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Objective: Hemifacial spasm (HFS) is a kind of motor disorder, and the striatum plays a

significant role in motor function. The purpose of this study was to explore the alterations

of the cortical-striatal network in HFS using resting-state functional magnetic resonance

imaging (fMRI).

Methods: The fMRI data of 30 adult patients with primary unilateral HFS (15 left-side

and 15 right-side) and 30 healthy controls were collected. Six subregions of the striatum

in each hemisphere were selected for functional connectivity (FC) analysis. One-sample

t-test was used to analyze the intragroup FC of the HFS group and the control group.

Two-sample t-test was used to compare the difference of FC between the two groups.

The correlation between the abnormal FC and severity of HFS was evaluated by using

the Spearman correlation analysis.

Results: Compared with the controls, the striatal subregions had altered FC with motor

and orbitofrontal cortex in patients with HFS. The altered FC between striatal subregions

and motor cortex was correlated with the spasm severity in patients with HFS.

Conclusion: The FC of the cortical-striatal network was altered in primary HFS, and

these alterations were correlated with the severity of HFS. This study indicated that

the cortical-striatal network may play different roles in the underlying pathological

mechanism of HFS.

Keywords: hemifacial spasm (HFS), striatum, functional connectivity, motor disorder, resting-state fMRI

INTRODUCTION

Hemifacial spasm (HFS) is a syndrome of involuntary contraction of facial muscles innervated
by ipsilateral facial nerves (Palacios et al., 2008), which can gradually affect facial expressive
muscles and platysma muscles (Lu et al., 2014). Primary HFS is believed to be caused by vascular
compression of the facial nerve at its root exit zone (Hermier, 2018), but the central mechanism is
still not clear. Studies have found that depression and anxiety are more common in patients with
HFS (Huang et al., 2009; Rudzińska et al., 2012). Striatum plays a prominent role in modulating
motor activity and higher cognitive function (Rosen andWilliams, 2001). However, the exact neural
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mechanism of the striatum in the regulation of motor in
patients with HFS still remains unexplored. Early identification
of functional changes in the cortical-striatal loop of patients
with HFS can help to understand disease pathogenesis and
achieve early diagnosis as well as effective treatments. This study
was aimed to investigate the altered cortical-striatal network
in patients with primary HFS, using resting-state functional
magnetic resonance imaging (fMRI).

As part of the extrapyramidal system, the striatum is integral
to the motor, cognitive, and emotion regulation functions (Di
Martino et al., 2008). The subregions of the striatum, such as
putamen, caudate, and ventral striatum, also are associated with
different brain functions. Previous anatomical and neuroimaging
studies of the striatum have shown that the putamen mainly
receives projections from the sensorimotor cortex, and the
caudate receives projections from the associated cortex, while the
ventral striatum receives projections from the medial prefrontal
cortex, orbitofrontal cortex (OFC), and limbic system (Lehericy
et al., 2004; Draganski et al., 2008; Choi et al., 2012).

Based on these facts, striatum would be able to exhibit
profound influences in motor disorders. For example, as one part
of the striatum, putamen can regulate the amplitude and velocity
of muscle contraction via the cortical-striatal loop and the
dopamine system, and therefore plays a significant role in some
motor disorders, including Parkinson’s disease and Huntington’s
disease (Grillner et al., 2005; Loonen and Ivanova, 2013). The
abnormal functional connectivity (FC) between the striatum and
the motor cortex was also found in patients with motor disorders
(Hacker et al., 2012; Unschuld et al., 2012; Luo et al., 2014).
In Parkinson’s disease, after the substantia nigra degeneration,
the content of dopamine in the striatum is also decreased
(Schroeder et al., 2020), and in addition to the abnormal striatum-
substantia nigra loop, the cortex-striatum loop may also be
abnormal (Helmich et al., 2010). These results further highlight
the significance of the striatum in the development of motor
disorders. Besides, the researchers have used FC analysis to study
the function of striatal subregions in healthy people (Di Martino
et al., 2008), patients with Parkinson’s disease (Helmich et al.,
2010; Hacker et al., 2012), depression (Gabbay et al., 2013; Felger
et al., 2016), autism (Padmanabhan et al., 2013), and obsessive-
compulsive disorder (Harrison et al., 2009), and the mechanisms
of central alterations in different subregions of the striatum have
been revealed.

