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Cognitive changes after menopause are a common complaint, especially as the

loss of estradiol at menopause has been hypothesized to contribute to the higher

rates of dementia in women. To explore the neural processes related to subjective

cognitive complaints, this study examined resting state functional connectivity in 31

postmenopausal women (aged 50–60) in relationship to cognitive complaints following

menopause. A cognitive complaint index was calculated using responses to a 120-item

questionnaire. Seed regions were identified for resting state brain networks important for

higher-order cognitive processes and for areas that have shown differences in volume

and functional activity associated with cognitive complaints in prior studies. Results

indicated a positive correlation between the executive control network and cognitive

complaint score, weaker negative functional connectivity within the frontal cortex, and

stronger positive connectivity within the right middle temporal gyrus in postmenopausal

women who report more cognitive complaints. While longitudinal studies are needed to

confirm this hypothesis, these data are consistent with previous findings suggesting that

high levels of cognitive complaints may reflect changes in brain connectivity and may be

a potential marker for the risk of late-life cognitive dysfunction in postmenopausal women

with otherwise normal cognitive performance.

Keywords: resting state fMRI, functional connectivity, post-menopausal women, subjective cognitive complaints,

subjective cognitive impairment

INTRODUCTION

The perception of a change in cognitive or memory abilities is common in aging. Prior to the last
decade, the meaning of subjective cognitive complaints has been unclear, as subjective cognitive
complaints have not correlated well with objective decline in performance on standardized
neuropsychological assessment (Mendes et al., 2008). However, there is increasing evidence

Abbreviations: SCD, subjective cognitive decline; rsFC, resting state functional connectivity; DMN, default mode network;

DAN, dorsal attention network; VAN, ventral attention network; ECN, executive control network; CCI, cognitive complaint

index; CC, cognitive complainer group; NC, non-complainer group; SRT, selective reminding task.
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to support that reports of subjective cognitive decline (SCD),
even with normal performance on objective cognitive tests, is
associated with increased likelihood of Alzheimer disease (AD)
biomarker abnormalities and with an increased risk for future
cognitive decline and AD (Jonker et al., 2000; Saykin et al., 2006;
Visser et al., 2009; Jessen et al., 2010, 2014a; Reisberg et al.,
2010; Rami et al., 2011; Amariglio et al., 2012; Wang et al., 2013;
Vega and Newhouse, 2014). Although, SCD is non-specific and
could potentially reflect numerous conditions such as normal
aging, psychiatric conditions, neurologic and medical disorders,
substance use, and medication effects (Kim et al., 2003; Reid and
Maclullich, 2006; Elfgren et al., 2010; Slavin et al., 2010; Bartley
et al., 2012; Vega andNewhouse, 2014), current evidence suggests
that subjective memory complaints may be a predictor of later
development of mild cognitive impairment (MCI) and dementia
(Geerlings et al., 1999; Palmer et al., 2003; van Oijen et al., 2007;
Reisberg et al., 2010; Waldorff et al., 2012; Genziani et al., 2013).

Several neuroimaging studies have found structural and
functional brain differences in individuals with and without
subjective cognitive complaints. Cross-sectional studies have
shown reduced hippocampal volume in older adults with
subjective memory complaints but normal performance on
objective memory tests compared to individuals without
subjective memory complaints (Saykin et al., 2006). Jessen and
colleagues also showed reduction in entorhinal cortex volume
in individuals with subjective memory complaints that was
intermediate between healthy controls and patients with MCI
(Jessen et al., 2007). Longitudinal studies have confirmed these
findings and shown that subjective memory complaints have
predicted volume decline in gray matter, particularly in medial
temporal lobe structures (Stewart et al., 2011; Scheef et al.,
2012; Hafkemeijer et al., 2013; Cherbuin et al., 2015). Glucose
metabolism as measured by FDG-PET was shown to be altered
in individuals with subjective memory complaints compared to
controls (Scheef et al., 2012), and Rodda and colleagues found
increased brain activation (BOLD signal) in task relevant brain
regions in both encoding and attention tasks despite normal
performance in older adults (Rodda et al., 2009, 2011). A
longitudinal study found that subjective cognitive complaints
not only predicted a decline in cognitive performance but also
correlated with increased cerebral blood flow as measured by
FDG-PET during a memory task (Hohman et al., 2011).

