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Obesity, i.e., increased adipose tissue mass, is a major driving 

force in insulin resistance and the pathogenesis of type 2 diabe-

tes (T2D) and metabolic syndrome. Over the past decade it has 

become clear that this association depends not only on the balance 

between energy intake and utilization, but also on the balance 

between white fat, which is the primary site of energy storage, and 

brown and beige adipose tissue, which are sites for energy expen-

diture (1, 2). On the other hand, lipodystrophy, i.e., complete or 

partial loss of body fat, can also be associated with insulin resis-

tance and metabolic syndrome (3). These diametrically opposed 

states illustrate the complex interaction between body fat and the 

control of metabolism. In addition, some people appear metabol-

ically healthy despite obesity, and there is growing evidence that 

this may reflect the fact that white adipose tissue is heterogeneous 

and that different classes of adipocytes have differing metabolism 

and ability to communicate with other tissues by secretion of pep-

tides, lipids, and miRNAs, which affect systemic metabolism dif-

ferently (4–6). In this Review, we will explore these relationships, 

focusing on some of the newest aspects linking adipose tissue to 

the control of whole-body metabolism.

Heterogeneity of adipose tissue  
at multiple levels
Adipose tissue is classically divided based on anatomic location 

and major cell type constituent (Figure 1A). Histologically, there 

are three major types of adipose tissue: white adipose tissue 

(WAT), which represents more than 95% of adipose mass; brown 

adipose tissue (BAT), which represents 1% to 2% of fat and, in 

humans, occurs in small collections in the cervical, axillary, and 

paraspinal regions; and beige/brite adipose tissue, which is dif-

ficult to quantitate but represents cells interspersed within WAT 

that are capable of transforming into brown-like adipocytes fol-

lowing cold exposure or adrenergic stimulation. In contrast to 

white adipocytes, which have a large unilocular lipid droplet, 

brown and beige adipocytes have multilocular droplets and high 

mitochondrial density for dissipation of energy through uncou-

pled mitochondrial respiration, a feature that could potentially 

be used to combat obesity (1, 2). In vivo, the abundance of BAT 

and, to some extent, beige fat can be estimated using PET/CT with 

2-deoxy-2-[18F]fluoroglucose (1, 2), xenon-enhanced CT (7), and, 

in mice, luciferase-based markers (8); however, these techniques 

all depend on functional aspects of brown and beige fat and do not 

necessarily represent the actual mass of tissue.

In addition, it is important to keep in mind that adipocytes only 

make up a portion of the adipose depot and that adipose tissue con-

tains other cell types that contribute to its physiology and patho-

physiology, including preadipocytes, mesenchymal stem cells, vas-

cular cells, and inflammatory cells. While there is no specific marker 

for preadipocytes, studies suggest that these may come from vascu-

lar mural cells, pericytes, and/or adventitial fibroblasts and include 

adipogenic and fibrogenic subtypes (9–11). Fat also contains dipep-

tidyl peptidase-4–expressing (DPP4+) multipotent progenitors that 

give rise to committed preadipocytes and CD142+ cells, which have 

anti-adipogenic properties (12). In addition, a fibroblast popula-

tion that secretes fibroblast-specific protein-1 (FSP1+ fibroblasts) is 

important for maintaining the preadipocyte pool (13).

Depot-specific differences between visceral and subcutaneous 

adipose tissue. Anatomically, WAT is divided into visceral and 

subcutaneous depots. Accumulation of visceral intra-abdominal 
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ipocytes have higher expression of short 

stature homeobox 2 (Shox2) and glypican-4 

(GPC4), which repress lipolysis and insulin 

sensitivity, respectively (24–27), whereas 

visceral adipose tissue has higher levels of 

HoxC8 and HoxA5, which regulate browning 

and adipogenesis (28, 29).

In addition to subcutaneous and visceral 

fat, WAT in other depots may have distinct 

functions and effects on metabolism. White 

adipocytes within dermal layers are develop-

mentally distinct from subcutaneous WAT 

(30) and play roles in wound healing, hair 

development, and pathogen resistance (31). 

Bone marrow adipose tissue (MAT) is also a 

distinct depot and includes two distinct sub-

types (32): constitutive MAT (cMAT), con-

centrated in the distal skeletal bones, and 

regulated MAT (rMAT), which is diffusely dis-

tributed in the spine and proximal limb bones 

and is regulated in response to environmental 

factors (33, 34). MAT plays important roles 

in bone metabolism and osteoblastic activi-

ty (35). Interestingly, MAT is not depleted in 

calorically deficient states and may be a major 

source of circulating adiponectin (36, 37).