Current resting-state fMRI studies of HFS are limited, and
the results are diverse. The regional homogeneity (ReHo) index
has been used in most previous studies to indicate time-domain
coherence between neighboring voxels in the brain. Researchers
have found ReHo abnormalities in the motor cortex, frontal
lobes, and cerebellum in patients with HFS (Tu et al., 2015;
Wei et al., 2015; Lu et al., 2018), and no ReHo alterations in
the striatum, probably due to the small sample size and the
different meanings between the analysis indexes, i.e., ReHo and
FC. However, one study reported that patients after infarction of
the caudate, one of the subregions of the striatum, presented with
HFS, suggesting that the striatum may play an important role in
the development of HFS (Arunabh, Jain and Maheshwari, 1992).
In addition, another study on facial nerve palsy found altered

FC between the striatum and motor cortex after facial muscle
paralysis, further affirming the relationship between the striatum
and facial muscle movement (Song et al., 2017). To the best of
our knowledge, there are few earlier studies on HFS using the FC
analysis method. One study showed abnormalities in FC between
the thalamus and parietal cortex in patients with HFS (Niu et al.,
2020), but it did not explore the central changes of the striatum
in this dyskinesia. HFS is a kind of facial movement disorder, it
is not clear that how the striatum regulates the motor function of
patients with HFS before and after the onset of its symptoms, and
in this study, we focused on striatal function in patients with HFS.

In this study, we performed FC analysis of 12 striatal
subregions in patients with HFS. We hypothesized that in
patients with chronic primary HFS, the FC between the striatum
and motor cortex and FC between striatal subregions will be
changed. Since long-term HFS may result in psychological
problems, such as depression and anxiety (Bao et al., 2015), we
also hypothesized that the FC between the striatum subregions
and the emotion-related cortex will be altered in patients with
HFS. Furthermore, we explored the relationship between altered
FC and clinical characteristics in patients with HFS.

MATERIALS AND METHODS

Subjects
A total of 60 subjects were selected from a total of 64 participants,
and 4 subjects (3 patients with HFS and 1 healthy control)
were excluded from the analysis due to excessive head motion
(translational movement > 2 mm or rotation > 2◦). Then, 30
patients withHFS (15 left-sideHFS, 15 right-sideHFS, 12men, 18
women, age 48.87± 10.61 years) were enrolled from 2017 to 2019
in the Department of Neurosurgery, China-Japan Friendship
Hospital. HFS was diagnosed by two experienced neurologists
based on clinical symptoms and history. The severity of HFS was
assessed using the Cohen spasm scale (0–4 scores, with higher
scores indicating more severe spasm) (Cohen et al., 1986). The
inclusion criteria for patients were as follows: (1) adult patients
with primary unilateral HFS, (2) without craniocerebral lesions
and mental disorders, no use of psychotropic drugs, and (3)
being right-handed. The exclusion criteria for patients were as
follows: (1) with bilateral HFS, (2) having contraindications to
MRI examination, and (3) with excessive head motion. Notably,
30 age-, sex-, education-matched healthy controls (12 men, 18
women, age 47.63 ± 13.29 years) were recruited from the society.
The inclusion criteria for healthy controls are as follows: (1) aged
18 years old or above, (2) absence of neurological and mental
disorders, and (3) being right-handed. The demographic and
clinical characteristics of participants are shown in Table 1. This
study was approved by the Ethics Committee of our hospital, and
all subjects have given informed consent before the experiment.

