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Cell-cell interactions and cell adhesion are key mediators of cancer progression and

facilitate hallmarks of cancer including immune evasion and metastatic dissemination.

Many cell adhesion molecules within the tumor microenvironment are changed and

significant alterations of glycosylation are observed. These changes in cell adhesion

molecules alter the ability of tumor cells to interact with other cells and extracellular matrix

proteins. Three families of cell-cell interaction molecules selectins, Siglecs, and integrins

have been associated with cancer progression in many pre-clinical studies, yet inhibition

of cell adhesion as a therapeutic target is just beginning to be explored. We review how

cell-cell interactionsmediated by integrins and the glycan-binding receptors selectins and

Siglec receptors support cancer progression. The discussion focuses on mechanisms

during immune evasion and metastasis that can be therapeutically targeted by blocking

these cell-cell interactions.
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INTRODUCTION

Cancer progression induces immune evasion and eventually metastasis, a process consisting of
several steps enabling tumor cells to leave the primary tumor, to intravasate and survive in the
circulation, to extravasate and seed in distant organs and to initiate growth of metastatic lesions.
Tumor cell interactions with other cells in the environment contribute to immune evasion and
metastasis at every step of this process. Adhesion molecules, on any cell, mediate interactions
with other cells and the extracellular matrix in the microenvironment (1, 2). Since cell adhesion
receptors are connected to signal-transduction pathways, these cell-cell and cell-matrix interactions
modulate cell phenotype, proliferation, differentiation, survival, and migration. Consequently,
changes in expression of cell adhesion molecules and their ligands directly affect immune evasion
and metastasis.

Malignant transformation changes not only the expression of cell adhesion molecules but
also causes profound changes in cell surface glycosylation (3, 4). Cancer-associated glycosylation
promotes the interaction of tumor cells within a microenvironment through glycan-binding
receptors–lectins (5). Glycans are oligosaccharide structures presented on protein and lipids.
Endogenous lectins expressed on immune cells and other cells in the stroma, facilitate
cell-interactions, -adhesions, thereby contributing to homeostasis. During malignancy, glycans on
tumor cells are involved in invasiveness, metastasis, and immune suppression (6–8).

Several families of cell adhesion molecules including cadherins, integrins, junctional-adhesion
molecules, and selectins are altered during tumorigenesis. This mini review addresses the role of
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cell adhesion and glycan-mediated interactions during metastasis
and tumor-induced immune suppression in the context of altered
glycosylation as a ubiquitous characteristic of cancer progression
with a focus on integrins, selectins, and siglecs.

SELECTINS CONTRIBUTE TO CANCER
PROGRESSION

Selectins are vascular cell adhesion receptors present on
leukocytes, endothelial cells, and platelets that bind to glycans.
The physiological function of selectins is to facilitate the initial
tethering of leukocytes at inflammatory sites or secondary
lymphoid organs or hemostasis (9, 10). There is accumulating
evidence for the involvement of selectins in pathophysiological
processes, including cancer metastasis (11, 12). There are three
members of the selectin family: P-selectin expressed on activated
platelets and endothelial cells, L-selectin present on leukocytes,
and E-selectin expressed on activated endothelial cells (10).
Upon activation, P-selectin is rapidly presented on the surface
of activated endothelial cells or platelets through exocytosis
of storage granules. E-selectin is present only on activated
endothelial cells and its expression is regulated on a transcription
level. L-selectin is constitutively expressed on most subsets
of leukocytes.

FIGURE 1 | Cell adhesion facilitates tumor cell survival in the circulation and tumor cell extravasation. Tumor cells in the circulation interact through selectins and

integrins with blood constituents (platelets, leukocytes, and endothelial cells). (1) platelet-tumor cell aggregate formation is mediated by both P-selectin and integrins

through fibrin and fibrinogen. (2) The survival of circulating tumor cells is further enhanced by aggregation with neutrophils that promote tumor cell proliferation (17).

Whether L-selectin or integrins mediate these interactions remains to be determined. (3) Tumor cell interaction with the endothelium, leading to adherence, is

mediated by P-and E-selectins, and tumor cell firm adhesion is facilitated by integrins, and their interaction, for example with VCAM-1 on tumor cells. (4) Tumor

cell-endothelial interaction directly or facilitated by monocytes, contribute to the initiation of tumor cell extravasation. This process is dependent both on E-selectin and

integrin engagement.