There is evidence to suggest subjective cognitive complaints
are more common and may be more predictive of later
cognitive dysfunction in women (Pérès et al., 2011). Memory
complaints during or after the menopause transition are
common. Approximately 60% of middle-aged women reported
cognitive changes in the Seattle Midlife Women’s Health Study
(Sullivan andWoods, 2001), and 42% of postmenopausal women
reported a negative change in cognition in the Study of Women
Across the Nation (SWAN) (Bromberger et al., 2011). In addition
to increased cognitive complaints during or after menopause,
women also appear to be at higher risk for AD, particularly if
they carry the APOEε4 allele (Bretsky et al., 1999). Studies that
have examined objective cognitive performance in relation to the
menopause transition have had mixed results (Hogervorst and
Bandelow, 2010; Dumas et al., 2013). One study showed that

subjective cognitive complaints were associated withmenopause-
related physical symptoms, psychological factors, and objective
impairment (Schaafsma et al., 2010). Other studies have shown
that subtle deficits in objective cognitive performance correlated
with some measures of poorer subjective memory performance
(Drogos et al., 2013; Thurston, 2013). Subjective memory
complaints in perimenopausal women were found to be most
associated with working memory and complex attention rather
than verbal episodic learning or memory (Weber et al., 2012)
suggesting that high effort demanding cognitive operations may
lead to the perception of subjective cognitive difficulties. In a
study of working memory examining a subset of participants
used in the current study, Dumas and colleagues (Dumas
et al., 2013) found that women with substantial postmenopausal
cognitive complaints showed greater cortical activity (measured
via BOLD signal) during working memory performance than
womenwithout such complaints despite equivalent performance,
suggesting that cognitive complaints may indicate increased
neural effort, perhaps as a form of compensation.

In addition to task related activity, resting state functional
connectivity (rsFC) has been associated with measures of
cognitive performance and behavioral state (Hampson
et al., 2006; Keller et al., 2015). rsFC is a technique that
can be used to identify brain networks by measuring the
temporal correlations of low-frequency (<0.1Hz) BOLD signal
fluctuations between brain regions while the brain is at rest
(i.e., not actively performing a goal-directed task). These
low-frequency fluctuations are thought to reflect the intrinsic
functional architecture of the brain (Fox and Raichle, 2007).
rsFC has revealed that signals in functionally related brain
regions correlate with each other even in the absence of external
stimuli (Greicius et al., 2003). Differences in the connectivity
of these functionally related brain regions can reflect changes
in structural connectivity or efficiency of constituent brain
circuits (Sheline and Raichle, 2013). rsFC studies have identified
numerous brain networks, the most commonly investigated of
which is the default mode network (DMN) (Raichle et al., 2001;
Greicius et al., 2003). In addition to the DMN, rsFC studies have
identified several other resting state brain networks associated
with higher cognitive functioning (Yeo et al., 2011), such as
the dorsal and ventral attention networks (DAN and VAN,
respectively) (Fox et al., 2006), the salience network (Seeley et al.,
2007), and the executive control network (ECN) (Seeley et al.,
2007; Vincent et al., 2008). Connectivity strength of the DMN,
ECN, Salience, and DAN have been associated with performance
on cognitive tasks (van den Heuvel and Hulshoff Pol, 2010).

Recent studies have suggested that subjective memory
complaints in the elderly may be associated with altered rsFC
(Bajo et al., 2012; Hafkemeijer et al., 2013). Cognitive complaints
after menopause may be a particularly meaningful marker
for early neural dysfunction, especially as loss of estradiol at
menopause has been hypothesized to contribute to the higher
rates of dementia in women. To examine whether subjective
cognitive complaints after menopause show a relationship
to changes in functional connectivity, we examined rsFC in
31 middle-aged, post-menopausal women (aged 50–60) who
were cognitively normal on objective tests, but self-reported
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an experience of cognitive decline since menopause. Since
connectivity strength of the DMN, ECN, Salience, and DAN have
been associated with performance on cognitive tasks in previous
studies (van den Heuvel and Hulshoff Pol, 2010), those networks
were included in the analysis. In addition to the functional
connectivity networks chosen, additional seed regions that
showed structural and functional differences between cognitive
complainers and control groups were also included in the
analysis (Saykin et al., 2006; Wang et al., 2006, 2013; Dumas
et al., 2013). We hypothesized that postmenopausal women
with significant subjective cognitive complaints would show
increased functional connectivity in one or more resting state
brain networks suggesting early neural compensation, potentially
a harbinger of increased risk for late life cognitive dysfunction.