Magnetic Resonance Imaging Data
Acquisition
The experiment was carried out on the 3.0 T MRI scanner (GE,
Discovery MR750, Milwaukee, United States) with an 8-channel
phased-array head coil. The resting-state fMRI with a single-shot
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TABLE 1 | Demographic and clinical characteristics of participants.

Variable HFS (n = 30)

(mean ± SD)

HC (n = 30)

(mean ± SD)

Two-sample

t test

P value

Sex (male/female) 12/18 12/18 −

Age (years) 48.87 ± 10.61 47.63 ± 13.29 0.693

Education (years) 11.57 ± 4.24 13.50 ± 4.35 0.087

Duration (years) 5.70 ± 5.24 N/A −

Cohen spasm severity (scores) 2.57 ± 0.73 N/A −

HFS, hemifacial spasm; HC, healthy control; SD, standard deviation.

gradient recalled echo-planar imaging sequence was performed
with the following recipe. The repetition time (TR) was 2,000 ms,
while the echo time (TE) was set to 30 ms. The slice thickness
was chosen to be 3.5 mm with a spacing of 0.7 mm. The matrix
of the image was 64 × 64, while the field of view (FOV) was
224 mm × 224 mm. The flip angle was 90◦, and the number of
excitations (NEX) was set to 1. A total of 8 min were consumed
for each data with 34 slices and 240 time points. T2WI scan was
used to exclude the cerebral organic lesions. 3D T1WI anatomic
images were reconstructed using three-dimensional fast spoiled
gradient-echo sequences (3D FSPGR), and the TR of which was
6.7 ms, while the TE was set to minimum full. The matrix was
changed to 256 × 256 with a FOV of 256 mm × 256 mm.
Furthermore, the slice thickness was chosen as 1.0 mm, while the
NEX remained to be 1.

Data Preprocessing
To unify the affected side of the patients, the T1WI and
fMRI data with left HFS (15 cases) and matched controls
(15 cases) were flipped from left to right before preprocessing
(Song et al., 2017). In this study, “right” was defined as the
ipsilateral side, and “left” was defined as the contralateral side
for the flipped data. The preprocessing was conducted using
the software of Data Processing Assistant for Resting-State fMRI

(DPARSF) (Yan et al., 2016) in the following steps. First, the
DICOM data were converted to NIFTI format and the first
10 time points for each file were removed. Second, the timing
correction and realignment were carried out, the T1WI to the
mean functional image was co-registered, and the DARTEL
tool to compute transformations from individual native space
to Montreal Neurological Institute (MNI) space was used (Yan
et al., 2017). The subjects with head motion exceeding 2 mm
or 2◦ were excluded. Then, the spatial smoothing using a 4-mm
Gaussian kernel was performed and the low-frequency drift and
high-frequency noise using band-pass filtering (0.01–0.1 Hz)
were removed. Finally, the Friston 24-parameter model was
used to regress out head motion effects. In this step, the white
matter signal, cerebrospinal fluid signal, and global signal were
regressed as covariates.

Definition of the Region of Interest
The regions of interest (ROIs) were determined by the “Define
ROI” module using DPARSF software, based on the radius and
MNI spatial coordinates. According to the previous study, six
striatal subregions of each hemisphere were selected as ROIs, and
the radius of each ROI was set to 3 mm. The MNI coordinates
of the ROIs were as follows: dorsal caudal putamen (DCP, ± 28,
1, 3), dorsal rostral putamen (DRP, ± 25, 8, 6), ventral rostral
putamen (VRP, ± 20, 12, − 3), dorsal caudate (DC, ± 13, 15, 9),
inferior ventral striatum (VSi, ± 9, 9, −8), and superior ventral
striatum (VSs, ± 10, 15, 0) (Song et al., 2017). The diagram of
ROIs is shown in Figure 1.

