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Post-traumatic stress disorder (PTSD) is often characterized by aberrant amygdala acti-
vation and functional abnormalities in corticolimbic circuitry, as elucidated by functional
neuroimaging.These “activation” studies have primarily relied on tasks designed to induce
region-specific, and task-dependent brain responses in limbic (e.g., amygdala) and paral-
imbic brain areas through the use of aversive evocative probes. It remains unknown if
these corticolimbic circuit abnormalities exist at baseline or “at rest,” in the absence of
fear/anxiety-related provocation and outside the context of task demands. Therefore the
primary aim of the present experiment was to investigate aberrant amygdala functional
connectivity patterns in combat-related PTSD patients during resting-state. Seventeen
Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veterans with combat-
related PTSD (PTSD group) and 17 combat-exposed OEF/OIF veterans without PTSD
[combat-exposed control (CEC) group] underwent an 8-min resting-state functional mag-
netic resonance imaging scan. Using an anatomically derived amygdala “seed” region we
observed stronger functional coupling between the amygdala and insula in the PTSD group
compared to the CEC group, but did not find group differences in amygdala–prefrontal
connectivity. These findings suggest that the aberrant amygdala and insula activation to
fear-evocative probes previously characterized in PTSD may be driven by an underlying
enhanced connectivity between the amygdala, a region known for perceiving threat and
generating fear responses, and the insula, a region known for processing the meaning
and prediction of aversive bodily states. This enhanced amygdala–insula connectivity may
reflect an exaggerated, pervasive state of arousal that exists outside the presence of an
overt actual threat/danger. Studying amygdala functional connectivity “at rest” extends our
understanding of the pathophysiology of PTSD.
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INTRODUCTION
Post-traumatic stress disorder (PTSD) is characterized by vari-
ous altered emotional responses as a result of trauma exposure
(e.g., combat, assault, and disasters). Patients with PTSD not only
experience intense negative emotional reactions when reminded
of their trauma but also report exaggerated arousal (poor sleep,
restlessness, hypervigilance), anhedonia, social withdrawal, and
decreased emotional expressivity, referred to as “emotional numb-
ing.” Characterizing the neural basis of these diverse, distorted
emotional responses poses a major challenge to contemporary
psychiatric research. Functional neuroimaging techniques have
focused primarily on the study of brain function related to fear per-
ception and response, and have consistently implicated aberrant
amygdala reactivity to fear-relevant probes and other abnormal-
ities in a broad aberrant amygdala-linked circuitry involving the
medial prefrontal cortex (mPFC), insula, anterior cingulate cortex
(ACC), and hippocampus (Rauch and Shin, 1997; Pitman et al.,
2001; Nemeroff et al., 2006; Rauch et al., 2006; Etkin and Wager,

