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The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides

a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in

several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic–clonic seizures, little is

known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural con-

nectivity, networks are intimately related and share common small-world topological features. We predict that patients with

idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients

with idiopathic generalized epilepsy characterized by tonic–clonic seizures and 26 age- and sex-matched healthy controls were

recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were

used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost

optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed sig-

nificant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex,

putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the

pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further

decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and

inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was

decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of
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functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and

may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the

first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional

and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of

generalized tonic–clonic seizures.

Keywords: idiopathic generalized epilepsy; generalized tonic–clonic seizures; structural connectivity network; functional connectivity
network; coupling

Abbreviations: AAL = automated anatomical labelling; GTCS = generalized tonic–clonic seizures; IGE = idiopathic generalized
epilepsy

Introduction
The human brain is a large-scale complex network, simultaneously

segregated and integrated via specific connectivity patterns

(Tononi et al., 1994; Bullmore and Sporns, 2009; He and Evans,

2010; van den Heuvel and Hulshoff Pol, 2010). A quantitative

analysis of complex brain networks, largely based on graph

theory (Sporns, 2010; Bullmore and Bassett, 2011), is typically

conducted through either the structural or functional domain

(Damoiseaux and Greicius, 2009; Guye et al., 2010). Structural

connectivity networks can be based on white matter tracts quan-

tified by diffusion tractography (Hagmann et al., 2008;

Iturria-Medina et al., 2008; Gong et al., 2009a) or correlations

of morphological measures (He et al., 2007; Zielinski et al.,

2010; Bernhardt et al., 2011); they give insight into structural

architectural features. Functional connectivity networks, on the

other hand, can be calculated via temporal correlations or coher-

ences between blood oxygen level-dependent functional MRI sig-

nals from distinct brain regions (Salvador et al., 2005; Achard

et al., 2006); these functional connectivity networks offer a net-

work perspective on brain dynamics. It has been suggested that

the human network is organized to optimize efficiency, due to a

small-world topology allowing simultaneous global and local par-

allel information processing (Bassett and Bullmore, 2006; Kaiser

and Hilgetag, 2006). Indeed, a small-world architecture has been

shown for functional connectivity networks (Salvador et al., 2005;

Achard et al., 2006) and structural connectivity networks

(Hagmann et al., 2008; Iturria-Medina et al., 2008; Gong et al.,

2009a).

The analysis of functional and structural connectivity networks

provides new avenues for assessing complex network properties

of the healthy and diseased brain (Damoiseaux and Greicius,

2009; Guye et al., 2010). Indeed, an altered brain network top-

ology has been shown in several psychiatric and neurological

diseases, such as Alzheimer’s disease (Lo et al., 2010), schizo-

phrenia (Liu et al., 2008; van den Heuvel et al., 2010; Zalesky

et al., 2011), stroke (Wang et al., 2010), multiple sclerosis (Shu

et al., 2011) and temporal lobe epilepsy (Liao et al., 2010;

Bernhardt et al., 2011). Furthermore, the simultaneous assess-

ment of functional and structural connectivity networks allows

for studying their relationship (Sporns, 2011). It has been

suggested that the structural connectivity network may be the

physical substrate of the functional connectivity network

(van den Heuvel et al., 2008; Greicius et al., 2009). Several studies

have demonstrated that structural connections are highly predict-

ive of and place constraints on functional interactions across

human brain networks (Koch et al., 2002; Hagmann et al.,

2008; Greicius et al., 2009; Honey et al., 2009). Moreover, pre-

vious studies have documented large spatial resemblances be-

tween these two connectivity modalities within the whole-brain

large-scale network (Honey et al., 2009, 2010; van den Heuvel

et al., 2009a). Lastly, the coupling of functional and structural

connectivity networks has been found to increase with age

(Hagmann et al., 2010; Supekar et al., 2010) and to be disrupted

in disease-specific states (Skudlarski et al., 2010). Accordingly, the

integration of functional and structural information from functional

and structural connectivity networks may allow for the more sen-

sitive detection of subtle brain pathophysiological abnormalities

than any single modality.