METHODS

Participants
Participants were recruited through notices and advertisements
in local newspapers and direct mailings. Participants were
required to be postmenopausal (i.e., without menses for 1
year and without surgically induced menopause). Exclusion
criteria for all participants included: (1) any active neurologic
and/or psychiatric disease, history of significant head trauma
followed by persistent neurologic deficits, or known structural
brain abnormalities, (2) current major depression or another
major psychiatric disorder as described in DSM-IV (use of
psychotropic medications (e.g., antidepressants), (3) any history
of alcohol or substance abuse or dependence, (4) any significant
systemic illness or unstable medical condition which could lead
to difficulty complying with the protocol including: (4a) history
of myocardial infarction in the past year or unstable, severe
cardiovascular disease including angina or CHF with symptoms
at rest, or clinically significant abnormalities on the ECG (4b)
clinically significant and/or unstable pulmonary, gastrointestinal,
hepatic, or renal disease (4c) insulin-requiring diabetes or
uncontrolled diabetes mellitus, (4d) uncontrolled hypertension
(systolic BP > 160 or diastolic BP > 100), (5) use of hormone
therapy during the last year, (6) a history of breast cancer, and
(7) and a history or presence of severe menopausal symptoms.
Exclusion criteria for MRI scanning included: (1) non-removable
ferromagnetic material on or in the body and (2) claustrophobia.

A total of 53 healthy, post-menopausal were recruited and
screened. Of this sample, 32 women completed a resting state
scan; one participant was eliminated due to a brain abnormality.
Data were analyzed with 31 participants. The current study
was conducted at the University of Vermont (n = 11) and at
Vanderbilt University (n = 20). Both University of Vermont and
Vanderbilt University Institutional Review Boards approved all
study protocols. This study was carried out in accordance with
the recommendations of University of Vermont and Vanderbilt
University Institutional Review Boards with written informed
consent from all participants. All participants gave written
informed consent in accordance with the Declaration of Helsinki.

Cognitive and Behavioral Screening
Upon meeting inclusion and exclusion criteria, participants
were approved for further cognitive and behavioral screening.

After signing informed consent documents, participants gave a
medical history and underwent a physical and laboratory tests
assessing hematopoietic, renal, hepatic and hormonal function.
Participants were cognitively screened using the Mini-Mental
State Exam (MMSE; score ≥ 27; (Folstein et al., 1975), Brief
Cognitive Rating Scale (score ≤ 2) (Reisberg et al., 1988) and
Mattis Dementia Rating Scale (DRS; minimum score 123) (Jurica
et al., 2001) to establish a Global Deterioration Scale score (GDS;
score ≤ 2) (Reisberg et al., 1993) which rates the degree of
cognitive impairment. Behavioral screening consisted of a partial
Structured Clinical Interview (SCID) for DSM disorders (First
et al., 2002) and the Beck Depression Inventory (BDI; score ≤

7) (Beck et al., 1961).

Subjective and Objective Measures of
Memory
To quantify subjective cognition, all participants completed
the Cognitive Complaint Index battery (Saykin et al., 2006)
to establish a cognitive complaint index (CCI) score. The
CCI battery included the Memory Functioning Questionnaire
(Gilewski et al., 1990), Memory Self-Rating Questionnaire
(Squire et al., 1979), Neurobehavioral Function and Activities
of Daily Living Rating Scale (Saykin, 1992), Informant
Questionnaire on Cognitive Decline in the Elderly (IQCDE)
(Jorm et al., 1994), 4 items related to cognition from the
Geriatric Depression Scale (GDS, Yesavage et al., 1982), 12
items from a telephone-based screening for mild cognitive
impairment (MCI), and 20 items from the Memory Assessment
Questionnaire adapted in part from the Functional Activities
Questionnaire. The CCI quantifies the degree to which women
perceived their memory to be problematic (Saykin et al.,
2006; Dumas et al., 2013). Responses to 114 questions were
dichotomized as representing an endorsed or unendorsed
complaint. The CCI score is expressed as the percent of all
items endorsed. Participants were categorized in the cognitive
complaint (CC) group if they endorsed more than 20% of the
items on these questionnaires. Conversely, participants were
categorized in the non-cognitive complaint (NC, n = 16) group
if they endorsed less than 20% of items on the CCI.

