active Notch1, enhancer regions
showed profound hypomethylation, whereas gene sets associated
with myeloid cell function, inflammation, and immune responses
were upregulated (78). Cooperating Dnmt3a�/�:Jak2V617F in a
model of myelofibrosis (MF) led to increased DNA accessibility at
active enhancers driving activation of proinflammatory Tnfa/Nfkb
signaling pathways for a fully penetrant myeloproliferative neo-
plasm (MPN; ref. 73). Gene networks related to mast cell degran-
ulation and activation were enriched in the Dnmt3a�/� cells (83). In
innate immunity, Dnmt3a regulates the production of type 1 IFNs
by maintaining the expression of HDAC9 in macrophages (84),
whereas DNMT3A-mediated hypermethylation redirects differen-
tiation of primary monocytes from dendritic cells toward cancer
tolerogenic myeloid-derived suppressor cells (85).

Epigenetic, gene expression, and functional changes observed
in various models with Dnmt3a alterations are summarized
in Table 1, along with cooperating genetic interactions in hematologic
malignancies.

DNMT3A and Cooperating Mutations in
Hematologic Malignancies

DNMT3A mutations tend to be an early event in hematologic
malignancies that requires additional genetic lesions, summarized
in Table 1. The spectrum of cooperating mutations is nonrandom
and varies considerably between diseases. For example, FLT3 internal
tandem duplication (FLT3ITD) and mutations in NPM1 are most
frequent in AML, whereas TET2mutations are found in both myeloid
and lymphoid malignancies (11, 72, 76, 86–88). Furthermore,
DNMT3A mutations are almost exclusive to adult leukemia; the rare

DNMT3A-positive pediatric AML cases are likely associated with
TBRS (52).

More detailed studies revealed distinct clinical and molecular
implications associated with different DNMT3A mutation types and
allelic dosage. DNMT3AR882 were more prevalent in the context of
NPM1 (89, 90) and FLT3ITD (91, 92) mutations, more likely to be
ancestral or “founder” event, and also associated with shorter overall
survival (28, 93). By contrast, IDH1mutations tended to co-occur with
truncating DNMT3A mutations (74, 93, 94), whereas non-R882
DNMT3A mutations were predominant in ALL (78, 95) where they
were frequently biallelic (4, 5) and associated with older age, treatment
resistance, and poor outcome (96). In comparison, in myeloid malig-
nancies, mutations in DNMT3A are usually heterozygous (3). Genetic
modeling in mice provided further evidence for the critical role of
Dnmt3a dosage. In combination with Flt3ITD, homozygous ablation of
Dnmt3a was more likely to result in T-ALL, whereas loss of a single
Dnmt3a allele led to AML (71, 72). Dnmt3a knockout in combination
with Idh1mutation (74) or Tet2 knockout (22) synergistically induces
myeloid malignancies in animals. Similarly, cooperating mutations in
cKit (97) and Kras (8) in Dnmt3a�/� HSCs drive malignant transfor-
mation. Although these studies provided invaluable insights into the
mechanisms ofmutational cooperativity in leukemia pathogenesis, the
geneticmakeup and disease phenotype observed in the clinic were only
partially recapitulated. There is a growing interest in creating clinically
accurate mouse models with the ultimate goal to empower therapeutic
and drug development efforts. A Dnmt3aR878H:Flt3ITD:Npm1c triple-
mutant mouse that faithfully models an aggressive AML (11) enabled
the discovery of a novel therapeutic resistance mechanism driven by
altered chromatin regulation (76).

Furthermore, the temporal order of mutations influences clinical
disease presentation. Studies in DNMT3A-mutated MPNs driven by
JAK2 orMPL alterations found that “DNMT3Amut-first” patients had
essential thrombocythemia, whereas “JAK2-first” patients were youn-
ger and more likely to present with polycythemia vera or MF (98). A
recent study took these concepts one step further and modeled
sequential acquisition of Dnmt3aR878H and Npm1cA mutations in
mice, with varying latency between these genetic events.Dnmt3aR878H

produced an expansion of the HSC compartment (analogous to CH in
humans; refs. 76, 77) that progressed to myeloproliferation/myelo-
dysplasia after Npm1cA and, with additional selective pressures of
proliferative and/or proinflammatory stress, to AML (15, 86). Increas-
ing the latency betweenDnmt3a and the “secondhit”mutation renders
a more fulminant disease. Further reports unveiling the contributing
cell-autonomous and cell-extrinsic mechanisms are eagerly awaited.