2007; Liberzon and Sripada, 2008; Shin, 2009; Shin and Liberzon,
2010). Together these interconnected regions form a disrupted
functional network thought to be responsible for impaired regula-
tion of fear responses, enhanced attention to threat-related stimuli,
and biased memory for adverse events (Shin, 2009). Anxiety dis-
orders, such as PTSD, are believed to manifest from dysfunction
in a complex integrated functional network, largely, between cor-
tical and limbic regions (Gilboa et al., 2004; Lanius et al., 2005;
Simmons et al., 2008; Bluhm et al., 2009; Shaw et al., 2009; Daniels
et al., 2010). Some studies have begun to examine these brain cir-
cuits and region-to-region interactions, by measuring the extent to
which activity in one region is correlated with activity in another
during a particular task. Although these dysfunctional networks
have been implicated in mediating several characteristics of PTSD,
such as, hyperarousal, abnormal reactivity to emotional stimuli,
and avoidance of emotionally distressing memories (Nemeroff
et al., 2006; Shin and Liberzon, 2010), little is known about how
these regions may interact dynamically within individual subjects.
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Some clues exist from anatomical and functional studies that
these brain regions may indeed form a network responsible
for emotion processing. Tracer studies in non-human primates
(Amaral and Price, 1984; Saunders et al., 1988; Barbas and De
Olmos, 1990; Stefanacci et al., 1996; Ghashghaei and Barbas, 2002;
Ghashghaei et al., 2007; Freese and Amaral, 2009) and, more
recently, diffusion tensor imaging studies in humans (Croxson
et al., 2005; Johansen-Berg et al., 2008; Bracht et al., 2009) have
identified robust bidirectional projections between the amygdala
and the mPFC, rostral ACC (rACC), insula, and hippocampus.
Consistent with known anatomical connections, several studies
that have examined functional connectivity of the amygdala have
found significant co-activation and/or functionally correlated acti-
vation of the amygdala and the mPFC, insula, hippocampus, and
rACC (Phan et al., 2002; Wager et al., 2003, 2008; Stein et al.,
2007a; Kober et al., 2008; Etkin et al., 2009; Roy et al., 2009). It is
well established that negatively valenced emotional stimuli activate
the amygdala, which mediates subjective and attentional-vigilance
aspects of threat processing (Liberzon et al., 1999; Phan et al., 2002,
2004; Liberzon and Phan, 2003; Taylor et al., 2003; Wager et al.,
2003; Etkin and Wager, 2007; Kober et al., 2008; Liberzon and Sri-
pada, 2008; Etkin, 2009; Shin and Liberzon, 2010). Similarly, insula
activity also increases in response to emotionally aversive stimuli
that evoke visceral or somatic sensations (Simmons et al., 2004).
Increased amygdala and insula activation during fear conditioning
have been shown to be reliably associated with one another (Etkin
and Wager, 2007). Amygdala activity is decreased in response to
suppression of negative affect via reappraisal and during inhibition
of conditioned fear responses as a result of increased activation in
the mPFC and rACC, which exert top-down inhibitory influences
on amygdala reactivity to fear and threat (Ochsner et al., 2002;
Taylor et al., 2003; Phelps et al., 2004; Etkin et al., 2006, 2011;
Urry et al., 2006; Delgado et al., 2008; Quirk and Mueller, 2008).
The magnitude of task-dependent functional coupling between
the amygdala and mPFC/rACC has been shown to be negatively
correlated with intensity of subjective reports of negative affect
(Banks et al., 2007). Increased functional connectivity between the
amygdala and the hippocampus has been attributed to the persis-
tence of memories for emotionally arousing events (Hamann et al.,
1999; Kilpatrick and Cahill, 2003; Phelps, 2004; Ritchey et al., 2008;
Murty et al., 2011). Specifically, the hippocampus forms episodic
representations of the emotional significance and interpretation of
events, and influences amygdala activity when emotional stimuli
are encountered (Phelps, 2004). These lines of convergent evi-
dence suggests that how the amygdala interacts with other regions
may mediate the control, or lack thereof, of fear perception and
emotional arousal in humans.

Dysfunctions within discrete areas that form an amygdala–
paralimbic/frontal network have been implicated in mediating
several characteristics of PTSD, such as, hyperarousal, abnormal
reactivity to emotional stimuli, and avoidance of emotionally dis-
tressing memories (Nemeroff et al., 2006; Shin and Liberzon,
2010). In particular, many studies have shown amygdala hyper-
activity in PTSD in response to trauma-related imagery (Shin
et al., 1997, 2004a), combat-related sounds or smells (Liberzon
et al., 1999; Pissiota et al., 2002; Vermetten et al., 2007), trauma-
related photographs or words (Hendler et al., 2003; Driessen et al.,