Idiopathic generalized epilepsy (IGE) is a group of epileptic dis-

orders characterized by widespread generalized spike-and-waves

or polyspike–waves (Engel, 2001). Generalized tonic–clonic seizure

(GTCS) is the most common phenotype of IGE (ILAE, 1989;

Andermann and Berkovic, 2001), and is the type that requires

the most medical attention. The most dangerous seizure symp-

toms of IGE-GTCS, including muscle rigidity, violent muscle con-

tractions of entire body and complete loss of consciousness

possibly cause injury or death. Undetectable focal anatomical

brain lesion on routine MRI, high myoelectric contamination on

ictal scalp EEG and the limited number of surgical cases make the

understanding of IGE-GTCS challenging.

Although the conventional viewpoint for IGE-GTCS is that the

entire brain may be homogeneously involved (Blumenfeld and

Taylor, 2003), evidence from several imaging modalities specific-

ally indicates that this form of epilepsy affects widespread brain

through specific thalamocortical and corticocortical networks

(Blumenfeld and Taylor, 2003; Blumenfeld et al., 2003;

Aghakhani et al., 2004; Blumenfeld, 2005; Gotman et al., 2005;

Moeller et al., 2008; Bernhardt et al., 2009; Cavanna and

Monaco, 2009). Recent network analyses have revealed that sev-

eral distributed brain networks are involved in the genesis and

manifestation of IGE (Li et al., 2010; Luo et al., 2011a, b;

Wang et al., 2011). As the global feature of the pathophysiology

that widespread brain regions and extensive networks are involved

in IGE-GTCS (Betting et al., 2010), complex brain network inves-

tigation based on graph theory might be more valuable than local
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connectional investigations to understand the mechanism of

IGE-GTCS. In the present study, we tested three specific

hypotheses:

(i) Network analyses in epilepsies other than IGE-CTCS have

demonstrated alterations of brain network topology

(Ponten et al., 2009; van Dellen et al., 2009; Chavez

et al., 2010; Horstmann et al., 2010; Liao et al., 2010;

Bernhardt et al., 2011). Ictal electrophysiology investigations

have generally shown a more regular network organization

after hyper-synchronous epileptic activities (Ponten et al.,

2007, 2009). Interictal studies, on the other hand, provided

mixed findings. Electrophysiology and functional MRI studies

have suggested a more random topology (Ponten et al.,

2007; van Dellen et al., 2009; Liao et al., 2010), but

more regular topologies (Horstmann et al., 2010) have

also been observed in a recent network analysis of cortical

thickness correlations (Bernhardt et al., 2011). In this work,

we will examine topological changes of interictal functional

and structural connectivity networks in IGE-GTCS. As these

changes might be associated with long-term impairments

due to epilepsy duration (van Dellen et al., 2009; Zhang

et al., 2009, 2010; Liao et al., 2010; Vlooswijk et al.,

2010; Wang et al., 2011), we will also test for such

progressive effects in IGE-GTCS.

(ii) Previous findings in the functional (Gotman et al., 2005;

Song et al., 2011; Wang et al., 2011) and structural

(Li et al., 2010) domain suggest that IGE-GTCS relates to

local abnormalities in several specific subcorticocortical net-

works (Blumenfeld, 2005, 2009). In this study, we wanted

to employ measures of nodal topology, such as regional

connectivity strength and efficiency, to characterize the

role of individual regions for the functional integration of

entire brain network (Rubinov and Sporns, 2010). We

tested the hypothesis that the vital regions in the epileptic

network, which are associated with generation, propagation

and modulation of epileptic activity, will display abnormal

hub property in network analysis (Frei et al., 2010).