The strong requirement for cooperating oncogenic events high-
lights the role of mutant DNMT3A as an early event that facilitates
leukemic transformation by other mechanisms rather than driving it
per se. This premalignant role is well in alignment with its high
prevalence in CH, discussed next.

DNMT3A Mutations in CH
CH is a clonal expansion of HSCs in the absence of hematologic

disease; it is commonly detected by the presence of somatic mutations,
often in presumed leukemia driver genes such as in DNMT3A.
Incidence of CH sharply increases with age, spurring the term “age
related clonal hematopoiesis”. CH was first described in the 1990s
based on increased X-inactivation skewing in women with age (99).
More recently, modern sequencing technologies facilitated detection
of sizeable hematopoietic clones (variant allele frequency >2%) in
>30% of people aged 60þ (16–18, 100). Mutations inDNMT3A are by
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Table 1. Molecular and phenotypic consequences of DNMT3A alterations and cooperating mutations in human disease and in animal
models.

Cooperating mutations in patients with DNMT3A-mutant disease

Cooperating
mutation

DNMT3A
mutation
type(s)

Malignancy
(AML/MDS/
MF/lymphoid) Comments and references

FLT3-ITD More likely R882 Adult AML DNMT3A, FLT3-ITD, and NPM1 mutations often co-occur (11, 93, 133–135)
NPM1 More likely R882 AML NPM1 is often acquired after DNMT3A mutation (11, 87, 89, 90, 93, 134)
FLT3-ITD and NPM1 AML DNMT3A, NPM1, and FLT3 mutations strongly co-occur, predict aggressive

disease (11, 135)
IDH1/2 Truncating AML, MDS, and other Predicts poor survival (11, 74, 93, 94, 134)
TET2 T-cell lymphomas,

MDS, AML
(88, 134, 136, 137)

JAK2 MPN, MF (98)
NOTCH1 Non-R882 T-ALL, ETP-ALL (78, 138)
RUNX1 AML, rarely MDS Reduced survival, older age, poor treatment response (139–142)
KMT2A-PTD
(MLL-PTD)

Enriched,
mostly R882

AML Poor survival (143, 144); mutually exclusive with MLL translocations in
previous studies (98)

RAD21, STAG2, SMC3
(cohesin complex)

DNMT3A mutations may offset the survival disadvantage of SMC3-
haploinsufficient cells (11, 134, 145, 146)

7q deletion AML, MPN, MDS DNMT3A mutations often ancestral (147); in MDS, often preceded by -7/del
(7q) (148)

5q deletion MDS, or MPN (149)
9q deletion AML Del(9q) as sole cytogenetic abnormality; strong coassociation with NPM1

mutation, FLT3-ITD rare (150)

DNMT3A and cooperating mutations in in vitro and animal in vivo models
DNMT3A
alteration

Cooperating
mutation(s)

Malignancy or
disease phenotype Epigenetic changes

Gene expression and
functional changes

Dnmt3a�/� N/A Myeloid malignancies Altered methylation patterns, focal
loss of methylation at regulatory
regions (8)

Upregulation of stemness genes and
repression of differentiation
factors (8), myeloid skewing (80)

Dnmt3a�/� Tet2�/� CMML and lymphoid
malignancy

Hypomethylation of HSC-related
gene enhancers

Activation of HSC genes, lineage-
specific transcription factors,
erythroid differentiation, JAK-
STAT pathway (22)

Idh2R140Q MDS, AML, and
lymphoma

Gain of H3K9me3 and loss of
H3K9ac (74)

Megakaryocyte-erythroid
progenitor phenotype in leukemia-
initiating cells

Flt3ITD T-ALL Profound hypomethylation at gene
enhancers and canyon edges

Increased expression of
inflammation, immune response,
HSC- and myeloid-related genes,
decreased expression of mature
T cells genes (71)