2004; Protopopescu et al., 2005; Morey et al., 2009), and fearful
facial expressions (Rauch et al., 2000; Shin et al., 2005; Williams
et al., 2006; Bryant et al., 2008). Exaggerated amygdala reactivity
observed in PTSD has been posited to be a result of insufficient
top-down regulation from the mPFC and ACC, consequently
leading to hyperarousal and deficits in extinction as well as the
inability to suppress enhanced fear perception or exaggerated fear
responses to trauma-related stimuli (Rauch and Shin, 1997; Rauch
et al., 1998; Pitman et al., 2001; Liberzon and Phan, 2003); for
example, Shin et al. (2004a, 2005) have observed that exagger-
ated amygdala reactivity is negatively correlated with responses
in the dorsal and ventral mPFC across individuals with PTSD.
However, Gilboa et al. (2004) found little evidence for failure of
inhibition of ACC over the amygdala in individuals with PTSD
related to civilian trauma during symptom provocation and in fact
found that amygdala activity significantly influenced ACC activ-
ity. Insula hyperactivity has been observed in PTSD patients and
given its role in the experience (e.g., somatic sensation) of nega-
tive emotions and structural connectivity to amygdala (Augustine,
1996; Aggleton and Saunders, 2000; Freese and Amaral, 2009),
the insula may be working in concert with aberrant amygdala
responses (Bremner et al., 2003, 2005; Lanius et al., 2007; Ver-
metten et al., 2007; Lindauer et al., 2008; Simmons et al., 2008;
Werner et al., 2009; Whalley et al., 2009). Although less com-
monly implicated, abnormal hippocampal function, and dimin-
ished hippocampal volumes in PTSD patients have been associated
with deficits in contextual processing, as well as memory impair-
ments, and neuroendocrine dysregulation (Bremner et al., 1999,
2003; Bonne et al., 2001; Shin et al., 2004a,b, 2006; Werner et al.,
2009).

Recently these functional connectivity techniques have been
applied to the study of corticolimbic circuitry abnormalities at
baseline or “at rest” (resting-state functional connectivity). Stud-
ies of functional interconnectivity of brain regions derived from
“resting-state” scans provides insight into the relationship of
spontaneous brain activity between brain regions without being
confounded by task influences on activation and has even been
shown to reflect structural connectivity between brain regions
(Greicius et al., 2009; van den Heuvel et al., 2009). In healthy
humans resting-state functional connectivity of the amygdala has
revealed patterns of connectivity consistent with task-based con-
nectivity patterns (Stein et al., 2007a; Roy et al., 2009). Moreover,
resting-state functional connectivity has been a useful tool for
identifying abnormalities in the functional organization of brain
systems in several anxiety and mood disorders (Greicius, 2008).
However, little is known about what abnormalities, if any, in
amygdala connectivity exist at rest in PTSD. Therefore the pri-
mary aim of the present experiment was to investigate aberrant
amygdala functional connectivity patterns in returning Operation
Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veterans
with combat-related PTSD (PTSD group) and combat-exposed
OEF/OIF veterans without PTSD [combat-exposed control (CEC)
group] during resting-state. We hypothesized that amygdala con-
nectivity to the ACC, mPFC, insula, and hippocampus would
differentiate the PTSD group from the CEC group. If observed,
such findings would extend our understanding of the pathophys-
iology of PTSD by identifying a disturbed network that exists

Frontiers in Psychiatry | Neuropsychiatric Imaging and Stimulation November 2011 | Volume 2 | Article 62 | 2

http://www.frontiersin.org/Psychiatry
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation/archive


Rabinak et al. Amygdala resting connectivity and PTSD

outside of the presence of an overt threat/danger or in the absence
of stimulus or task-induced negative emotional processing.

MATERIALS AND METHODS
PARTICIPANTS
Thirty-four, right-handed, male veterans returning from OEF/OIF
with documented exposure to combat-related trauma partici-
pated in this study. Based on the DSM-IV (APA, 1994), 17
participants met criteria for current PTSD (PTSD group; age:
30.12 ± 7.70 years; Caucasian = 16; Hispanic or Latino = 1) and
the other 17 participants were combat-exposed matched controls
without PTSD (CEC group; age: 33.71 ± 9.12; Caucasian = 16;
Asian = 1). Psychiatric diagnoses were established via the Struc-
tured Clinical Interview for DSM-IV (First et al., 1996). Additional
standardized clinical instruments including the Clinician Admin-
istered PTSD Scale (CAPS; Blake et al., 1995), the PTSD Checklist:
Military (PCL-M; Blanchard et al., 1996), the Combat Exposure
Scale (CES; Keane et al., 1989), the Hamilton Depression Inventory
(HAM-D; Williams, 1988), and the Beck Depression Inventory
(BDI-II; Beck et al., 1996) were administered to quantitatively
characterize PTSD symptoms, severity of trauma exposure, and
depression.