The Selective Reminding Task (SRT, Buschke and Fuld, 1974)
was used as the objective memory test. The SRT is a test of
immediate and delayed episodic memory recall. Participants are
read a list of 16 words and must immediately recall the list across
8 trials. Every trial after the first involves selectively reminding the
participant of the words she did not recall on the immediately
preceding trial. The SRT is continued until either the subject is
able to correctly recall all 16 words on three consecutive trials,
or until 8 trials have been completed. Upon completing the
immediate recall portion of the SRT, and after a 20-min delay,
participants are asked to complete a single delayed recall trial.
SRT total immediate recall was analyzed using the number of
correctly recalled words across trials 1–8, total immediate recall
consistency was analyzed using the number of words correctly
recalled on two trials in a row across trials 1–8, SRT total
immediate recall failure was analyzed using the number of words
not recalled two trials in a row across trials 1–8, and total delayed
recall was analyzed using the number of words correctly recalled
after a 20-min delay. Data were analyzed using SPSS to perform
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individual Pearson Correlation Tests between CCI scores and
total immediate recall, total consistency, and total recall failure
across trials 1–8. An additional correlation analysis compared
CCI with total delayed recall.

MRI Image Acquisition and Pre-processing
At the University of Vermont and Vanderbilt, imaging data were
collected using identical 3T Philips AchievaMRI (PhilipsMedical
Systems, Inc., Best, Netherlands) scanners. Both scanners were
identical in software and hardware. Scanner site has been
included in the model for prior analyses using the imaging data
collected at both sites and no significant effect was observed
(Albert et al., 2015). Resting state fMRI was collected in the
absence of external stimuli using an fMRI resting SENSE
sequence (FOV = 240 mm2, matrix size = 80 × 80, 3 × 3 ×

5mm3 voxels, TR = 1500ms, TE = 35ms, flip angle = 90◦,
0mm gap, 5mm slice thickness, 24 axial slices, 256 volumes).
A high-resolution T1-weighted (T1W) fast field echo structural
scan (FOV = 256mm2, 1mm isotropic voxels, TR = 9.8ms,
TE = 4.6ms, flip angle = 8◦, 140 sagittal slices) was collected
to provide a template for image registration. The resting state
scan was acquired after two cognitive and one emotion pictures
task. All functional imaging data passed Vanderbilt in-house
quality assurance evaluating signal-to-noise ratio, percent drift,
percent fluctuation, radius of decorrelation, and percent standard
deviation.

All functional images underwent quality assurance and
standard preprocessing in SPM8 (Wellcome Department of
Imaging Neuroscience, London, UK; http://www.fil.ion.ucl.
ac.uk/spm/), which included slice-timing correction, motion
correction, band-pass filtering (0.01Hz < f < 0.1Hz), T1W-
EPI co-registration, spatial normalization, and spatial smoothing
(6mm FWHM). Individual T1W images were segmented into
gray matter, white matter and cerebrospinal fluid tissue maps;
then the T1W image, functional EPI and tissue maps were
normalized to MNI152 space (Montreal Neurological Institute).

Connectivity Analysis
As previously described (Woodward et al., 2012; Vega et al.,
2015), individual networks were identified per participant
using the Conn toolbox v13 in SPM8, a Matlab-based
functional connectivity toolbox (www.nitrc.org/projects/conn;
Whitfield-Gabrieli and Nieto-Castanon, 2012). Each participant’s
normalized structural and functional images and T1W tissue
maps were used as input into Conn. Importantly, the Conn
toolbox first implements an anatomical, component-based,
noise correction strategy (Compcor) to identify and reduce
physiological and other noise signals that are unlikely to
be related to neural activity (Whitfield-Gabrieli and Nieto-
Castanon, 2012). After regressing out Compcor-identified noise,
the resulting BOLD time series were band-pass filtered (0.008–
0.09 Hz) to further reduce noise and increase sensitivity. The
output matrices of SPM movement were entered into Conn
as first-level covariates. Functional connectivity networks and
their respective seeds used in the analysis are listed in Table 1.
Seeds for each connectivity network were created using theWFU
PickAtlas (http://www.fmri.wfubmc.edu/cms/software, version

TABLE 1 | Functional connectivity networks and respective seeds.