Intra-depot heterogeneity in adipose tissue. 

A growing body of evidence indicates that 

adipocytes, even within a single fat pad, are 

heterogeneous in nature both genetically and 

metabolically (Figure 1B and refs. 38–41). 

This was initially suggested by a bimodal size distribution of adi-

pocytes in mice with fat-specific ablation of the insulin receptor 

or hormone-sensitive lipase (HSL) (42, 43). Recent studies using 

clonal cell analysis and single-cell RNA-Seq further highlight this 

heterogeneity. Thus, white preadipocytes with low levels of CD9 

are more adipogenic, whereas preadipocytes with high CD9 are 

more profibrotic and proinflammatory (44). By combining clonal  

analysis and lineage tracing, Lee et al. identified at least three 

functionally and developmentally distinct subpopulations of white 

preadipocytes in mice characterized by unique gene expression 

profiles and high expression of the marker genes Wilms tumor-1 

(Wt1), transgelin, and myxovirus-1 (Mx1), termed types 1–3, respec-

tively (45). Likewise, single-cell transcriptomic profiling of human 

preadipocytes and mesenchymal progenitor cells (46) has identi-

fied up to four adipocyte subtypes, including a beige/brite thermo-

genic subtype and a subtype specialized for leptin secretion.

WAT, i.e., central obesity, is associated with insulin resistance 

and increased risk of metabolic disease, whereas accumulation of 

subcutaneous WAT, i.e., fat in the hips and flanks, has no adverse 

effect and may even be protective against metabolic syndrome 

(14, 15). Indeed, studies have shown lower cardiovascular risk in 

individuals with subcutaneous obesity, independent of whether 

they have visceral obesity (16, 17). In rodents, transplantation of 

subcutaneous WAT improves glucose metabolism, indicating that 

these depot effects are mediated, at least in part, by cell-autono-

mous differences, not simply anatomical position (18, 19). Consis-

tent with this, subcutaneous preadipocytes have increased rates 

of proliferation and lipid accumulation (20, 21), whereas visceral 

adipocytes have increased rates of lipolysis and increased suscep-

tibility to apoptosis (22, 23). Many of these differences are due to 

variations in gene expression, including the expression of develop-

mental genes (21, 24–26). Thus, subcutaneous adipocytes/pread-

Figure 1. Heterogeneity of adipose tissue at mul-

tiple levels. (A) Human adipose tissue illustrating 

the multiple depots of brown and white subcuta-

neous and visceral fat. The different roles, prop-

erties, and marker/development genes of these 

depots are indicated. (B) Heterogeneity of adipose 

tissue in the mouse, showing different depots of 

white adipose tissue, each containing a mixture of 

white adipocytes of different subtypes.
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Myf5, originally thought to give rise only to brown adipocytes 

and skeletal muscle, also gives rise to subsets of white adipocytes 

in retroperitoneal and interscapular depots (52, 53). By contrast, 

lateral plate mesoderm, marked by HoxB6, contributes to poste-

rior and ventral adipose depots, including inguinal, mesenteric, 

and perigonadal WAT of mice (Figure 2B). Lineage tracing has 

shown that Prx1-expressing progenitors gives rise to a majority 

of subcutaneous, but not visceral, adipocytes (54, 55). A subset 

of visceral white adipocytes may be bone marrow–derived from 

hematopoietic lineages (56), although this has been challenged 

(10). Finally, a subset of adipocytes in the face and neck are 

derived from neural crest progenitors marked by Wnt1 and Sox10 

(57, 58), although over time they are replaced by mesodermal- 

derived adipocytes (59).

Brown and beige adipocytes also display intrinsic heterogene-

ity and a broad range of thermogenic competency (60–62). Sim-

ilarly, beige adipocytes demonstrate distinct subpopulations with 

differences in the expression of regulators of lipid synthesis and 

oxidation (63). Beige/brite adipocytes may also be derived from 

different developmental sources, including a vascular smooth 

muscle origin (64). Lastly, a developmentally distinct type of glyco-

lytic beige fat has been described (65). Molecular characterizations 

of BAT in adult humans suggest that it may be composed of both 

conventional brown fat cells and beige/brite adipocytes (61, 62).

Lineage tracing has also provided insights into different devel-

opmental origins of white adipocytes. Using a tetracycline trans-

activator under the control of the PPARγ gene locus, Tang et al. 

demonstrated that preadipocytes can be found within the mural 

cell compartment of the adipose vasculature (9). A subset of these 

preadipocytes, marked by smooth muscle actin (SMA), was found 

to be important in adipose tissue homeostasis later in life (47). 