Selectins are C-type lectins that bind to properly modified
glycan ligands, carrying terminal sLex or sLea structures. Selectin
binding to glycans usually requires a protein scaffold that
presents selectin ligands in clusters (13). The best characterized
selectin ligand is P-selectin glycoprotein ligand 1 (PSGL-1) (9,
10). All three selectins bind to PSGL-1 that is mostly expressed in
leukocytes. In addition, selectins binds to these glycan moieties
carried on several cell surface proteins, such as CD44, E-
selectin ligand-1, CD43, CD34, or addressins with a variable
specificity (14).

There is compelling experimental and clinical evidence for
the enhanced expression of sLex and sLea to correlate with
poor prognosis due to enhanced metastasis in tumors of gastric,
pancreatic, colon, prostate, renal, lung, and melanoma cancers

(4, 15). Enhanced expression of selectin ligands is linked to
increased activities of glycosyltransferases, responsible for the
terminal synthesis, sialyltransferases, and fucosyltransferases.
Major carriers of selectin ligands are mucins that are heavily
O-glycosylated (16). MUC1, MUC2, MUC4, and MUC16 are

mucins associated with cancer progression, whereas MUC16
is also used for cancer diagnostics. However, the spectrum of

selectin ligands on tumor cells is rather broad, encompassing

glycolipids, proteins, and glycosaminoglycans (4).
During the hematogenous phase of metastasis, tumor cells

carrying selectin ligands (Figure 1) enter the blood circulation
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and encounter selectins on platelets, leukocytes, and on the
endothelium (14). Tumor cells in the circulation are often
associated with platelets that protects them from the immune
system (18), and enables tumor cell seeding in distant organs
(19). The absence of P-selectin abrogates platelet-tumor cell
aggregation and consequently attenuates metastasis (20). In
addition to P-selectin, platelets also express CD40 on their
surfaces, which upon binding to the CD40 ligand accelerate
endothelial inflammation and atherosclerosis (21). Platelet-
leukocyte aggregate formation resulted in a release of IL-1β
by leukocytes. CD40 deficiency in the blood compartment
attenuated experimental lung metastasis (22), indicating a
potential involvement of platelet CD40 in cancer progression.
Tumor cell arrest in the vasculature induces local activation
of the endothelium and results in expression of E-selectin
and chemokines (12, 23). Chemokine-driven recruitment of
inflammatory monocytes to metastasizing cells was shown to
promote metastasis in different cancers [reviewed in (24)].
E-selectin has been shown to promote tumor cell adhesion
and thereby metastatic dissemination (14, 25, 26). Enhanced
expression of E-selectin ligands on human breast cancer
cells, such as CD44, promotes homing to the microvascular
endothelium and metastasis (27).

Selectins not only mediate tumor cell adhesion but actively
contribute to the formation of a metastasis niche (28,
29). Effective tumor cell extravasation in the lungs requires
engagement of E-selectin on activated endothelial cells, which is
essential for the loosening of endothelial VE-cadherin junctions
(28). E-selectin promotes the recruitment of inflammatory
monocytes, Ly6Chi cells that facilitate transendothelial migration
of tumor cells (Figure 1). The opening of endothelial junctions
was shown to be dependent on the Src kinase pathway that
induces E-selectin expression (30). Recently, E-selectin in the
bone marrow vascular niche was shown to promote metastasis
by inducing mesenchymal-epithelial transition of breast cancer
cells through the activation of Wnt signaling (29). Tumor cell
expression of fucosyltransferase-7, required for E-selectin ligand
formation, is essential for the formation of bone metastasis.

L-selectin-mediated recruitment of leukocytes promotes both
tumor cell extravasation and the formation of a metastatic
niche (28, 31, 32). Tumor-induced endothelial activation is
associated with selectin ligand accumulation required for the
L-selectin dependent recruitment of myeloid cells (31), which
were later identified to be inflammatory monocyte Ly6Chi

cells (33, 34). Interestingly, the presence of selectin ligands on
leukocytes is also required for their effective recruitment to
the metastatic sites (34). L-selectin facilitates the recruitment
of T-cells to the lymph nodes. An engagement of a T cell
receptor leads to the shedding of L-selectin from the cell
surface of T cells (35, 36). Notably, cytotoxic/memory T cells,
with L-selectin expression, better controlled tumor growth (37,
38). Sustained L-selectin expression on NK cells was shown
to control tumor progression (39). Recently, the role of L-
selectin on T cells was investigated in a transgenic mouse
model that expressed non-cleavable L-selectin (40). T cells with
constitutive expression of L-selectin suppressed lung metastasis.
However, how L-selectin on T and NK cells contributes to

the immune suppressive activity during metastasis remains to
be defined.