Analysis of Functional Connectivity
Based on Voxel-Wise
First, the time course of the average BOLD signal was extracted
from each ROI. Then, the Pearson’s correlation between the
time course of each ROI and the time course of all other
voxels in the brain was calculated. Fisher z transformation was
performed to improve the normal distribution of the data. Then,

FIGURE 1 | The ROI schematic diagrams of striatal subregions. ROI, region of interest; I, ipsilateral; C, contralateral; DCP, dorsal caudal putamen; DRP, dorsal rostral

putamen; VRP, ventral rostral putamen; DC, dorsal caudate; VSi, inferior ventral striatum; VSs, superior ventral striatum.
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the correlation map, that is, the FC map of the whole brain was
generated for further statistical analysis.

Intragroup Functional Connectivity Analysis

To explore the intragroup FC patterns of the cortical-striatal
network, one-sample t-tests (default mask) were performed in the
HFS group and the HC group. The statistical threshold was set at
z > 3.6594 and cluster size of >6 mm3, which corresponded to
a corrected P < 0.001. This correction threshold was determined
using Monte Carlo simulations with the program AlphaSim in
AFNI (Ledberg et al., 1998).

Between-Group Functional Connectivity Analysis

To determine the FC differences of the cortical-striatal network
between the two groups, two-sample t-tests were performed
at each FC map of 12 ROIs (default mask). The Gaussian
random field (GRF) method was used for multiple comparison
corrections, and the statistical threshold was set at voxel-level
P < 0.005 and cluster-level P < 0.05. The DPABI software was
used to perform the statistical analysis of FC.

Correlation Analysis

The z value of brain regions with significant changes in the
HFS group was extracted to explore the relationship between the
severity of HFS and altered connectivity. Then, the Spearman
correlation analysis was performed using GraphPad Prism 6.0
software to evaluate the correlation between abnormal FC and
spasm severity in patients with HFS. The age, sex, education,
and duration were regressed as covariates. We also explored
the relationship between duration and spasm severity through
Spearman correlation analysis, and the age, sex, and education
level were regressed as covariates as well. A total of 14 correlations
were performed, with 13 abnormal FCs correlating with spasm
severity, and, finally, 1 correlation was performed between spasm
severity and disease duration. The false discovery rate (FDR)
method was used to correct the results of the correlation analysis
for multiple comparisons.

Analysis of Functional Connectivity
Based on Regions of Interest-Wise
The FC between the striatal ROIs was also calculated. After Fisher
z transformation, a 12 × 12 FC matrix was generated for every
subject. A total of 66 z values were constructed, and each z value
stands for the FC between two brain regions. Two-sample t-tests
were performed using SPSS 20.0 software (SPSS Inc., Chicago,
IL, United States) to compare the difference of FC between the
HFS group and the HC group. Age, gender, and education were
regressed as covariates. FDR correction was used to control false
positives for multiple comparisons, and the statistical threshold
was set at P < 0.05.

RESULTS

Clinical Results
There were no significant differences in sex, age, and
education level between the HFS group and the HC group
(P > 0.05) (Table 1).

Intragroup Functional Connectivity in the
Cortical-Striatal Network
The intragroup FC maps of the cortical-striatal network were
similar in the HC and HFS groups, which is consistent with
previous studies (Di Martino et al., 2008; Song et al., 2017; Dong
et al., 2019). The putamen ROIs had strengthened connectivity
with the insula, middle cingulate cortex (MCC), precuneus,
and supplementary motor area (SMA) (Figure 2A). The DC
ROIs had strengthened connectivity with the anterior cingulate
cortex (ACC) and superior frontal gyrus (SFG). The ventral
striatum ROIs had strengthened connectivity with ACC and OFC
(Figure 2B). In this study, these intragroup maps were merely for
visualizing FC in the two groups.

Group Differences of Functional
Connectivity in the Cortical-Striatal
Network
Dorsal Caudal Putamen

The contralateral DCP had significantly decreased FC with
ipsilateral SFG, SMA, and precentral gyrus, respectively, in the
HFS group compared with the HC group (Figures 3A, 4A

and Table 2).

Dorsal Rostral Putamen

The contralateral DRP had significantly increased FC with
contralateral middle frontal gyrus (MFG) and SFG, in the
HFS group compared with the HC group (Figures 3B, 4A

and Table 2).