Transgelin (also called smooth muscle-22α) is also highly expressed 

in vascular smooth muscle and pericytes, suggestive of similar 

mural origin, and marks a subset of adipocytes in all depots (45, 

48). Some adipose progenitor cells can be labeled by endothelial- 

specific VE-cadherin-Cre, and the preadipocyte marker Zfp423 is 

found in both mural and vascular endothelial precursors, further 

supporting the idea of a vascular origin of preadipocytes (49).

The visceral mesothelium, which covers internal organs, has 

been shown to contribute to adipocyte lineages in visceral and 

cardiac adipose depots. This subpopulation of adipocytes has 

reduced triglyceride accumulation and highly glycolytic metabo-

lism (45). Mesothelial cells are highly responsive to inflammatory 

signals and secrete high levels of IL-6 and IL-8 following stimula-

tion (50, 51), suggesting a potential role for mesothelial-derived 

adipocytes in the inflammatory response in visceral fat.

Most adipose originates from the mesoderm. Lineage tracing 

using the paraxial mesoderm–specific genes Meox1, Pax3/7, and 

Figure 2. Adipose tissue development and remodeling in health and disease. From left to right, the figure illustrates the conversion of preadipocytes to mature 

adipocytes followed by adipose expansion due to preadipocyte proliferation and hyperplasia of adipocytes followed by adipocyte hypertrophy, adipose tissue 

inflammation, and changes in adipocyte hormone leading to insulin resistance. In lipodystrophy this process is also disrupted, leading to insulin resistance.
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Taking advantage of changes in atmospheric 14C, Spalding et 

al. have shown that in humans approximately 10% of adipocytes 

are replaced every year, regardless of age or obesity, whereas the 

half-life of adipocyte triglycerides is only approximately 1.6 years 

(86). Individuals with hypertrophic obesity tend to produce fewer 

adipocytes than individuals with hyperplastic obesity (88). While 

heavy water labeling suggests that adipocyte and triglyceride turn-

over may be higher (89), studies using multi-isotope imaging mass 

spectrometry find similar results to the atmospheric 14C studies 

(90). Likewise, basal adipocyte turnover is very low in rodents, but 

can be accelerated by high-fat diet (HFD) feeding (91). The effect 

is depot-specific and higher in visceral versus subcutaneous fat 

(92). Lineage tracing studies show that adipogenesis increases in 

visceral fat within 4 weeks of HFD feeding (93). The full capaci-

ty for adipose tissue regeneration is observed in models in which 

adipose tissue is acutely ablated, such as the Fat-AATC mouse 

(in which apoptosis in adipose tissue is induced by activation of 

caspase-8) (94) and mice with fat-specific inducible knockout of 

the insulin receptor and IGF-1R (95). Both lead to rapid fat loss 

followed by rapid induction of preadipocyte proliferation and dif-

ferentiation, producing new populations of brown and white adi-

pocytes to restore fat tissues and resolve the metabolic syndrome 

within 10–30 days. These results suggest the presence of a feed-

back mechanism that attempts to maintain adipose tissue mass.

Adipocyte dedifferentiation. Recent work suggests that adi-

pocytes can also dedifferentiate back into pluripotent progeni-

tor cells in vivo in both healthy and pathological conditions (96, 

97). Lineage tracing has demonstrated that “pink” adipocytes in 

mouse mammary gland can give rise to mammary epithelial cells 

during lactation, then revert back to adipocytes during involution 

(98), although these reports have been challenged by others who 

find that it is adipocyte progenitors that transition into epitheli-

al cells (99). Adipocyte dedifferentiation has also been linked to 

some cancers, including breast cancer (100), suggesting the thera-

peutic potential of PPARγ agonist treatment to revert some breast 

cancer cells into adipocytes. Dedifferentiated white adipocytes 

may also represent a source of stem cells to repair cardiac tissue 

and spinal cord injuries (101, 102). Adipocytes in dermal WAT can 

revert into myofibroblasts and contribute to wound healing (31).

Adipose tissue as an endocrine organ
Adipocyte hormones. Over the past two decades it has become clear 

that in addition to their roles in energy storage, adipose tissues are 

endocrine organs secreting a large number of factors with hormon-

al, autocrine, and paracrine properties (Figure 3). While a complete 

review of these adipocyte hormones is beyond the scope of this 

Review, many of them have important effects on metabolism.

Leptin is a 16-kDa protein produced primarily by white adi-

pocytes that acts on leptin receptors (LEPR/LepR) in the hypo-

thalamus to suppress feeding and increase energy expenditure 

(103, 104). While LEPR has multiple isoforms, leptin’s metabolic 

actions are mediated by the long-form LepRb, whose cytoplasmic 

tail associates with the Jak2 tyrosine kinase to mediate intracel-

lular signaling. This engages multiple downstream molecules, 

including SHP-2 and STAT3, which regulate ERK activation and 

suppressor of cytokine signaling 3 (SOCS3) as well as PI3K (105). 