Table 1 shows the participant’s demographic and clinical char-
acteristics. Relative to the CEC group, the PTSD group had signif-
icantly higher scores on the CAPS, PCL-M, and HAM-D and BDI-
II. Of note, the groups did not differ in severity of trauma exposure.
Some of the PTSD patients had current psychiatric co-morbidity
(n = 2 with current major depressive disorder; n = 2 with current
alcohol abuse) or had a past co-morbidity more than 6 months ago
(n = 1 had major depressive disorder; n = 4 had alcohol abuse, one
of whom also had past opioid abuse; n = 1 had alcohol dependence
in full sustained remission) at the time of scanning. In addition,
some PTSD patients had a history of psychotropic medication
usage (n = 8 had taken an selective serotonin reuptake inhibitor,
one of whom had also taken a norepinephrine–dopamine reup-
take inhibitor; n = 1 had taken a tri-cyclic antidepressant; n = 2
had taken a serotonin antagonist-reuptake inhibitor), but none
of the PTSD patients were currently taking any psychotropic
medications at the time of scanning. All participants were free

Table 1 | Group demographic and clinical characteristics.

Group mean (±SD) t Value p Value

PTSD CEC

Age 30.12 (7.70) 33.71 (9.12) −1.24 0.22

CAPS 67.35 (12.41) 5.24 (5.75) 18.72 <0.001

PCL-M 54.59 (9.78) 25.06 (7.34) 9.96 <0.001

BDI-II 22.76 (7.46) 5.53 (6.25) 7.30 <0.001

HAM-D 10.18 (3.75) 2.18 (2.38) 7.44 <0.001

CES 23.88 (5.98) 21.47 (5.50) 1.22 0.23

PTSD, post-traumatic stress disorder; CEC, combat-exposed controls; CAPS, Clin-

ician Administered PTSD Scale; PCL-M, PTSD Checklist: Military; BDI-II, Beck

Depression Inventory; HAM-D, Hamilton Depression Inventory; CES, Combat

Exposure Scale.

of any clinically significant medical or neurologic condition that
would affect brain blood flow/metabolism or function and/or task
performance. None of the subjects had a positive urine toxicol-
ogy screen at the time of scanning. All participants gave written
informed consent after explanation of the experimental proto-
col, as approved by the VA Ann Arbor Healthcare System and
University of Michigan Institutional Review Boards.

FUNCTIONAL IMAGING ACQUISITION
All participants underwent an 8-min resting-state fMRI scan in
which they were instructed to fixate on a white crosshair that was
centrally projected against a black background and let their mind
wander without falling asleep. fMRI scanning was performed on
a 3T GE Signa System (General Electric; Milwaukee, WI, USA)
using a standard radiofrequency coil at the University of Michi-
gan Functional MRI Laboratory. Whole-brain functional images
(i.e., blood oxygenated level-dependent, BOLD) were collected
from 43 axial, 3-mm-thick slices using a T∗

2 -sensitive gradient
echo reverse spiral acquisition sequence (repetition time, 2000 ms;
echo time, 30 ms; 64 × 64 matrix; 220 mm field of view; flip angle,
90˚), optimized to minimize susceptibility artifacts (signal loss) at
the medial temporal lobe (including the amygdala; Stenger et al.,
2000). Cardiac and respiratory cycles were recorded with MRI
vendor supplied pulse-oximeter and respiratory belt for physiolog-
ical corrections on resting-state data. A T1-weighted anatomical
image was collected in the same planes as the functional data,
but with higher in-plane resolution (1 mm2, T1-overlay) to aid in
later co-registration. A high resolution, T1-weighted volumetric
anatomical scan (T1-SPGR; three-dimensional spoiled gradient
echo) was also acquired for precise anatomical localization and
normalization.

FUNCTIONAL IMAGING ANALYSIS
Data from 32 participants (CEC = 17; PTSD = 15) met criteria for
high quality and scan stability with minimum motion correction
and were subsequently included in fMRI analyses (<3 mm dis-
placement in any one direction; two PTSD patients were excluded
for poor data quality due to excessive head movement). The
first four volumes were discarded to allow for T1 equilibration
effects. Functional data were processed and analyzed using Statis-
tical Parametric Mapping software (SPM8; Wellcome Trust Centre
for Neuroimaging, London1) using similar methods previously
published from our lab (Jelsone-Swain et al., 2010). Images were
corrected for physiological signal fluctuations using a custom code
written in MATLAB (MathWorks, Natick, MA, USA; Noll et al.,
1991). Slice timing and movement correction was done to the
time-series data using SPM8. Each participant’s T1-overlay was
co-registered to the time-series data and the T1-SPGR was then co-
registered to the co-registered T1-overlay image. The co-registered
T1-SPGR was then segmented into gray matter, white matter, and
cerebrospinal fluid (CSF) and normalized to Montreal Neurolog-
ical Institute (MNI) space using VBM8 toolbox of SPM8 and the
resulting normalization matrix was applied to the time-series data.
These normalized time-series data were subsequently re-sampled