Resting-state

networks/ROIs

Seed region MNI

coordinates

Executive Control Network

(ECN)

Left dorsolateral prefrontal cortex −42, 34, 20

Right dorsolateral prefrontal

cortex

46, 36, 18

Default Mode Network (DMN) Posterior cingulate cortex 1, −55, 17

Dorsal Attention Network

(DAN)

Left superior parietal lobule −27, −52, 57

Right superior parietal lobule 24, −56, 55

Salience Network Left frontoinsular cortex −32, 26, −14

Right frontoinsular cortex 36, 26, −8

CCI-relevant regions Right middle temporal gyrus 50, −8, −16

Left middle frontal gyrus −33, 42, 11

List and coordinates of seed regions. Cognitive Complaint Index (CCI)-relevant areas

refer to regions previously found to be distinguished based on subjective reporting of

cognitive complaints, with higher BOLD activation during a working memory task and

smaller volume.

2.3; Maldjian et al., 2003). The resting state networks listed in
Table 1were chosen because those networks have been associated
with performance on cognitive tasks in previous studies (van den
Heuvel and Hulshoff Pol, 2010). In addition to the resting state
networks, seed regions (referred to as CCI-relevant regions) that
showed structural and functional difference between cognitive
complainers and control groups were also included in the analysis
(Saykin et al., 2006; Wang et al., 2006, 2013; Dumas et al., 2013).

Group networks were identified in SPM8 for positive and
negative connectivity to the seeds. Second level random effects
analyses were used to create within group statistical parametric
maps for each network seed ROI and to examine the relationship
between connectivity and CCI score. For each network, the
within group thresholded maps of positive correlation were
combined across all participants to create a single mask
containing voxels that positively (positive connectivity) or
negatively (negative connectivity) correlated with the seed ROI
at the a priori threshold. These were used to restrict the
regression analysis to only those voxels that positively (positive
connectivity) or negatively (negative connectivity) correlated
with the respective network seeds. All statistical maps were
thresholded at the cluster-level corrected alpha level (p = 0.05)
for the voxel- wise p value (0.001).

RESULTS

Relationship between Demographics and
CCI
Data are summarized in Table 2. Mean CCI and range of scores
were: CC group mean CCI= 0.32, range= 0.20–0.51, NC group
mean CCI= 0.10, range= 0.00–0.19. No significant correlations
were found between CCI score and age, education, years since
menopause, or measures of dementia (DRS andMMSE). CCI was
positively correlated with the Menopause Symptom Checklist
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TABLE 2 | Demographic information and correlation with cognitive

complaint index scores.

Mean ± SD Correlation with cognitive

complaint index scores

Age 56±3.30 r(29) = −0.13, p = 0.48

Education, no. years 16.13±2.30 r(29) = −0.26, p = 0.16

Years Since Menopause 7±5.00 r(29) = −0.6, p = 0.75

Menopause Symptom Checklist 17.35±10.25 r(29) = 0.69, p < 0.01*

Beck Depression Inventory (BDI) 2.9±3.20 r(29) = 0.49, p < 0.01*

Dementia Rating Scale (DRS) 140.9±3.50 r(29) = 0.21, p = 0.25

Mini-Mental State Examination

(MMSE)

28.9±1.20 r(29) = −0.11, p = 0.56

Buschke SRT Total Immediate

Recall

87.8±14.50 r(29) = 0.06, p = 0.75

Buschke SRT Total Recall

Failure

8.9±8.00 r(29) = 0.1, p = 0.60

Buschke SRT Total Delayed

Recall

10.4±3.70 r(29) = 0.04, p = 0.85

*significance at p < 0.01. Data calculated for n = 31 participants.