Mice and humans with mutations in leptin or LEPR are massively 

Lipodystrophy — clinical evidence of adipocyte 
heterogeneity
Lipodystrophies encompass a range of genetic and acquired dis-

orders in which the body is unable to produce/maintain adipose 

tissue, resulting in either partial or generalized loss of fat (66). 

The effects of absence of adipose tissue on metabolism are strik-

ingly similar to those found in individuals with an excess of adi-

pose tissue, i.e., severe insulin resistance, hypertriglyceridemia, 

hepatic steatosis, and metabolic syndrome (3, 67), indicating the 

critical role of maintaining an optimal adipose tissue mass in the 

regulation of metabolism. One common feature of obesity and 

lipodystrophy is the diversion of excess calories into formation of 

ectopic fat in other tissues, including liver, skeletal muscle, and 

pancreatic β cells. This ectopic fat deposition is thought to directly 

drive insulin resistance (68, 69). The concept that adipose tissue 

provides protection against ectopic storage is supported by mouse 

models overexpressing adiponectin or with knockout of collagen 

VI, both of which allow for uninhibited expansion of adipose tis-

sue and improved glucose and insulin sensitivity (70, 71). This is 

also observed in mouse models with genetic or pharmacological 

inhibition of lipolysis and β-oxidation (72, 73). In addition to lipid 

storage, the low levels of adiponectin and leptin in patients with 

lipodystrophy may play important roles in mediating the severe 

insulin resistance and metabolic complications. Leptin infusion 

into lipodystrophic patients or mice improves insulin sensitivity 

and decreases hepatic and circulating triglycerides (74, 75).

The abnormal distributions of adipose tissue seen in partial 

lipodystrophies support the concept of developmental and func-

tional heterogeneity of adipose tissue. Dunnigan-type familial 

partial lipodystrophy is characterized by the loss of subcutaneous 

fat in the extremities and trunk, but an accrual of fat in the viscer-

al and head/neck regions (76, 77). Similarly, patients with muta-

tions in the p85α regulatory subunit of PI3K, which is critical for 

adipocyte differentiation, are characterized by selective lipoatro-

phy of subcutaneous and facial fat (78), and patients with Barra-

quer-Simons syndrome have selective loss of upper body fat (79). 

Although many of the genes implicated in various forms of partial 

lipodystrophy, including those encoding PPARγ, CIDEC, peril-

ipin-1, and AKT-2, are known to have critical roles in adipocyte 

biology, why these lead to loss (or gain) of fat in particular regions 

remains unknown (80–82). Finally, an acquired form of lipoatro-

phy associated with increased dorsocervical adipose tissue (buffa-

lo hump) is observed in treated HIV patients and has been attribut-

ed to changes in transcription factors and miRNAs involved in 

differentiation and increased adipocyte apoptosis (83, 84).

Adipose tissue turnover
In terms of mass, WAT is the most variable and dynamic tissue in 

the body, ranging from less than 2% to more than 70% of body 

weight. The dramatic increase in fat mass in obesity can occur 

through adipocyte hypertrophy, i.e., enlargement due to lipid 

accumulation, and adipocyte hyperplasia, i.e., proliferation/dif-

ferentiation of preadipocytes resulting in increased numbers of 

adipocytes (Figure 2 and ref. 14). In general, the total number of fat 

cells is set during childhood and remains constant through adult-

hood (85, 86), but may be increased with early-onset obesity and 

in some depots in adults by overfeeding (87).
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In addition to leptin and adiponectin, adipose tissue produces 

a number of other peptide adipocyte hormones linked to insulin 

resistance and metabolic syndrome. Resistin is an approximately 

12-kDa polypeptide. In mice, resistin is produced mainly by vis-

ceral WAT and was shown to induce insulin resistance through 

a mechanism involving SOCS3 activation (127, 128). In humans, 

resistin is produced mainly by macrophages, and its role in insu-

lin resistance is less clear (129). Retinol-binding protein 4 (RBP4) 

is also produced by visceral adipocytes and other tissues, espe-

cially liver (130, 131). RBP4 can activate promote adipose tissue 

inflammation, thus contributing to insulin resistance (130, 132). 