SIGLEC-MEDIATED IMMUNE
SUPPRESSION IN CANCER

The cell surface glycans of mammalian cells commonly terminate
with sialic acid (41). These sialylated structures, also called
sialoglycan can engage various endogenous receptors including
sialic acid-binding immunoglobulin-like lectins (Siglecs) (7, 42–
44). Siglecs are mostly inhibitory receptors with an extracellular
part that contains an N-terminal carbohydrate recognition
domain (CRD) and a variable number of C2 domains (44).
The intracellular part of inhibitory Siglecs contains ITIM or
ITIM-like structures mediating immune inhibition (7, 42–44).
Activating Siglecs have a positively charged amino acid in the
transmembrane domain that mediates interaction with DAP12
upon Siglec engagement (7, 42–44). In humans, 14 different,
functionally active Siglecs were identified. The conserved Siglecs
Siglec-1 (sialoadhesin), CD22 (Siglec-2), Siglec-4 (MAG), and
Siglec-15 have orthologs across different mammalian species
(45, 46). CD33-related Siglecs, however, have undergone rapid
evolutionary adaptation (45, 46). This subfamily includes CD33
(Siglec-3), Siglec-5, Siglec-6, Siglec-7, Siglec-8, Siglec-9, Siglec-10,
and Siglec-11 (45, 46). In mice, no direct orthologs of human
CD33-related Siglecs can be found, but functional paralogues
with similar expression patterns can be defined (47).

Siglec receptors are predominantly expressed on immune cells
(7, 42–44). Inhibitory Siglec receptors can modulate immune
cell activation by recruitment of SHP1 and SHP2 phosphatase
upon binding to sialoglycans (7, 42–44). Binding-specificity
varies between different Siglecs. While Siglec-9 has quite a broad
binding spectrum (47, 48), Siglec-8 binds a rather restricted set
of sialoglycans which also contain sulfate groups (49, 50). The
binding spectrum and the expression patterns determine the
function of Siglecs.

Recent evidence has shown that tumor cells can also engage
the sialoglycan-Siglec axis to evade immune control (7, 47,
51–56). In many cancer types, the glycocalyx and also the
tumor microenvironment are characterized by an enhanced
presence of sialoglycans due to changes in sialic acid-modifying
enzymes including sialic acid synthesis genes, transporters,
sialyltransferases, and sialidases (57–59). Moreover, enzymes
such as O-acetylases can directly modify the sialic acid residues
(57–59). This upregulation of sialoglycans in some cancers is
termed hypersialylation, which is quite heterogenous between
different cancer types but also within a specific cancer type.
In lung cancer, we have observed considerable heterogeneity
of sialoglycan ligands for Siglec-7 and Siglec-9 (51). Similar
observations were made in melanoma samples (52). How
sialylation differs within a single cancer patient and how
hypersialylation evolves during different treatments and during
cancer progression over time remains to be determined.

The increased density of sialoglycans can lead to engagement
of inhibitory Siglec receptors on immune cells and modulate
the immune response to cancer (Figure 2). Both innate and
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adaptive immune cells can be regulated by the sialoglycan-
Siglec checkpoint. Human NK cells express inhibitory Siglec-
7 and some subpopulations of NK cells also express Siglec-9
(54, 55). Engagement of Siglec-7 and/or Siglec-9 can inhibit
NK cell-mediated tumor cell killing in vitro (54, 55). The
introduction of a synthetic sialoglycan polymer into the
glycocalyx of target cells led to a significant decrease in the
NK cell-mediated killing of cells lacking MHC I expression
and a reduced antibody-dependent cellular cytotoxicity (54).
Antibodies blocking Siglec-7 or Siglec-9 resulted in increased
tumor cell killing (55). In addition, sialic acid-dependent NK
cell inhibition was also observed in a humanized mouse model
(55). Macrophage polarization is also influenced by a sialoglycan-
Siglec pathway (47, 56). Alternative M2 polarized macrophages
produce cytokines suppressing anti-cancer immunity, secrete
pro-angiogenic factors, enhance tumor cell invasion, and thereby
promote cancer progression (60, 61). Binding of sialylated,
cancer-associated MUC1 to Siglec-9 led to a polarization to M2
macrophages in vitro (56). However, studies in Siglec-E deficient
mice showed a propensity of Siglec-E deficient macrophages
to polarize to M2 macrophages (47). Macrophages express
various Siglecs including Siglec-3, Siglec-5/-14, Siglec-7, Siglec-
9, and Siglec-10 with some overlapping binding spectra (7, 42–
44). The exact function of sialoglycan-Siglec interactions on
the influence of pro- and anti-tumorigenic effects of tumor-
associated macrophages certainly require further studies. For
example, Siglec receptors could also act as potential “don’t
eat me” signals that inhibit macrophage-mediated phagocytosis
(62). Conserved Siglec-15 was identified in a screening of
surface markers on antigen-presenting cells that could inhibit
T cell activation (63). Antibodies against Siglec-15 tested in a
murine tumor model led to enhanced anti-cancer immunity