Ventral Rostral Putamen

There was no significant alteration in FC between VRP and
cerebral cortex in the HFS group compared with the HC group.

Dorsal Caudate

The contralateral DC had significantly decreased FC with
bilateral cerebellar lobule VIII, IX, and contralateral cerebellar
crus II, in patients with HFS than that in controls (Figures 3C,
4A and Table 2).

Inferior Ventral Striatum

In the HFS group compared with the HC group, the ipsilateral
VSi had significantly increased FCwith bilateral OFC, paracentric
lobule, and SMA (Figures 3D,E, 4B and Table 3), while the FC
between ipsilateral VSi and superior marginal gyrus (SMG) was
significantly decreased (Figures 4B, 5A and Table 3); the FC
between contralateral VSi and bilateral OFC was significantly
increased (Figures 4C, 5B and Table 3), while the FC between
contralateral VSi and ipsilateral superior occipital gyrus (SOG)
was significantly decreased (Figures 4C, 5C and Table 3).

Superior Ventral Striatum

The ipsilateral VSs showed significantly increased FC with
bilateral SMA and paracentric lobule, in theHFS group compared
with the HC group (Figures 4C, 5D and Table 3). The FC
between contralateral VSs and ipsilateral SOG in patients with
HFS was significantly increased than that in controls (Figures 4C,
5E and Table 3).

Frontiers in Human Neuroscience | www.frontiersin.org 4 October 2021 | Volume 15 | Article 770107

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


Gao et al. Altered Cortical-Striatal Network in HFS

FIGURE 2 | Intragroup FC in the cortical-striatal network. The FC maps of the cortical-striatal network in the HC group and HFS group were similar (AlphaSim

correction, P < 0.001, cluster size > 6 mm3). (A) The putamen ROIs had strengthened connectivity with the insula, MCC, precuneus, and SMA. (B) The dorsal

caudate ROIs had strengthened connectivity with the ACC and SFG. The ventral striatum ROIs had strengthened connectivity with ACC and OFC. The color bar

represents the t value. FC, functional connectivity; HC, healthy control; HFS, hemifacial spasm; MCC, middle cingulate cortex; SMA, supplementary motor area;

ACC, anterior cingulate cortex; SFG, superior frontal gyrus; OFC, orbitofrontal cortex; I, ipsilateral; C, contralateral; DCP, dorsal caudal putamen; DRP, dorsal rostral

putamen; VRP, ventral rostral putamen; DC, dorsal caudate; VSi, inferior ventral striatum; VSs, superior ventral striatum.

Correlation Between Spasm Severity and
Functional Connectivity and Duration
The FC between contralateral DCP and ipsilateral SFG was
negatively correlated with the Cohen spasm scores (r = −0.433,
P = 0.0168 uncorrected) (Figure 6A). Furthermore, the FC
between ipsilateral VSi and contralateral OFC showed positive
correlation with the Cohen spasm scores (r = 0.6739, P < 0.0001
uncorrected) (Figure 6B). There was no correlation between
the duration and the spasm severity (r = −0.2327, P = 0.2158
uncorrected) (Figure 6C). After FDR correction, there was no
significant correlation between abnormal FCs and spasm severity.

Within the Striatal Network
Compared with the HC group, the ipsilateral DCP in the HFS
group showed increased FC with ipsilateral DRP and VRP
(P = 0.0053, P = 0.0272 uncorrected), and the FC between
contralateral DCP and contralateral VRP was also increased
(P = 0.017 uncorrected) (Figure 7). After FDR correction, there
was no significant difference in FC within the striatal network
between the HFS group and the HC group.

DISCUSSION

This study investigated the functional alterations of the
cortical-striatal network in patients with HFS and their

relationship with clinical manifestations. Compared with
the controls, the striatal subregions had altered FC with
motor and OFC in patients with HFS. Furthermore, the
FC between the ventral striatum and motor cortex was
positively associated with the severity of HFS. Finally, our
results suggest that the cortical-striatal network may play
differential roles in the underlying pathological mechanism
of HFS.