Other peptide adipocyte hormones include apelin, which has 

three active peptides potentially involved in regulating cardiovas-

cular function (133, 134); omentin, an insulin-sensitizing peptide 

produced by non-adipocyte cells in adipose depots (135); vaspin, 

a serine protease inhibitor thought to act as an insulin sensitizer 

(135); nesfatin-1, a peptide derived from nucleobinding-2 suggest-

ed to potentiate glucose-induced insulin secretion from β cells 

(136); DPP4, the peptidase that degrades GLP-1 (137); and aspros-

in, a cleavage product of the fibrillin-1 gene, which stimulates 

hepatic glucose release (138).

Adipose tissue is also a source of multiple growth factors, 

including FGF21, BMPs, TGF-β, VEGFs, and growth differentia-

tion factors. BMPs such as BMP2, BMP4, BMP7, and BMP8b not 

only come from fat but also play important roles in fat. BMP2 and 

BMP4 stimulate white adipocyte differentiation (139, 140), where-

as BMP7 is critical for brown adipocyte development (141). BMP4 

also plays a role in development and browning of WAT, while 

BMP8b enhances BAT’s response to β
3
-adrenergic stimulation 

(142). VEGF-A, a potent angiogenic factor, is expressed in both 

white and brown adipocytes (143) and is important in sustaining 

adequate circulation to adipose tissue (144, 145). Finally, adipose 

tissue is a site for production of neurotrophic factors such as NGF, 

Nrg4, and the semaphorins, which play a particularly important 

role in innervation of BAT.

obese and hyperphagic (106–108). In humans or mice with obesity 

due to mutations in the leptin gene, treatment with recombinant 

leptin restores near-normal health. Unfortunately, common forms 

of human obesity do not respond to leptin, indicating leptin resis-

tance (108, 109). Physiologically, leptin may be most important 

when its levels are low. In fasting or starvation, low leptin creates 

a strong stimulus for increased food intake and decreased ener-

gy expenditure (110, 111), and leptin replacement during fasting 

prevents starvation-induced changes in the hypothalamic-pitu-

itary axis through actions on expression of corticotropin-releasing 

hormone, thyrotropin-releasing hormone, and gonadotropin- 

releasing hormone (112, 113). Some peripheral tissues also express 

LEPRs, contributing to leptin effects on bone, immune cells, and 

angiogenesis. Leptin treatment lowers blood glucose in mouse 

models of insulin-deficient diabetes, suggesting possible use in 

type 1 diabetes; however, this has not been shown in humans (114).

Adiponectin is an approximately 30-kDa protein produced in 

both white and brown adipocytes, with the highest levels in sub-

cutaneous WAT. Paradoxically, adiponectin levels are high when 

fat mass is low and vice versa. Adiponectin circulates as a range 

of multimers, from trimers to high–molecular weight (HMW) 

dodecamers (115, 116). HMW adiponectin appears to account 

for most of its effects (117). Adiponectin levels are markedly ele-

vated in patients with severe insulin resistance due to anti–insu-

lin receptor antibodies or insulin receptor mutations, suggesting 

feedback between insulin resistance and adiponectin secretion 

(118). Adiponectin acts to improve insulin sensitivity through two 

atypical seven-transmembrane receptors. In muscle, adiponectin 

acts through AdipoR1 to activate AMPK; in liver, adiponectin acts 

on both AdipoR1 and AdipoR2 to suppress hepatic glucose out-

put (119, 120). Whether the latter effect occurs through AMPK or 

increased ceramidase activity is controversial (121, 122). In addi-

tion, adiponectin can act in the CNS to stimulate appetite, reduce 

energy expenditure, and perhaps affect neurodegeneration (123, 

124); on endothelial cells, it affects angiogenesis (125, 126).

Figure 3. Adipocyte hormones in intertissue 

communication. The figure illustrates different 

classes of adipocyte hormones and their varied 

effects on metabolism and the development of 

insulin sensitivity or resistance. BCAA, branched-

chain amino acids; GDF, growth differentiation 

factor ; Nrg4, neuroregulin 4.
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Adipose tissue and inflammatory crosstalk  
in insulin resistance
Inflammation in adipose tissue is a characteristic of obesity and is 