1www.fil.ion.ucl.ac.uk/spm

www.frontiersin.org November 2011 | Volume 2 | Article 62 | 3

http://www.fil.ion.ucl.ac.uk/spm
http://www.frontiersin.org
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation/archive


Rabinak et al. Amygdala resting connectivity and PTSD

to 2 mm3 voxels and smoothed with an 8-mm Gaussian kernel
to minimize noise and effects due to residual differences in func-
tional and gyral anatomy during inter-subject averaging. Then
the resulting white matter and CSF segments were further defined
using a custom algorithm previously described (Welsh et al., 2007).
Each voxel’s time-series was detrended to correct for linear drift
over time. Nine nuisance covariates (time-series predictors for
global signal, white matter, CSF, and the six movement parame-
ters, including the first derivative, obtained during realignment
to account for motion-related effects in BOLD) were sequentially
regressed from the time-series. The resulting time-series were then
band-passed filtered between the frequencies of 0.01 and 0.10-Hz
to limit the analysis to resting-state frequencies of interest.

To determine amygdala connectivity during resting-state, seed
regions in the left and right amygdala were defined by an anatom-
ically based amygdala mask in each hemisphere (from MAsk of
region of interest analysis software, MARINA; Tzourio-Mazoyer
et al., 2002;Walter et al., 2003). We then extracted the averaged time
course from these seed regions in each participant’s data and cal-
culated correlation coefficients between these average time courses
and all other voxels of the brain resulting in an r-image for amyg-
dala connectivity. The resulting correlation coefficients were then
transformed into Z -scores using a Fisher r-to-Z transformation
and the resulting Z images were analyzed at the second level in a
random-effects statistical model. Two-tailed independent samples
t tests were used to identify areas of the brain that exhibited activity
that covaried with the amygdala differentially during resting-state
between the two groups (PTSD > CEC; CEC > PTSD). Significant
activations were identified with a whole-brain voxel-wise thresh-
old of p < 0.005 with a minimum cluster extent of >387 con-
tiguous voxels (3096 mm3), to correct for multiple comparisons
at a corrected p < 0.05 calculated using Monte-Carlo simulations
(AFNI 3dClustSim2). Previous studies interested in differences
in brain connectivity between patients with PTSD and trauma-
exposed controls without PTSD have used similar significance

2http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dClustSim.html

thresholding approaches to balance Type I and II error rates (Yin
et al., 2011a,b). To clarify the signal direction, variance, and speci-
ficity of differences in strength of connectivity between the CEC
and PTSD groups during resting-state, we extracted individual
subject’s Z -score values from activated voxels that fell within
an anatomically based mask for each a priori region from the
between-group contrast (PTSD > CEC; Tzourio-Mazoyer et al.,
2002; Walter et al., 2003). Of note, we did not conduct statistical
tests on these measures, as they were defined from significant acti-
vations resulting from whole-brain maps of group differences in
connectivity.

RESULTS
Across the entire brain, we observed a discretely localized differ-
ence in amygdala connectivity pattern between groups. From the
right amygdala anatomical “seed” region, we observed that PTSD
patients exhibited stronger connectivity with the insula than CEC
subjects (MNI peak: [38, −18, −2], Z -score = 4.29, volume = 440
voxels; Figure 1); this pattern was not detected from the left amyg-
dala seed. Follow-up ROI analyses on the extracted Z -scores of the
strength of connectivity from the insula revealed that both groups
exhibited positive amygdala–insula coupling, however, the extent
of connectivity between the amygdala and insula was greater in
the PTSD group than the CEC group (Figure 1). To explore the
clinical relevance of the observed amygdala–insula connectivity
abnormalities, we performed correlational analyses between the
extracted values of the strength of connectivity and PTSD symp-
tom severity measures (CAPS, BDI-II, PCL-M, and HAM-D) but
did not observe any significant correlations (all ps >0.05, corrected
for multiple comparisons). Of note, we did not observe group
differences in any other a priori areas that we predicted, such
as the ACC, mPFC, and hippocampus in relation to amygdala
connectivity at rest.