Increased Functional Connectivity of the
Cortical-Striatal Network in Patients
With Hemifacial Spasm
As we know, this is the first resting-state fMRI study to
examine intrinsic cortical-striatal connectivity in HFS. The
emotion-related cortex showed significantly increased FC with
the ventral striatum and putamen, in patients with HFS
compared with the controls. The orbitofrontal lobe and the
VSi are involved in emotional activities (Di Martino et al.,
2008; Accolla et al., 2016). The structural and functional
abnormalities of those regions were found to be widespread
in patients with depression (Botteron et al., 2002; Bremner
et al., 2002; Taylor et al., 2003; Ballmaier et al., 2004).
Long-term HFS may lead to anxiety and depression (Bao
et al., 2015). The increased connectivity between the VSi and
orbitofrontal lobe may be associated with the poor mental
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FIGURE 3 | Altered FC in the cortical-striatal network (putamen, caudate, and inferior ventral striatum ROIs). In the HFS group compared with the HC group: (A) The

FC between contralateral DCP and ipsilateral SFG was decreased. (B) The FC between contralateral DRP and contralateral MFG was increased. (C) The FC

between contralateral DC and bilateral cerebellum was decreased. (D) and (E) The ipsilateral VSi showed increased FC with bilateral OFC and SMA. The color bar

represents the t value. FC, functional connectivity; ROIs, regions of interest; HFS, hemifacial spasm; HC, healthy control; C, contralateral; I, ipsilateral; DCP, dorsal

caudal putamen; DRP, dorsal rostral putamen; DC, dorsal caudate; VSi, inferior ventral striatum; SFG, superior frontal gyrus; MFG, middle frontal gyrus; OFC,

orbitofrontal cortex; SMG, supramarginal gyrus; SMA, supplementary motor area.

status of patients with HFS. The SOG was located in the visual
network, and studies have found that this area was involved
in facial expression and emotion processing (Tao et al., 2013).

We speculated that the increased functional activity of these
regions in patients with HFS may be related to abnormal
facial expressions. In addition, the putamen had increased
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FIGURE 4 | Altered FC in the cortical-striatal network. Boxplots with between-group differences for 13 significant cluster. In the HFS group compared with the HC

group: (A) The FC between contralateral DCP and ipsilateral SFG was decreased. The FC between contralateral DRP and contralateral MFG was increased. The FC

between contralateral DC and bilateral cerebellum was decreased. (B) The ipsilateral VSi showed increased FC with bilateral OFC and SMA. The FC between

ipsilateral VSi and ipsilateral SMG was decreased. (C) The FC between contralateral VSi and bilateral OFC was increased. The FC between contralateral VSi and

ipsilateral SOG was decreased. The FC between ipsilateral VSs and bilateral SMA was increased. The FC between contralateral VSs and ipsilateral SOG was

increased. FC, functional connectivity; HFS, hemifacial spasm; HC, healthy control; C, contralateral; I, ipsilateral; B, bilateral; DCP, dorsal caudal putamen; SFG,

superior frontal gyrus; DRP, dorsal rostral putamen; MFG, middle frontal gyrus; DC, dorsal caudate; Cereb, cerebellum; VSi, inferior ventral striatum; OFC,

orbitofrontal cortex; SMA, supplementary motor area; SMG, supramarginal gyrus; SOG, superior occipital gyrus; VSs, superior ventral striatum.

TABLE 2 | Altered FC in the putamen and caudate ROIs between two groups.