marked by secretion of multiple inflammatory cytokines and pro-

teins of the alternate complement system, as well as infiltration of 

adipose tissue with macrophages and leukocytes. Evidence for a role 

of inflammation as a component of T2D dates to the century-old 

observation that high doses of sodium salicylate reduce blood glu-

cose in people with T2D (146). This occurs through inhibition of the 

IKKβ/NF-κB pathway and improvement in insulin sensitivity (147, 

148). Epidemiologically, T2D is associated with increased levels of 

markers/mediators of inflammation, including C-reactive protein, 

IL-6, plasminogen activator inhibitor-1 (PAI-1), and TNF-α (reviewed 

in ref. 149). TNF-α expression is increased in adipose tissue in rodent 

models of obesity and diabetes (150), where it induces insulin resis-

tance by impairing insulin receptor and insulin receptor substrate-1 

(IRS-1) phosphorylation (151). Neutralizing TNF-α increases periph-

eral tissue glucose uptake in obese diabetic rats (150). Although one 

clinical trial showed that targeting TNF-α can reduce hyperglycemia 

in patients with metabolic syndrome (152), most studies report no 

beneficial effect of TNF-α antagonism on insulin sensitivity (153, 

154), questioning TNF-α’s role as the causative link between adipose 

tissue inflammation and insulin resistance in humans.

In obesity, adipose tissue undergoes remodeling during which 

macrophages infiltrate the tissue and secrete multiple proinflam-

matory cytokines. Increased expression of monocyte chemoat-

tractant protein-1 (MCP-1) is seen as early as 3 weeks after HFD 

feeding in rodents; however, the number of macrophages in WAT 

does not increase until 10 to 16 weeks later (155), suggesting that 

adipose tissue inflammation could be an adaptive response to 

insulin resistance rather than its cause. Indeed, immunocompro-

mised mice develop a degree of insulin resistance similar to that in 

controls after short-term HFD feeding (156). Supporting the idea 

that proinflammatory signaling in adipocytes may be required for 

healthy expansion of visceral WAT, an impaired proinflammatory 

response in adipocytes can lead to ectopic lipid accumulation and 

glucose intolerance in mice on HFD (157). It has also been suggest-

ed that an ineffective inflammatory response in mesenteric WAT 

could allow gut microbial–derived antigens to enter the circulation 

and serve as triggers for systemic inflammation (157).

In addition to increased macrophage number, the polarity of 

adipose tissue macrophages also changes during obesity progres-

sion (158). In obesity, there is an increase in M1 (classically activat-

ed) macrophages, while alternatively activated M2 macrophages 

are reduced. This change is thought to occur through proinflamma-

tory mediators, such as lipopolysaccharide. T cells have also been 

found in adipose tissue, and their composition changes as obesity 

progresses, with increased infiltration of CD8+ cytotoxic T cells and 

decreased presence of regulatory T cells (159, 160). These chang-

es precede macrophage infiltration. Drugs that block the effects of 

proinflammatory cytokines, such as CCL2 antagonists and IL-1R 

antagonists, reduce systemic inflammation and improve glycemic 

control in obese/diabetic rodents (161). Amlexanox, an inhibitor of 

noncanonical IκB kinases IKKε and TBK1, also shows beneficial 

effects in both rodents and humans (162, 163).

Emerging evidence suggests that adipose tissue fibrosis also 

plays a role in the regulation of adipose tissue health (see ref. 164, 

this issue of the JCI). Clinical studies report a link between excess 

extracellular matrix accumulation in subcutaneous WAT and 

insulin resistance (165). Importantly, repression of adipose tissue 

fibrosis by whole-body collagen VI knockout (71) or adipose tissue– 

specific repression of profibrosis program (166) significantly 

improves glucose metabolism, suggesting that adipose tissue fibro-

sis is more than just a morphological marker of dysfunctional fat.

Signaling lipids as adipocyte hormones
The normal physiology of lipid storage as triglycerides and release 

as free fatty acids (FFA) and glycerol means that adipose tissue 

is a site of high lipid flux. In addition, adipose tissue may secrete 

specialized signaling lipid species that mediate communication 

between adipose tissues and other tissues.

One class are the branched fatty acid esters of hydroxyl fat-

ty acids called branched fatty acid esters of hydroxy fatty acids 

(FAHFAs) (167). These were discovered to be markedly elevated in 

mice with Glut4 overexpression in adipose tissue and were associ-

ated with the improved metabolic phenotype in these mice (167). 

FAHFAs may have varying fatty acid composition, including pal-

mitoleic acid, palmitic acid, or oleic acid as the fatty acid moiety, 

and hydroxyl–palmitic acid or hydroxyl–steric acid as the hydroxyl– 

fatty acid moiety, creating many isoforms. The effects of palmit-

ic acid-hydroxy-stearic acids (PAHSAs) have been studied in the 

most detail. Serum PAHSA levels are decreased in insulin-resistant 

humans and positively correlate with insulin sensitivity (167). Oral 

gavage of 5-PAHSA and 9-PAHSA reduces blood glucose levels in 

HFD-fed mice and improves glucose tolerance in both chow- and 

HFD-fed mice (167). Chronic PAHSA administration in HFD-fed 

mice improves insulin sensitivity and glucose tolerance (168). 