Activated Notch1
signaling, through
NICD expression

T-ALL Enhancer and exon hypomethylation Repression of proapoptotic genes,
increased expression of myeloid,
inflammation, and immune
response genes (78)

Jak2V617F MPN/MF Enhancer hypomethylation Proinflammatory signaling, HSC
gene expression (73)

Dnmt3aþ/� Flt3ITD AML, MPN Modest changes in overall
methylation. Hypomethylation at
hematopoietic enhancers and
canyon edges (71, 72). HSPC-like
methylation in leukemic blasts

Increased expression of genes
involved in cell fate
specification (71). Enrichment for
HSPC genes, genes
downregulated during myeloid
development, and c-Myc target
genes (72)

DNMT3AR882H/þ

(human) or
Dnmt3aR878H/þ

(mouse)

Tet2�/� T-ALL, T-cell
lymphomas, MPN,
and AML (88, 136)

Hypermethylation of tumor-
suppressor genes and local
hypomethylation of Notch
pathway genes

Repression of tumor-suppressor
genes and Wnt/b-catenin
pathway. Activation of Notch
pathway genes (151)

Nras AML Focal hypomethylation at gene
regulatory elements and gain of
histone acetylation

Activation of stemness genes of the
Meis1-Mn1-Hoxa node (25)

(Continued on the following page)
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far the most common genetic event associated with CH (up to 40% of
all CH cases). DNMT3A-driven CH was associated with prior envi-
ronmental exposures including radiation, tobacco use, and iatrogenic
interventions, although the causal relationship between these factors
and initial acquisition of mutations or expansion of the mutant clone
has not been established.

Because Dnmt3a�/� mice demonstrate enhanced HSC self-
renewal (7, 8), it is possible that in CHDNMT3Amutations potentially
compensate for aging-related HSC exhaustion (101). Conversely, it
may provide the “first hit” toward leukemic transformation (102).
Individuals with CH have a 0.5% to 1% chance per year to develop
hematologic cancer, comparedwith<0.1%without CH. Yet,DNMT3A
lesions predict only amoderately elevated risk of leukemic progression,
in contrast to other common mutations such as in TP53 (103, 104). In
line with these observations, in a lymphoblastoid cell line from a
mosaic individual with DNMT3AR771Q/þ-driven CH, stereotypical
erosion of DNA methylation within regulatory regions of stem cell
self-renewal and cancer-related genes, and not mutational frequency,
favored clonal dominance and establishment of a cancer-poised
epigenomic landscape (105). Although these studies provide a ratio-
nale for expanded screening for CH to identify individuals at an
increased risk of leukemia, the clinically meaningful clone size and
the cost–benefit ratio of monitoring are debated. A pivotal study
modeling progression of Dnmt3a-driven CH to MPN and ultimately
AML in mice suggested that a shift toward expansion of the myeloid-
restricted progenitors of the mutant clone may serve as an early
biomarker (86). Additional studies are critically needed to improve
our understanding of the molecular and clinical implications of
DNMT3A mutations in CH leading to better patient stratification
algorithms.

Importantly, clinical observations from large cohorts unselected for
hematologic disease revealed a strong relationship of CH with other
comorbidities and increased all-cause mortality. Although clonally
expanded HSCs appear functionally normal and give rise to mature,
differentiated immune cell lineages that permeate nearly all tissues
outside of the hematologic compartment, presence of CHmutations is
likely to effect subtle changes in their function and, by extension, affect
the physiology of surrounding tissues. Thus, CH is strongly associated
with incidence and severity of cardiovascular disease (CVD; ref. 106),
corroborated in amouse model of CH driven byDnmt3a loss (107). In
a model of CH driven by CRISPR-mediated Dnmt3a loss, mature
myeloid cells accentuated inflammation and exacerbated the extent of
experimental atherosclerosis through increased secretion of a cluster of
chemokines and cytokines (108). These results establish a causal role of
DNMT3A-driven CH in CVD pathogenesis as well as other conditions
with a prominent inflammatory component (109) including aplastic
anemia (110) and solid tumors (111). In the latter study, presence of
CH was associated with inferior overall survival due to progression of
the primary malignancy. This suggests that CH can affect cancer
pathophysiology through nontumor cell-autonomous mechanisms.
Studies showed elevated inflammatory leukocytes and inflammation-
related cytokines in the serum of colitis patients with DNMT3A-
associated CH (112). Similar findings were reported in activated
macrophages and mast cells after DNMT3A loss, which increased
secretion of proinflammatory cytokines such as TNFa, IL6, and
CXCL13 (83). On the other hand, inflammation signaling associated
with aged bone marrow microenvironment contributed to CH
through accentuated TNFa signaling and IFNg response that primed
theDnmt3a-mutantHSCs and promoted their clonal expansion (113).
Furthermore, cell-extrinsic environmental factors such as bacterial