DISCUSSION
This is the first study to our knowledge that examines intrinsic
amygdala functional connectivity patterns during rest in return-
ing OEF/OIF veterans with combat-related PTSD compared to a

FIGURE 1 | Between-group whole-brain voxel-wise statistical t map

overlaid on a canonical brain rendering (left, MNI coronal, y -plane = −14;

right, MNI sagittal, x -plane = 38 [right]) showing stronger amygdala

connectivity to the insula during rest in the PTSD group (PTSD > CEC).

Connectivity “target” is displayed at whole-brain voxel-wise p < 0.005,

uncorrected; color bar represents statistical t -scores; Bar graph shows mean
extracted Z-scores (±SEM) within each group from activated voxels that fell
within an anatomically based insula mask, showing stronger connectivity in
PTSD patients (>CEC). PTSD, post-traumatic stress disorder; CEC,
combat-exposed control; L, left.
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group of OEF/OIF veterans with combat exposure, but without
PTSD. We found stronger amygdala–insula resting-state func-
tional connectivity in the PTSD group compared to the CEC
group. Of note, this connectivity pattern was from the right amyg-
dala “seed” and was not shown from the left amygdala. Although
we did not make an a priori prediction about lateralization of
amygdala resting-state connectivity several findings of amygdala
hyperactivity in PTSD and correlations between PTSD symptom
severity and amygdala activity have been right-sided (Rauch et al.,
1996, 2000; Pissiota et al., 2002; Fredrikson and Furmark, 2003;
Driessen et al., 2004; Shin et al., 2004a). Contrary to our original
hypothesis we did not observe any significant differences in amyg-
dala connectivity to any other a priori regions (mPFC, ACC, hip-
pocampus) in the PTSD group compared to the CEC group at rest.
This is a notable negative finding and requires replication; however,
we acknowledge that the absence of differences in amygdala–
frontal or amygdala–hippocampal connectivity between groups
could have resulted from: (1) Our stringent, whole-brain cor-
rection for multiple comparisons to detect significance coupled
with a small sample size may have led to false negatives and/or
more subtle connectivity abnormalities; and/or (2) The resting-
state task may be insensitive to detecting amygdala–prefrontal and
amygdala–hippocampal connectivity abnormalities, which may
require engagement by an overt task.

Both the amygdala and insula have been separately implicated
in the pathophysiology of anxiety and PTSD (Rauch et al., 2000;
Osuch et al., 2001; Pissiota et al., 2002; Shin et al., 2004a; Pro-
topopescu et al., 2005; Nemeroff et al., 2006; Hopper et al., 2007;
Carrion et al., 2008; Shin and Liberzon, 2010). The amygdala
plays an important role in the subjective and attentional-vigilance
aspects of threat processing, and thus abnormalities in amygdala
activity may be associated with hyperarousal and hypervigilance
to threat in PTSD (Etkin, 2009). Moreover, several studies have
shown that the amygdala is hyperresponsive to both trauma-
related (Rauch et al., 1996; Shin et al., 1997, 2004a; Liberzon et al.,
1999; Pissiota et al., 2002; Hendler et al., 2003; Driessen et al.,
2004; Protopopescu et al., 2005; Vermetten et al., 2007) and unre-
lated stimuli in PTSD (Rauch et al., 2000; Armony et al., 2005;
Shin et al., 2005; Williams et al., 2006), amygdala activation is
positively correlated with PTSD symptom severity (Rauch et al.,
1996; Shin et al., 2004a; Armony et al., 2005; Protopopescu et al.,
2005) and self-reported anxiety (Pissiota et al., 2002; Fredrikson
and Furmark, 2003), and symptom reduction after treatment is
associated with decreased amygdala activation (Felmingham et al.,
2007). Likewise, PTSD patients display exaggerated insula activa-
tion during script-driven imagery (Lanius et al., 2007; Lindauer
et al., 2008), fear conditioning and extinction (Bremner et al.,
2005), the anticipation of negative images (Simmons et al., 2006),
the retrieval of emotional or neutral stimuli (Bremner et al., 2003;
Werner et al., 2009; Whalley et al., 2009), and aversive smells and
painful stimuli (Vermetten et al., 2007) and is also positively cor-
related with PTSD symptom severity (Osuch et al., 2001; Hopper
et al., 2007; Carrion et al., 2008). The insula controls evaluative,
experiential, and expressive aspects of internal emotional states
via visceral and somatic changes (e.g., autonomic “flight-or-fight”
responses) evoked during presentations of aversive stimuli (Phan
et al., 2002; Anderson et al., 2003; Dupont et al., 2003; Critchley