Mechanistically, PAHSAs exert their beneficial effects through acti-

vating GPR120 and GPR40 (167, 168). Knockdown or blockade of 

GPR120 reverses the enhanced insulin-stimulated glucose trans-

port in PAHSA-treated adipocytes (167). Blocking GPR40 inhibits 

PAHSA augmentation of glucose-stimulated insulin secretion from 

islets (167, 168). Less abundant fatty acids, such as docosahexaenoic 

acid (DHA), can also be incorporated into novel FAHFAs if provid-

ed externally (169). Both human and murine WAT can synthesize 

several kinds of DHA hydroxyl–linoleic acid (DHAHLA). 13-DHA-

HLA demonstrates antiinflammatory properties and reduces LPS- 

induced macrophage activation (169). Although enzymes respon-

sible for FAHFA synthesis have not been identified, four FAHFA- 

specific hydrolases, AIG1, ADTRP, CEL, and Ces3/CES1, have been 

identified (170, 171). These inhibitors could serve as a new class of 

antidiabetic and antiinflammatory drugs.

A second class of lipid adipocyte hormones are the diHOMEs, 

products of linoleic acid metabolism, such as 12,13-dihydroxy-9Z- 

octadecenoic acid (12,13-diHOME). Lynes et al. have shown that 

12,13-diHOME is elevated in BAT versus WAT, and its levels in BAT 

and serum increase upon cold exposure in humans and rodents (172). 

12,13-diHOME then acts back on BAT to increase fatty acid uptake, 

resulting in enhanced cold tolerance (172). Increased release of 

12,13-diHOME in BAT has also been observed following exercise, 

and its actions on skeletal muscle increase fatty acid uptake and oxi-

dation (173). Recently, 12,13-diHOME was also identified in periph-

eral nervous tissues in response to inflammatory pain (174). Thus, 

induction of 12,13-diHOME in BAT might be part of a stress response.
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Exosomal miRNAs as novel adipocyte 
“hormones”
miRNAs are small noncoding RNAs of approximately 22 nt pro-

duced by all cells of the body (175). miRNAs play important roles 

in differentiation and function of brown, beige, and white fat (83, 

176, 177). In addition, miRNA expression in adipose tissue differs 

between obese and lean humans (178, 179), and levels of these 

miRNAs variably correlate with BMI, glycemia, and insulin resis-

tance. The importance of miRNAs in adipose development/func-

tion is illustrated by the fact that adipocyte-specific knockout of 

the miRNA-processing enzyme DICER (ADicerKO) or its partner 

DGCR8 (ADgcr8KO) in mice produces partial lipodystrophy and 

insulin resistance (83, 180, 181).

There is growing evidence that fat is a major source of circu-

lating miRNAs and that miRNAs secreted by adipocytes, especial-

ly those in extracellular vesicles or exosomes, may participate in 

intertissue communication and serve as novel adipose hormones. 

Thus, ADicerKO mice exhibit significant decreases in about half of 

circulating exosomal miRNAs (6). Circulating exosomal miRNAs  

are also decreased in humans with genetic or HIV-related lipo-

dystrophy, and in the latter this is associated with a decrease in 

DICER in adipose tissue (6, 84). These adipose-derived circu-

lating miRNAs can act on other tissues like liver and muscle to 

modulate mRNA translation and stability (6, 182). An example of 

an adipose-derived circulating miRNA contributing to the con-

trol of metabolic homeostasis is the regulation of liver FGF21 by 

adipose-derived miR-99b (6). Accordingly, ADicerKO mice have 

reduced levels of miR-99b in circulating exosomes and upregu-

lation of Fgf21 mRNA and its 3′-UTR reporter activity in liver (6), 

which can be partially corrected by administration of exosomes 

loaded with miR-99b. ADicerKO mice exhibit a wide range of 

phenotypes reflecting dysfunction in other nonadipose tissues, as 

well as systemic insulin resistance (83, 181), suggesting that this is 

a generalized mechanism of intertissue communication.

Since adipose tissue is a major contributor to circulating 

exosomal miRNAs, it is not surprising that circulating miRNAs 

are altered in individuals with obesity, lipodystrophy, T2D, and 

metabolic syndrome, and may contribute to insulin resistance in 

these diseases (6, 183–187). In obese humans and rodents, there 

is upregulation of miR-122, miR-142-3p, miR-192, miR-222, and 

miR-378a and downregulation of miR-138 and miR-221 (188–190). 

Among these, miR-222 is a negative regulator of insulin sensitivity 

in adipocytes, where it reduces GLUT4-mediated glucose uptake 

(191), and hepatocytes, where it targets IRS-1 (192). miR-222 levels 

increase in blood (193, 194) and fat (195) with obesity (193–195). 