Table 1. Molecular and phenotypic consequences of DNMT3A alterations and cooperating mutations in human disease and in animal
models. (Cont'd )

DNMT3A and cooperating mutations in in vitro and animal in vivo models
DNMT3A
alteration

Cooperating
mutation(s)

Malignancy or
disease phenotype Epigenetic changes

Gene expression and
functional changes

Idh2R140Q AML Loss of differential methylation at
enhancers, other regulatory
regions

Activation of Ras signaling and
apoptosis, repression of Myc
targets, and heme
metabolism (62)

Flt3ITD AML Hypomethylation of gene enhancers Repression of Myc, E2f, and G2M
checkpoint genes, upregulation of
homeobox genes (71)

N/A AML Focal hypomethylation at distal
regulatory elements such as at
canyon shores, enhancers and
undermethylated canyons (25),
attenuated CpG island
hypermethylation (23)

Modest gene expression
changes (23). Upregulation of
stemness genes, HoxA cluster and
Meis1 (75), negative enrichment of
G2–M checkpoint genes (71, 76).
Downregulation of differentiation
genes, Cepba, Cepbe, Pu.1 (64)

DNMT3AW330R,
DNMT3AD333N (gain
of function) and
mouse models
Dnmt3aW326R,
Dnmt3aD329A

Microcephalic
dwarfism, delayed
growth

Hypermethylation at polycomb-
marked DNA methylation valleys,
loss of H3K27me3 and H3K4me3
bivalent chromatin at develop-
mental genes (68)

Increased expression of neurogenic
genes at the expense of
pluripotency genes in mESCs
differentiated into neurons
in vitro (68, 69)

DNMT3AW297del

(mouse W293del),
DNMT3AI310N

(mouse I306N),
DNMT3AY365C

TBRS (overgrowth
syndrome)

Hypomethylation at intergenic
regions and decreased binding to
H3K36me2

Aberrant chromatin localization and
NSD1-DNMT3A cross-talk (36)
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infections bestow a fitness advantage to Dnmt3a-mutant hematopoi-
etic clones (114). Additional studies exploring the link between
DNMT3A mutations, CH, inflammation, and immune responses
could yield many new exciting insights with biological and transla-
tional implications.

Therapeutic Implications
The high frequency of DNMT3A mutations in myeloid neoplasms

(about a quarter of AML and �10% of MPN and MDS cases), its
truncal, or early, timing in tumor evolution, and the association with
increased risk of relapse and poor overall prognosis positionDNMT3A
alterations and their molecular consequences as an attractive thera-
peutic target. Yet, despite significant advances in the understanding of
the molecular pathophysiology of DNMT3A-mutant disease, the need
for satisfactory treatment approaches that balance efficacy and toxicity
remains unmet. To date, therapy development efforts have focused on
four main areas (Fig. 1): (i) validate and fine-tune existing combina-
tions already approved for AML, MPN, orMDS; (ii) inhibit aberrantly
activated signaling pathways; (iii) target co-occurring actionable
mutations and their downstream consequences; and (iv) exploit
structural changes in the mutant DNMT3A protein.