(63). Antibodies were humanized and early clinical trials are
being planned.

Recent work provided evidence that Siglec receptors are
expressed on platelets in both humans and mice (64, 65).
Engagement of Siglec-9 or Siglec-E on platelets increased the
infectivity of group B streptococci by modulation of platelet
activation (64). One could hypothesize that interactions of tumor
cell-sialoglycans could also modulate platelet activation and
influence metastatic progression.

Two recent studies have found that the sialoglycan-Siglec
glyco-immune checkpoint influences activation of tumor-
infiltrating lymphocytes (TILs), particularly cytotoxic CD8+ T
cells (51, 52). We have found that TILs upregulate different
inhibitory CD33-related Siglecs, predominantly Siglec-9 in
patients with non-small cell lung cancer, colorectal cancer,
epithelial ovarian cancer and melanoma (51, 52). Healthy
peripheral blood T cells, however, were not expressing these
inhibitory receptors, as described earlier (51, 52). Siglec-E was
upregulated on tumor-infiltrating T cells in murine tumor
models (51). Inhibition of the sialoglycan-Siglec axis with
blocking antibodies or genetic models enhances T cell-mediated
anti-cancer immunity in vitro and in vivo (51, 66, 67). These
results directly implicate that Siglec-9 is a new target that can
improve anti-tumoral T cell activation.

Targeting the sialoglycan-Siglec glyco-immune checkpoint
can be achieved by using Siglec-blocking antibodies. Another
approach is the reduction of the ligand-density by targeting
sialoglycans. Using a sialic acid mimetic that inhibits
intratumoral sialoglycan production led to enhanced T
cell-mediated anti-tumor immunity (68). Similar findings
were observed with tumor cell lines with defects in sialic acid
biosynthesis (51, 69). An elegant therapeutic approach is the

FIGURE 2 | The sialoglycan-Siglec glyco-immune checkpoint involves cells of the innate and the adaptive immune response. Cancer-associated sialoglycans on the

surface of tumor cells but also within the tumor microenvironment can mediate immune evasion by engaging Siglec receptors on cells of the innate (NK cells, myeloid

cells, and macrophages) and the adaptive (T cells) immune system. Inhibitory Siglec receptors, for example Siglec-9, can inhibit T cell activation by modulating

signaling of the T cell receptor. Similarly, NK cell activation and tumor cell killing can be reduced by inhibitory Siglecs such as Siglec-7 and Siglec-9. Interactions of

cancer-associated sialoglycans can also regulate myeloid cells and tumor-associated macrophages by influencing the polarization of TAMs and potentially influencing

macrophage-mediated phagocytosis via inhibitory Siglec receptors.
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use of sialidases fused to tumor-targeting antibodies that, upon
systemic application, mediate hyposialylation of the tumor
microenvironment. Xiao et al. have used the anti-HER2 antibody
trastuzumab fused with a bacterial sialidase which was shown
to increase tumor cell killing in vitro (70) and is currently being
tested in pre-clinical mouse models.