Circulating miR-222 is both found in exosomes and associated 

with HDL (196, 197). Mice injected with exosomes containing 

miR-122 mimetics develop metabolic dysfunction with insulin 

resistance and dyslipidemia (190). Likewise, miR-155 released 

in exosomes from adipose tissue macrophages during inflamma-

tion has been shown to be transferred to adipocytes, myotubes, or 

hepatocytes, where it worsens insulin resistance (182).

Adipose-derived exosomal miRNAs may also serve paracrine 

functions. Thus, miRNA-containing vesicles released from large 

adipocytes can be transferred to small adipocytes and stimulate 

lipogenesis and adipocyte hypertrophy (198). Secretion of miRNAs  

by adipocytes may also be regulated by FFA and H
2
O

2
 (198), 

indicating that signals promoting lipid accumulation and insulin 

resistance may spread from insulin-resistant adipocytes to newly 

formed adipocytes. Conversely, amelioration of metabolic dys-

function by weight loss may be due in part to changes in circulat-

ing miRNAs (199). In addition, miRNAs differentially released in 

the circulation of obese versus lean subjects may act on the TGF-β 

pathway, thus providing a link to nonalcoholic fatty liver disease 

(200, 201). This may be part of a more complex regulatory loop in 

which TGF-β induces adipocyte secretion of miR-130b, which is 

then transferred to muscle, where it acts to reduce the expression 

of PGC-1α, reducing muscle oxidative metabolism (202). Skele-

tal muscle is also responsive to miR-27a, which is present in adi-

pose-derived exosomes and induces insulin resistance via PPARγ 

repression (203). Serum levels of miR-27a are positively associat-

ed with obesity and insulin resistance in children and in mice with 

obesity, indicating that miR-27a may be another modulator of 

obesity-associated insulin resistance (203).

Inflammation in adipose tissue and liver may also be mediated, 

in part, by circulating adipocyte-derived exosomes. Mice inject-

ed with extracellular vesicles from adipose tissue of obese mice 

develop increased levels of circulating IL-6 and TNF-α and develop 

insulin resistance (204). This appears to be controlled by miR-155, 

which can target SOCS1 in macrophages, promote STAT1 signaling, 

and suppress STAT6 signaling, thereby promoting M1 macrophage 

polarization (205). Conversely, it has been shown that extracellular 

vesicles from adipose tissue macrophages of obese mice, which con-

tain miR-155, can induce insulin resistance when administrated to 

lean mice or incubated in vitro with adipocytes, myocytes, or hepato-

cytes, and knockout of miR-155 in HFD-fed mice results in improved 

insulin sensitivity (182). This effect is reversed by transplantation of 

WT bone marrow, further supporting a role for exosomal miRNAs in 

adipocyte-macrophage crosstalk (206, 207). Exosomes secreted by 

adipose-derived stem cells may also contribute to effects on macro-

phages (208) and vascular integrity in obesity (209, 210). Together 

these data indicate that adipose tissue is a major contributor to cir-

culating exosomal miRNAs and that adipose-derived exosomes may 

possess hormone-like functions, communicating with other tissues 

to coordinate metabolic homeostasis and energy balance. When 

these systems are perturbed, they may also contribute importantly 

to the pathophysiology of metabolic diseases.

Targeting adipose tissue to treat metabolic 
syndrome
From the evidence above, it is clear that targeting adipose tissue and 

its signaling molecules can provide unique opportunities to better 

understand the pathophysiology and treatment of obesity, insu-

lin resistance, T2D, and metabolic syndrome. While considerable 

effort has already been made to target the inflammation in adipose 

tissue as a component of insulin resistance and some work has been 

devoted to finding AdipoR agonists, there remains great opportu-

nity to find mimics or antagonists of other adipose hormones. This 

includes not only the peptide adipose hormones, but also bioactive 

signaling lipids secreted by white and brown fat. Adipose-secreted 

exosomal miRNAs might also provide new diagnostics to distin-

guish metabolically healthy versus metabolically unhealthy obesity 

and new approaches to deliver miRNAs that target genes in liver and 

other tissues to regulate metabolic syndrome. Finally, understand-
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ing the heterogeneity of adipose tissue — both from the perspec-

tive of white, brown, and beige fat and within WAT itself — offers a 

unique opportunity to develop drugs that can change distribution of 

adipose tissue as well as shift it from a metabolically unhealthy sub-

type to a more metabolically healthy subtype. With modern tech-

nologies, all of these opportunities are within the reach of reality.
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