(r(29) = 0.69, p < 0.01) and BDI (r(29) = 0.49, p < 0.01).
Items on the Menopause Symptom Checklist endorsed by more
than 50% of participants were forgetfulness (71%), hot flashes
(61.3%), sweet cravings (58.1%), early awakening (58.1%), joint
pain (54.8%), and night sweats (51.6%). Items not endorsed
by any participant were bleeding/spotting, decreased appetite,
abdominal cramps, suffocation, panic attacks, fever, vomiting,
breast sensitivity, heavy menstrual flow, and blind spots. Items
on the BDI endorsed by more than 50% of participants were
reduced interest in sex (83.9%), sleep (83.9%), tiredness (58.1%),
and physical appearance (58.1%). Items not endorsed by any
participant were failure, guilt, punishment, and suicidal thoughts.
No differences were observed between CC and NC groups; CCI
score was therefore analyzed as a continuous variable for the
remainder of the analyses.

Relationship between CCI and Objective
Measures of Memory
Several objective measures of cognition (Table 2), calculated
from performance on the SRT, were found to be not correlated
with CCI: immediate recall (r = 0.06, p > 0.7), recall failure (r =
0.1, p = 0.6), and delayed recall (r = 0.04, p > 0.8). In summary,
healthy post-menopausal women who are in middle-age report
a broad range of subjective cognitive complaints. Subjective
cognitive complaints were not correlated with objective measures
of memory, but were correlated with subjective reporting of other
menopause- and age-related changes.

Relationship between CCI and Functional
Connectivity
Identified resting state networks for positive and negative
connectivity to each network’s seed ROI are depicted.
Second level analysis revealed positive correlations (positive
connectivity) between ECN seeds and CCI score (Figure 1).
Participants who, subjectively, reported greater cognitive

complaints demonstrated greater positive connectivity between
the right dorsolateral prefrontal cortex seed ROI and the right
middle frontal gyrus (MNI 36, 10, 60, cluster size = 91 voxels)
and the right fusiform gyrus of the temporal lobe (MNI 58,
−46, −14, cluster size = 51 voxels). There were no negative
correlations between CCI and ECN, and no positive or negative
correlations between CCI and DMN, DAN, or Salience Network
seeds.

Using the CCI-relevant regions as seed ROIs, functional
connectivity networks were identified (Figure 2). As above,
functional connectivity for positive and negative relationships to
the CCI-relevant seed regions was calculated. Relationships were
identified between CCI and two regions shown to be sensitive to
CCI score in previous studies. Functional connectivity between
two regions of the right middle temporal gyrus was positively
correlated with CCI (target region MNI 64, −12, −8, cluster size
= 36 voxels; Figures 3A,C). In the other direction, functional
connectivity between two regions in the left middle frontal
gyrus was negatively correlated with CCI (target region MNI
−2, 58, 10, cluster size = 38; Figures 3B,D). In addition, we
ran an analysis to see if there was any correlation between
connectivity and BDI and menopause symptom checklist scores.
Both greater depressive symptoms (r = −0.54, p = 0.002) and
menopausal symptoms (r = −0.69, p < 0.001) were negatively
correlated with negative connectivity with left middle frontal
gyrus (CCI target region MNI −2, 58, 10, cluster size = 38).
In summary, participants with higher CCI score had stronger
positive functional connectivity within the right middle temporal
gyrus, but also had weaker negative functional connectivity
within the left middle frontal gyrus. Women with greater
depressive symptoms and menopausal symptoms had weaker
negative functional connectivity within the left middle frontal
gyrus.

DISCUSSION

This study demonstrates relationships between rsFC and
subjective cognitive complaints following menopause in
otherwise cognitively normal, postmenopausal women.
Specifically, higher CCI score was associated with greater
functional connectivity in the ECN and within the temporal
lobe, but reduced functional connectivity within the left
frontal lobe. No differences were seen in other networks. We
also observed that women with greater depressive symptoms
and menopausal symptoms had weaker negative functional
connectivity within the left middle frontal gyrus. It is possible
that depressive symptoms and/or menopausal symptoms
could be contributing to the weaker negative functional
connectivity observed within the left middle frontal gyrus.
However, both the BDI and menopause symptom checklist
also contain items that evaluate cognition in addition to mood
and somatic symptoms, therefore it is difficult to disentangle
which symptoms are driving this effect. Previous work from
our group has shown that in a subset of these participants,
women with higher CCI scores had greater cortical activity
in frontal and precuneus regions during a working memory
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FIGURE 1 | Positive correlation between functional connectivity of the ECN and CCI. Data show positive connectivity. (A) Y-axis depicts functional