INTEGRINS DURING TUMOR CELL
DISSEMINATION AND METASTATIC
COLONIZATION

Integrin binding to the components of extracellular matrix
(ECM) enables the cell “to sense” the environment and
to activate intracellular signaling, which modulates cellular
behaviors including survival, proliferation, and migration;
thereby sustaining homeostasis. During malignancy, altered
expression of integrins together with the loss of cell polarity
profoundly changes the cell signaling, which alters oncogenic
activity, cell stemness, epithelial plasticity, and angiogenesis
[reviewed elsewhere (2, 71, 72)].

The integrins comprise a family of heterodimeric α/β integrin
receptors, which facilitates contacts with components of the
extracellular matrix (ECM) and in some cases with adhesion
receptors on other cells. A particular integrin receptor with
a preference for a specific ligand defines a cell based on the
recognition of ECM (e.g., fibronectin, laminin, or collagen).
Two receptors, vascular cell adhesion molecule 1 (VCAM1),
and intracellular cell adhesion molecules (ICAMs) serve as cell
surface receptors for integrins. Integrin-based adhesion of a
cell facilitates intracellular adaptor proteins that recruit kinases,
for example focal adhesion kinase (FAK) or Src family kinases;
and induces signal transduction (2, 72, 73). Conversely, external
signals (growth factors or cytokines) may change the intracellular
recruitment of integrins resulting in the modulation of integrin
affinity. Integrins can initiate pro-survival but also pro-apoptotic
signals (74–76).

A variety of integrins expressed on tumors that originate from
epithelial cells, typically facilitate cell adhesion to the basement
membrane. Tumor cell surface expression of integrins can vary
widely, but is generally associated with the enhanced presence
of αvβ3, αvβ6, α5β1, α6β4 which correlates with the metastatic
progression in melanoma, prostate, pancreatic, colon, lung,
and breast cancers [reviewed in (73)]. Importantly, integrins
within the tumor microenvironment present on endothelial cells,
leukocytes, platelets, and other cells of the stroma significantly
modulate tumor progression and particularly metastasis.

During the hematogenous phase of metastasis tumor induced
platelet activation and the formation of platelet-and fibrin-
rich tumor cell thrombi (Figure 1), are mediated both by
integrins and selectins (18, 77–80). In particular, susceptibility
to metastasis is associated with tumor cell-derived deposition
of certain ECM proteins, such as tenascin C (TNC) in the
metastatic niche. TNC is a ligand for β1- and β3-integrin and
its accumulation in the lungs promotes tumor cell outgrowth
and metastasis (81). Osteosarcoma metastasis to the lungs is
dependent on TNC expression and the respective expression

a receptor on tumor cell α9β1 integrin (82). The trabecular
bone rich in TNC was shown to promote prostate homing
of cancer metastasis through α9β1 integrin (83). Metastatic
lung colonization was associated with an induction of stromal
periostin expression that is recognized by β1 and β5 integrins on
tumor cells (84).

Integrins also contribute to the formation of a tumor
microenvironment. The systemic absence of β4 integrin resulted
in the attenuation of tumor growth due to impaired angiogenesis
(85). Tumor-induced lymphangiogenesis promotes metastasis
to the lymph node through the activation of α4β1 integrin
on lymphatic endothelium, which binds to VCAM1-positive
tumor cells (86). In addition, myeloid cells expressing α4β1
integrins accumulate on the tumor-activated endothelium and
promote metastasis (87). Antagonist of α4β1 integrin blocked the
recruitment of myeloid cells and thereby angiogenesis and tumor
growth. The aberrant expression of VCAM-1 on dormant tumor
cells in bone marrow was shown to recruit α4β1-expressing
osteoclast progenitors during bonemetastasis (88). It has recently
been demonstrated that chemoresistant disseminated tumors
occupying the perivascular niche, interacts through β1-integrin
with VCAM-1 on endothelial cells (89). The inhibition of β1-
integrin or VCAM-1 sensitizes tumor cells to chemotherapy,
making integrin inhibition a viable therapeutic approach to
prevent metastasis.