ROIs Contrast Brain region Cluster size Peak t value MNI coordinates (mm)

x y z

DCP_C HFS < HC I superior frontal gyrus 55 −4.8035 21 −12 69

DRP_C HFS > HC C middle frontal gyrus 64 5.0707 −45 42 24

DC_C HFS < HC B cerebellum posterior lobe 165 −4.8075 9 −57 −51

HFS < HC C cerebellum crus2 76 −4.4086 −42 −75 −48

FC, functional connectivity; ROIs, regions of interest; C, contralateral; DCP, dorsal caudal putamen; DRP, dorsal rostral putamen; DC, dorsal caudate; HFS, hemifacial

spasm; HC, healthy control; MNI, Montreal Neurological Institute.

TABLE 3 | Altered FC in the ventral striatum ROIs between two groups.

ROIs Contrast Brain region Cluster size Peak t value MNI coordinates (mm)

x y z

VSi_I HFS > HC I orbitofrontal cortex 107 4.681 9 30 −18

HFS > HC C orbitofrontal cortex 166 4.4424 −21 33 −18

HFS > HC B supplementary motor area 56 5.0717 3 −21 66

HFS < HC I supramarginal gyrus 71 -5.2399 54 −30 24

VSi_C HFS > HC I orbitofrontal cortex 94 4.6397 9 27 −24

HFS > HC C orbitofrontal cortex 58 4.0489 −12 36 −15

HFS < HC I superior occipital gyrus 71 -4.3179 33 −78 45

VSs_I HFS > HC B supplementary motor area, paracentral

lobe

76 4.534 −3 −21 66

VSs_C HFS > HC I superior occipital gyrus 59 4.629 21 −87 3

FC, functional connectivity; ROIs, regions of interest; I, ipsilateral; C, contralateral; VSi, inferior ventral striatum; VSs, superior ventral striatum; HFS, hemifacial spasm; HC,

healthy control; MNI, Montreal Neurological Institute.

FC with MFG and SFG, which may be associated with the
depression and other adverse emotions of the patients with
HFS, and it is consistent with previous studies in patients with
depression (Fitzgerald et al., 2006). In summary, the ventral
striatum was mainly involved in emotional activities, while the
putamen may also involve in emotional activities in addition to
motor function.

Decreased Functional Connectivity of
the Cortical-Striatal Network in Patients
With Hemifacial Spasm
We also found that the FC between the putamen and the

ipsilateral motor cortex was decreased in the HFS group, and

so does the FC between the caudate and the cerebellum. It
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FIGURE 5 | Altered FC in the cortical-striatal network (inferior and superior ventral striatum ROIs). In the HFS group compared with the HC group: (A) The FC

between ipsilateral VSi and ipsilateral SMG was decreased. (B) The FC between contralateral VSi and bilateral OFC was increased. (C) The FC between contralateral

VSi and ipsilateral SOG was decreased. (D) The FC between ipsilateral VSs and bilateral SMA was increased. (E) The FC between contralateral VSs and ipsilateral

SOG was increased. The color bar represents the t value. FC, functional connectivity; ROIs, regions of interest; HFS, hemifacial spasm; HC, healthy control; I,

ipsilateral; C, contralateral; VSi, inferior ventral striatum; VSs, superior ventral striatum; SMG, supramarginal gyrus; OFC, orbitofrontal cortex; SOG, superior occipital

gyrus; SMA, supplementary motor area.
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FIGURE 6 | The correlation relationship between spasm severity and altered FC and duration. (A) The FC between contralateral DCP and ipsilateral SFG was

negatively correlated with the Cohen spasm scores (r = −0.433, P = 0.0168 uncorrected). (B) The FC between ipsilateral VSi and contralateral OFC showed positive

correlation with the Cohen spasm scores (r = 0.6739, P < 0.0001 uncorrected). (C) There was no correlation between the duration and the spasm severity

(r = − 0.2327, P = 0.2158 uncorrected). FC, functional connectivity; DCP, dorsal caudal putamen; SFG, superior frontal gyrus; VSi, inferior ventral striatum; OFC,

orbitofrontal cortex.