In AML clinical trials, adverse outcomes bestowed by DNMT3A
mutations could be improved by dose-intensified anthracyclines dur-
ing induction, suggesting that cells with mutant DNMT3A are less
sensitive to these agents (115, 116). A follow-up study in a model
of Dnmt3a-mutant hematopoiesis revealed that the relative resistance
to anthracyclines was due to abnormal chromatin remodeling and
impaired DNA damage sensing (76). As a significant proportion of
patients with DNMT3A-positive AML fall into the advanced age
category with frequent comorbidities, the increased toxicity and
treatment-related mortality of dose-dense anthracyclines may not be
acceptable, necessitating less aggressive treatment strategies. A low-
intensity regimen of nucleoside analogs cladribine combined with

alternating cytarabine and decitabine can be an acceptable treatment
option for older patients withAML that particularly benefits thosewith
DNMT3A mutations (117). Mechanistically, cells expressing mutant
DNMT3A treated with cytarabine had a defect in replication fork
restart leading to persistent replication stress and accumulation of
unrepairedDNAdamage (118). Hypomethylating agents (HMA) such
as azacitidine and decitabine are the backbone of the low-intensity
regimens for AML and MDS. These cytidine analogs are incorporated
intoDNAand function as covalent suicide inhibitors ofDNMTs and as
DNA damage inducers by forming bulky adducts. Small clinical
studies reported favorable responses in AML andMDSwithDNMT3A
mutations (119–121). This seemingly counterintuitive observation
may be explained by the altered flanking sequence preference of the
mutant DNMT3A enzyme that causes aberrant hypermethylation at
noncanonical gene loci, or by defects in DNA damage response in the
presence of mutant DNMT3A protein. Thus, bone marrow cells from
mice expressing Dnmt3aR878H readily underwent differentiation after
decitabine exposure, whereas Dnmt3a�/� bone marrow accumulated
immature cKitþ cells (122). Further research is needed to shed light on
the mechanistic and therapeutic implications of different types of
DNMT3Amutations. Furthermore, combinations ofHMAswith other
targeted agents have shown promise in patients with DNMT3A
mutations (123).

Patterns of comutationmay help guide targeted treatment strategies
forDNMT3A-mutant disease. A landmark integrative precision oncol-
ogy Beat AML trial found a strong correlation between FLT3-ITD,
NPM1, and DNMT3A mutational triad and sensitivity to ibrutinib, a
BTK and TEC inhibitor FDA approved for the treatment of B-cell
chronic lymphocytic leukemia (124). The FLT3 inhibitor AC220/
quizartinib was shown to preferentially elicit a differentiation response
in the triple-mutant AML; in contrast, DNMT3Amutations were rare
in patients with cytotoxic responses (125). In another ex vivo study,
primary AML cells harboring DNMT3Amutations were slightly more
sensitive to the JAK1/2 kinase inhibitor ruxolitinib plus venetoclax (an

DNMT3Amut

Treatments targeting cooperating genetic lesions
• FLT3-ITD and NPM1c

• Flt3-ITD and Npm1c

• Npm1c

• RAS

• Jak2V617F

Novel agents exploiting structural changes
in mutant DNMT3A protein

• Small proteins engineered to restore DNMT3A catalytic activity
 (Ketkar et al. 2019, Nguyen et al. 2019)

• Small molecules that attenuate binding
   to protein interaction partners
   of mutant DNMT3A (Koya et al. 2016,
 Rajavelu et al. 2018, Sandoval et al. 2019)

Approved therapies with benefit for DNMT3A-mutant
AML/MPN/MDS

• Dose-intensified anthracyclines (Patel et al. 2014, Sehgal et al. 2016)

• Low-dose cladribine with cytarabine/decitabine (Kadia et al. 2018)

• Hypomethylating agents (and combinations) (Metzeler et al. 2012,
  Traina et al. 2014, Coombs et al. 2016)

• Venetoclax + JAK1/2 inhibitor (Kurtz et al. 2018)

• HDAC inhibitors + azacytidine (Garcia-Manero et al. 2019)

Treatments targeting gene expression changes
resulting from DNMT3A mutations

• DOT1L inhibitor (Rau et al. 2016)

• mTOR inhibitor (Dai et al. 2017)

• HDAC inhibitors + immune checkpoint inhibitors
 (Seo et al. 2019)

PDB ID: 6F57

: BTK inhibitor (Tyner et al. 2018)

: Flt3 inhibitor (Nybakken et al. 2016)

: Menin inhibitor (Uckelmann et al. 2020)

: Brd4 inhibitor (Lu et al. 2019)

: BETi + JAK1/2 inhibitor
 (Jacquelin et al. 2018)

Figure 1.