Tumor cell expression of αvβ3 of α4β1 integrins is linked to
bone metastasis, where they support tumor cell adhesion to ECM
proteins such as osteopontin or type I collagen (90). Melanoma
cells expressing α4β1 integrins metastasized to lymph nodes
(Figure 1) by binding to VCAM-1 on lymphatic endothelial
cells (91). Tumor cell α3β1 integrin facilitates metastasis by
binding to the exposed basement membrane protein laminin-
5 in the lungs, thereby promoting tumor cell arrest and the
onset of outgrowth (92, 93). Recently, integrins on tumor-
derived exosomes were shown to drive the organotropism
of tumor metastasis (94). Tumor-derived exosomes carrying
α6β4 integrin, target a laminin-rich lung microenvironment,
where they induce the accumulation of pro-inflammatory
factors required for the promotion of tumor cell seeding and
metastasis. While tumor cells do not express leukocyte-specific
β2 integrins, for example LFA-1, tumor cells that express
ICAM-1 facilitate their adherence to leukocytes, particularly
neutrophils, through β2 integrins, which in turn bind to the
endothelium, thereby promoting metastasis (95, 96). The role
of integrins during cancer is dependent on cues in a tissue
context-dependent manner.

Altered glycosylation of integrins on tumor cells modulate
the intracellular signaling and cell adhesion (97, 98). An
overexpression of branched β1,6-N-acetylglucosamine (GlcNAc)
on N-glycans, which is catalyzed by a GnT-V enzyme, is
associated with poor prognosis (99), while a knock-down of
GnT-V in breast carcinoma cells result in reduced invasiveness
(100). Increased branched N-glycans on α3β1 integrins in
B16 mouse melanoma correlated with lung metastasis (101).
Galectins are a family of β-galactoside-binding soluble lectins
expressed by tumor cells. The N-glycan on integrin induces the
complex formation of α6β4 integrin/EGFR/ galectin-3 which
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promotes integrin clustering and cell migration and proliferation
(102, 103). Galectin-3 induced αvβ3 integrin-mediated clustering
was shown to cause tumor growth and drug resistance (104).
Mechanistically, unbound αvβ3 integrin on tumor cells recruits
KRAS to the cell membrane and activates downstream signaling
through the NF-κB pathway and promotes pancreatic carcinoma.
In hepatocellular carcinoma metastasis, O-glycosylation of β1
integrin influences tumor migration (105). Terminal sialylation
on N-glycans and O-glycans of glycoproteins is frequently
observed in cancer (44, 59, 106). Hypersialylation detected
in colon, stomach, and ovarian cancers has been linked to
an enhanced expression of α2,6-sialyltransferase (ST6Gal-I)
and is identified as a marker of poor prognosis (106). In
colon carcinoma, enhanced sialylation of β1 integrin facilitates
adhesion to collagen I and the migration of tumor cells (107).
Accordingly, inhibition of ST6Gal-I expression blocks collagen
binding and tumor cell migration. Desialylation of O-glycans by
sialidase NEU1 suppresses colon-tumor cell adhesion to laminin,
tyrosine phosphorylation of integrin β4 and metastasis (108).
However, in breast cancer cells the α2,6 hypersialylation of β1
integrin decreased the adhesion but did not affect invasiveness
of these cells (109). These data indicate that glycosylation
of integrins modulates adhesion, migration, and signaling of
metastatic cells.

CONCLUSIONS AND FUTURE
DIRECTIONS

Alterations in cell adhesion and cell-cell interactions of tumor
cells are inherently linked to many processes associated with
immune evasion and metastasis that go beyond the scope
of this review. The very nature of adhesion receptors on
cells to interrogate signals from outside makes the tumor

microenvironment a crucial factor during immune evasion
and metastasis. The biology of cell adhesion during cancer
progression remains complex mainly due to: (a) several receptors
likely act in parallel during any metastasis; (b) cell surface
changes are linked to tumor heterogeneity; (c) diverse tumor
glycosylation affect both receptors and ligands. Nevertheless, the
potential to target cell adhesion mechanisms for tumor therapies
is continuously being explored. For instance, fusion of a IL-2
cytokine with an Fc part of an antibody targeting RGD sequence
of an integrin demonstrated promising results in mouse models
when applied in combination with a PD-1 checkpoint blockade
inhibitor (110). Another study has demonstrated that fucosylated
nanoparticles can target irradiation-activated vasculature of the
tumor, associated with enhanced P-selectin expression (111).
Altered tumor glycosylation is a common culprit that contributes
to tumor cell dissemination and immune suppression. Thus,
further efforts to “edit” the tumor glycosylation landscape
using sialidase and thereby changing the Siglec immune
responsiveness or metastasis holds great potential in clinical
applications (70). Nevertheless, further understanding of the
tumor microenvironment is a prerequisite for designing an
intervention on cell adhesion mechanisms that will be likely used
in combination either with standard- or immune-therapy.
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