FIGURE 7 | The FC maps of the striatal network. (A) and (B) The FC matrix map of the striatal network in the HFS group and the HC group. The color bar

represented the mean z value. (C) The group differences of the FC within the striatal network between the two groups. The color bar represents the P value. (D) In

the HFS group compared with the HC group: The ipsilateral DCP showed increased FC with ipsilateral DRP and VRP. In addition, the FC between contralateral DCP

and contralateral VRP was increased. * indicates P < 0.05 (uncorrected). FC, functional connectivity; HFS, hemifacial spasm; HC, healthy control; DCP, dorsal

caudal putamen; DRP, dorsal rostral putamen; VRP, ventral rostral putamen.

was known that the precentral gyrus was the first somatic
motor area, and the SFG was the premotor area. One side
of the cerebral motor area dominates the contralateral body
movement, but the muscles involved in associated movement are
dominated by bilateral motor areas, such as extraocular muscles
and masticatory muscles (Desai et al., 2013). The decrease of
FC between the putamen and ipsilateral motor area may be
a compensatory mechanism to inhibit facial muscle spasms.
In addition, the cerebellum is an important motor regulation
center. The cerebellum may be involved in the processing
of movement, cognition, and emotion by forming loops with
the brain, and structural or functional abnormalities in these
loops may contribute to the development of motor disorders
(e.g., ataxia) (D’Angelo and Casali, 2013). Abnormalities in the
connectivity between brain regions within the loops can lead
to disorders that are associated with loop dysfunction. The
cerebellum may form a loop with the cortical-caudate, which is
involved in the motor regulation of HFS, and the diminished
connectivity may be a consequence of the dysfunction of the
caudate-cerebellar loop. To sum up, in addition to the putamen,
other parts of the striatum, such as the caudate, may be involved
in the pathological process of HFS. Different cortical-striatal

loops may be involved in motion monitoring, error detection,
and correction (Song et al., 2017).

Increased Functional Connectivity Within
the Striatal Network in Patients With
Hemifacial Spasm (Uncorrected,
P < 0.05)
In this study, we found no significant differences in FC within
the striatal network between the two groups (FDR correction,
threshold P < 0.05). However, using a less conservative threshold
(P < 0.05), we found that the FC between the putamen ROIs
was increased in patients with HFS compared with the controls.
Interestingly, a study of the striatal network in facial palsy
found the decreased FC between the putamen and the ventral
striatum (uncorrected) (Song et al., 2017), which is the opposite
of our results. We know that facial palsy and facial spasm are
two motor disorders with opposite manifestations, the former
shows reduced or no movement of the affected facial muscles
and the latter shows excessive movement. In addition, the
connectivity within the striatal network is also consistent with
clinical manifestations, i.e., being diminished in facial palsy
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and increased in facial spasm. Therefore, we speculated that the
putamen plays an important role in the motor function of facial
muscles, and the increased or decreased FC between the putamen
and other seeds within the striatummay respond to the increased
or decreased motor signals in this neural circuit, thus resulting in
different motor states of the facial muscles.

Limitations
There were several limitations in this study. First, the sample size
of this study was small, including patients with left HFS and right
HFS. To control the problem on the different sides of the lesion,
we flipped the left HFS group from left to right. In the future,
the changes of brain functional networks in patients with left and
right HFS can be studied separately on the basis of expanding
the sample size. Second, this study used a cross-sectional study
design to explore the changes of the cortical-striatal network in
patients with HFS. Longitudinal studies can be conducted in the
future to explore the mechanism of brain network changes in
different stages of HFS. Finally, previous studies and our study
have all found functional abnormalities in the emotion-related
cortex in patients with HFS. Therefore, increasing the evaluation
of the psychological status of patients may make the results more
reliable, which can be added in further studies.

CONCLUSION

Primary unilateral HFS induces several FC alterations in the
cortical-striatal network, specifically, the striatal subregions
have altered connectivity with motor and OFC in patients
with HFS, respectively. The severity of HFS is associated with
these functional alterations. This study provides significant
evidence that the altered cortical-striatal connectivity is involved
in differential neural mechanisms of motor and emotional
dysfunction in patients with HFS.
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