Emerging therapeutic approaches for myeloid malignancies with DNMT3A mutations. Images created with BioRender.com.
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inhibitor of antiapoptotic BCL-2 protein) combination, independently
from FLT3 and NPM1 status (126).

Treatments targeting gene expression or methylation changes
associated with DNMT3Amutations are also gaining traction. Several
studies identified upregulation of the homeobox cluster A and B
(HOXA/B) genes, which promote HSC self-renewal and are associated
with poor prognosis in AML (1, 64, 75). Small-molecule inhibitors of
the histone methyltransferase DOT1L restored repression of the
HOXA/B genes both in vitro and in vivo, and proved effective for
DNMT3A-mutant leukemia (127). The mTOR pathway, another
regulator of the HOX gene expression, was found to be activated in
the DNMT3A-mutant context. mTOR inhibitor rapamycin was effec-
tive against cells with DNMT3A mutations in vitro (77); it will be
important to validate its therapeutic potential in preclinical models.
DNMT3A mutations co-occur with NPM1c mutations in the preleu-
kemic setting (60%–80%) and in AML. Npm1c:Dnmt3aR878H double-
mutant mice exhibited increased self-renewal in myeloid progenitor
cells, associated with further activation ofHoxA/B genes andMeis1. A
menin inhibitor VTP-50469, previously shown to disrupt critical gene
expression networks in NPM1-mutant AML cell line (128), was
effective in eradicating preleukemic progenitors and preventing pro-
gression to AML in this model (129).

Bromodomain inhibitors, specifically an inhibitor of the histone
acetylation reader BRD4, were effective in a study of AML with
concurrent DNMT3AR882 and RAS mutations, in both in vitro and
in vivomodels. Pharmacologic inhibition of BRD4 suppressed a subset
of aberrantly activated gene targets that likely contribute to leukemo-
genesis, consistent with increased H3K27ac levels in TF-1 cells (130).
In a model of MF, loss of Dnmt3a in hematopoietic cells expressing
Jak2V617F resulted in high expression of TNFa via NFkB pathway
accompanied by increased secretion of proinflammatory cytokines.
Combining BET inhibitors with JAK1/2 kinase inhibitors could have
therapeutic relevance (73).

Strategies related to engineering small proteins to restore the full
catalytic activity of mutant DNMT3A or the ability of wild-type
DNMT3A to heterotetramerize by disrupting the wild-type–mutant
binding interface have also been proposed and could potentially offer
therapeutic benefit (56, 80).With better understanding of the protein–
protein binding repertoire of mutant DNMT3A such as p53, MeCP2,
TDGs, and PRC1, pharmacologic interventions to attenuate these
interactions may open additional therapeutic avenues to combat
DNMT3A-mutant AML (44, 63, 64).

Concluding Remarks and Future
Perspectives

Although mutations in DNMT3A are found in malignancies of
virtually every hematopoietic lineage, the molecular understanding of
its impact on malignant transformation is only beginning to emerge.
Recent biochemical, structural, and -omics studies have shed light on
the nature of aberrant methylation patterns, cross-talk with other
layers of epigenetic regulation, and subsequent changes in gene
expression profiles that contribute to clonal expansion and promote
leukemogenesis. Further refinement and unification of our knowledge
of these programs, including in the various comutational contexts that
define disease subtypes and/or clonal architecture (28, 131, 132), are
expected to translate into more effective therapies for patients with
DNMT3A-mutant AML and other malignancies.

Recent years saw an explosion of research into the role ofDNMT3A
mutations in CH and its comorbidities. Abundant evidence supports
accentuated self-renewal creating an expanded pool of cancer-poised
HSCs, yet the definitive factors effecting malignant transformation
await to be discovered. Once identified, these will be game-changing
for CH prognostication and preventative interventions. In addition,
cells with DNMT3A mutations propagate an inflammatory microen-
vironment leading to positive feedback to mutant clone self-renewal
and proliferation and may exacerbate other nonhematologic disease
conditions such as CVD. Characterizing the cell-extrinsic and -intrin-
sic factors and the mechanisms that promote the inception of CH in
the DNMT3A-mutant context is crucial to the development of ther-
apeutic strategies.
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