connectivity between the right seed region for the ECN (dorsolateral frontal cortex) and MNI 36, 10, 60 (right middle frontal gyrus). (B) Y-axis depicts functional

connectivity between the right dorsolateral frontal cortex and MNI 58, −46, −14 (right temporal lobe, fusiform gyrus). (C) Yellow dot indicates the location of the seed

region for the ECN, right dorsolateral prefrontal cortex. (D) Red dot indicates the location of the target region expressing functional connectivity with the dorsolateral

prefrontal cortex in (A) (MNI 36, 10, 60; right middle frontal gyrus). (E) Red dot indicates the location of the target region expressing functional connectivity with the

dorsolateral prefrontal cortex in (B) (MNI 58, −46, −14; right temporal lobe, fusiform gyrus).

FIGURE 2 | Resting state networks of CCI-relevant regions.

task despite equivalent performance (Dumas et al., 2013).
Dumas and colleagues concluded that this increased activation
was a compensation response such that healthy middle-aged

women with subjective cognitive complaints recruited a
greater extent of the working memory network to maintain
task performance. The increased resting state connectivity
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FIGURE 3 | Correlations between functional connectivity of a CCI-relevant region and Cognitive Complaint Index. (A) Y-axis depicts positive functional

connectivity between two regions of the right middle temporal gyrus. (B) Y-axis depicts negative functional connectivity between two regions of the left middle frontal

gyrus. (C) Seed and target regions for connectivity strength in (A). Yellow, seed region; red, target region (MNI 64, −12, −8). (D) Seed and target regions for

connectivity strength in (C). Yellow, seed region; red, target region (MNI −2, 58, 10).

seen in this study may similarly reflect increased cognitive
effort to maintain adequate performance for either normal
or early pathologic cognitive aging processes. Although, we
favor this hypothesis, we acknowledge the preliminary nature
of these findings and the possibility that factors other than
CCs mediate or contributes to the alterations in functional
connectivity observed in this study. Future longitudinal studies
examining connectivity during a task are needed to determine
if increased connectivity does in fact reflect increased cognitive
effort.

Increased connectivity has also been seen in populations
at risk for the development of later life cognitive impairment
(Filippini et al., 2009; Dennis et al., 2010; Sheline et al., 2010;
Westlye et al., 2011). Our findings are consistent in some
respects with those of Hafkemeijer and colleagues (Hafkemeijer
et al., 2013), who found increased resting state functional
connectivity in elderly normal adults with subjective memory
complaints, although the predominant difference between the
groups was found in the DMN and medial visual network
rather than the ECN as was found in the current study.
In the Hafkemeijer et al. study structural measures differed
between the subjective complaint and control groups and
correlated with increased functional connectivity (Hafkemeijer
et al., 2013), however a preliminary structural analysis in

the sample used for this study did not reveal substantial
structural differences in gray matter volumes (unpublished
data). Utilizing magnetoencephalography, Bajo and colleagues
have also documented alterations in functional connectivity
in healthy elderly subjects with increased subjective memory
complaints compared to non-complaining elders and patients
with MCI during the performance of a memory task (Bajo
et al., 2012). Elders with subjective memory complaints
showed lower functional connectivity in memory systems
during task performance compared to cognitively normal
and MCI patients (who showed increased synchronization),
suggesting an initial decrease in functional connectivity,
and later compensation through increased connectivity as
cognitive difficulties progress from subjective to objective
deficits.

Data from the Seattle Midlife Women’s Health Study (Woods
et al., 2000) suggest that nearly half of postmenopausal women
report noticeable cognitive symptoms, including attention,
concentration, and memory problems. Approximately a third
of women reported these problems as at least moderate in
severity. Subjective cognitive complaints in the postmenopausal
period may be a useful index of developing cognitive and/or
brain dysfunction. Older adults with subjective cognitive
complaints but normal cognitive performance have been shown
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to convert to dementia at higher rates than those without
complaints (Reisberg et al., 2010) and have structural and
functional changes in the brain that may indicate developing
neurodegenerative disorders (Saykin et al., 2006; Rodda et al.,
2009; Lamar et al., 2011). Cognitive complaints have also
been associated with the menopause transition (Weber and
Mapstone, 2009) and related to poorer working memory and
encoding performance, while data showing objective cognitive
impairments after menopause are inconsistent (Hogervorst and
Bandelow, 2010).