et al., 2004; Simmons et al., 2004; Paulus and Stein, 2006) and it
has been posited that the insula relays interoceptive information to
the amygdala to help guide behavioral responses (Augustine, 1996;
Craig, 2002; Simmons et al., 2004; Paulus and Stein, 2006). In fact,
the insula provides some of the strongest cortical connections to
the major output division of the amygdala responsible for gen-
erating fear responses to symptom-provoking stimuli (Augustine,
1996; Aggleton and Saunders, 2000; Freese and Amaral, 2009) and
abnormalities in these structures has been suggested to under-
lie exaggerated fear responses and the persistence of traumatic
memories (Shin and Liberzon, 2010), as well as anxiety prone-
ness (Paulus and Stein, 2006; Simmons et al., 2006; Stein et al.,
2007b). Furthermore, evidence from a recent study suggests that
a functional network between the amygdala and insula mediates
anxious anticipation of negative events and anxious individuals
display exaggerated activity within this network during anticipa-
tion of aversive stimuli (Carlson et al., 2010). Individuals with
PTSD display excess anticipation of negative events and because of
this are preoccupied with studying their environment for possible
threats (i.e., hypervigilance) and increased amygdala–insula func-
tional coupling may be a mechanism supporting hypervigilance
in patients with PTSD.

Besides the present study, others have investigated baseline con-
nectivity patterns in patients with PTSD and observed abnormal-
ities in functional connectivity within the default-mode network
when compared to healthy controls (although sometimes incon-
sistent; Bluhm et al., 2009; Daniels et al., 2010; Lanius et al., 2010),
not directly related to amygdala connectivity. Our study extends
these findings to resting-state amygdala coupling within a corticol-
imbic network known to be dysfunctional during trauma-related
anxiety provocation, emotionally based tasks, and evocative stim-
uli in PTSD patients. However, our study has some important
limitations. First, our study only included males and therefore can-
not be generalized to females. Second, the resting-state analysis of
changes in amygdala–insula connectivity do not allow for infer-
ences about directionality or causality, which await task-based path
or dynamic causal analyses. In addition, we have interpreted our
resting-state findings based on previous functional and structural
imaging studies, however, research with converging methods (i.e.,
task-dependent and -independent fMRI, diffusion tensor imag-
ing) are much needed to link connectivity at rest with brain
structure and function. Lastly, the cross-sectional nature of our
measurement does not allow us to ascertain whether enhanced
amygdala–insula resting-state connectivity was present before the
traumatic experience and if so, makes it a potential vulnerability
maker for PTSD.

Despite these limitations, our findings demonstrate that alter-
ations in these connectivity patterns in a network involved in emo-
tional processing and regulation may be relevant to a brain model
of PTSD that involves baseline abnormalities in amygdala–insula
functional connectivity that exist even without task induction.
These findings suggest that the aberrant amygdala and insula acti-
vation to fear-evocative probes previously characterized in PTSD
may be driven by an underlying enhanced connectivity between
amygdala, a region known for perceiving threat and generating
fear responses, and the insula, a region known for processing the
meaning and prediction of aversive bodily states. This enhanced
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amygdala–insula connectivity may reflect an exaggerated, perva-
sive state of arousal that exists outside the presence of an overt,
actual threat/danger. Studying amygdala functional connectivity
“at rest” extends our understanding of the pathophysiology of
PTSD, and the current findings prompt further investigation in
this emerging area of neuroimaging research.
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