Women who notice significant cognitive disruption following
menopause may be vulnerable to disruption of cholinergic
or other brain systems due to lower cognitive reserve, early
neurodegeneration, or other factors. Thus, the loss of estrogen
support at menopause may be more noticeable in terms of
cognitive processes, particularly attention, executive function,
and verbal memory in these vulnerable women. Cognitive
complaints or changes in cognitive performance after menopause
may be an important indicator of risk for late life cognitive
impairment. Accumulating evidence suggests that subjective
cognitive complaints have significant predictive value in assessing
the risk of development of dementia in elderly individuals (Jessen
et al., 2014b). Whether such complaints in the first few years after
menopause can be similarly used to identify those at increased
risk for cognitive dysfunction or dementia in late life will require
longer follow-up, but early changes in brain connectivity as
shown in this study or changes in task-related cortical activity
(Dumas et al., 2013) suggest that the neural manifestations of
early cognitive change may be apparent many years prior to the
development of measurable cognitive impairment. Information
from longitudinal brain aging studies has suggested that it is
possible to identify a subgroup of otherwise normal individuals in
middle-age who show evidence of pathologic brain changes (e.g.,
increased beta amyloid deposition) who may be expected to be
at elevated risk for the development of AD later in life (Rodrigue
et al., 2012). Previous studies indicate that in cognitively normal
older adults, amyloid burden is increased in individuals with
cognitive complaints (Amariglio et al., 2012; Perrotin et al.,
2012).

Successful decision-making and action depend on accurately
evaluating the success of basic cognitive processes that contribute
to thought and behavior, a capacity known as “metacognition”
(Metcalfe and Shimamura, 1994). Memory self-efficacy can
be regarded as an aspect of metamemory or metacognition.
Subjective memory complainers have a lower rating of their
own memory capacity and therefore a lower memory-related
self-efficacy than people without subjective memory complaints
(Ponds et al., 1992; Ponds and Jolles, 1996). Furthermore, low
memory self-efficacy is a key features of memory complainers
(Metternich et al., 2009). The current findings suggest that
subjective cognitive complainers may have some impairment
in metacognition. Medial and lateral networks in anterior
prefrontal cortex (aPFC) support metacognitive ability for
memory and perception (Baird et al., 2013). BOLD signal

in right posterior-lateral BA10 was positively correlated with
metacognitive accuracy (Yokoyama et al., 2010). Convergent
evidence indicates that frontopolar Brodmann area 10, and
more generally the aPFC, support the human capacity to
monitor and reflect on cognition and experience (Fleming
and Dolan, 2012; Baird et al., 2013). Prefrontal cortex
integrity seems to play an essential role in metacognitive
judgments. The negative correlation between connectivity
in the left middle frontal gyrus and CCI in this study
may indicate that metacognitive impairments in subjective
cognitive complainers are related to decreased connectivity
with aPFC. Impairment of prefrontal cortex integrity may lead
to metacognitive dysfunction, in response to which subjective
cognitive complainers may use more neural resources to
compensate than non-complainers (Dumas et al., 2013). This
compensation explanation may be relevant to the finding of
increased functional connectivity within the medial temporal
lobe in MCI (Das et al., 2013).

Since the loss of estradiol is the critical hormonal event with
impact on brain function that occurs at menopause, the question
of whether a period of hormonal treatment could alter either the
cognitive complaints or the neural representation of the cognitive
complaints (increased connectivity and task-related activity)
deserves further study. The “critical period hypothesis” (Resnick
and Henderson, 2002; Maki, 2006; Sherwin, 2006, 2007) suggests
that estradiol has maximal protective benefits on cognition in
women when it is initiated proximal to the menopause but may
be ineffective when initiated many years or decades later. What
has not been clearly established is whether there is a subgroup
of women for whom postmenopausal hormone treatment has
more long-term benefits on cognition. Whether individuals with
cognitive complaints following menopause are at higher risk
for age-related cognitive decline and/or cholinergic dysfunction
and would benefit from postmenopausal estradiol treatment will
require further study.
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