(iii) It is assumed that structural connectivity constrains function-

al connectivity, and that functional connectivity reversely

exerts effect on structural connectivity through mechanisms

of plasticity (Rubinov et al., 2009; Hagmann et al., 2010;

Sporns, 2011). Regarding the reciprocal linkage between

functional and structural connectivity, the functional and

structural connectivity networks are intimately related and

share common small-world topological features (Bullmore

and Sporns, 2009; Honey et al., 2009). In this work, we

predict that the pathological state of IGE-GTCS may alter

this network coupling, given that this type of epilepsy has

widespread functional connectivity abnormalities (Moeller

et al., 2011; Song et al., 2011; Wang et al., 2011).

Functional–structural connectivity coupling may provide a

biomarker to detect subtle brain abnormalities more sensi-

tively than any single modality, and may provide new

insights into the understanding of the pathophysiological

mechanisms of IGE-GTCS.

On the basis of the three aforementioned hypotheses to be

tested, we combined state-of-the-art structural and functional

connectivity network-based analyses, and investigated whole-brain

network changes in patients with IGE-GTCS by comparing them

with healthy subjects.

Materials and methods

Participants
The patient group was composed of 26 patients with IGE-GTCS [age

(mean � SD): 24.12 � 6.85 years; age at first seizure onset: 18.15 �

5.80 years; duration: 6.92 � 5.80 years] recruited through Jinling

Hospital, Nanjing University School of Medicine. These patients all

met the following inclusion criteria: (i) presence of typical clinical

symptoms of GTCS, including tic of limbs, loss of consciousness, no

partial seizures; (ii) presence of generalized spike-and-wave or poly-

spike–waves discharges in their scalp EEG; (iii) no focal abnormality in

routine structural MRI examinations; and (iv) no obvious history of

aetiology. All patients were diagnosed as IGE with only GTCS accord-

ing to the International League against Epilepsy (ILAE) classification.

Fifteen patients were treated with anti-epileptic drugs, including

valproate, phenytoin, carbamazepine, lamotrigine and topiramate

(Supplementary Table 1).

Twenty-six age- and gender-matched healthy controls (age:

22.62 � 2.06 years, all right-handed) were recruited from the staff

of Jinling Hospital. Healthy controls were interviewed to confirm that

there was no history of neurological disorder or psychiatric illness and

no gross abnormalities in brain MRI images. There was no significant

difference in age and gender between the two groups (P4 0.05).

Written informed consent was obtained from all participants. The

study was approved by the local medical ethics committee at Jinling

Hospital, Nanjing University School of Medicine.

Data acquisition
All patients during interictal state and healthy controls underwent

structural, functional and diffusion tensor imaging scanning using a

Siemens Trio 3T scanner at Jinling Hospital, Nanjing, China. Foam

padding was used to minimize head motion for all subjects.

Functional images were acquired using a single-shot, gradient-recalled

echo planar imaging sequence (repetition time = 2000ms, echo

time = 30ms and flip angle = 90�). Thirty transverse slices (field of

view = 240 � 240mm2, in-plane matrix = 64 � 64, slice thickness =

4mm, interslice gap = 0.4mm, voxel size = 3.75 � 3.75 � 4mm3),

aligned along the anterior commissure–posterior commissure line

were acquired. For each subject, a total of 250 volumes were acquired,

resulting in a total scan time of 500 s. Subjects were instructed simply

to rest with their eyes closed, not to think of anything in particular,

and not to fall asleep. The diffusion tensor images covering the whole

brain were obtained using spin echo-based echo planar imaging se-

quence, including 30 volumes with diffusion gradients applied along

30 non-collinear directions (b = 1000 s/mm2) and one volume without

diffusion weighting (b = 0 s/mm2). Each volume consisted of 45 con-

tiguous axial slices (repetition time = 6100ms, echo time = 93ms, flip

angle = 90�, field of view = 240 � 240mm2, matrix size = 256 � 256,

voxel size = 0.94 � 0.94 � 3mm3). To improve the signal to noise

ratio, the entire sequence was repeated four times. Subsequently,

high-resolution T1-weighted anatomical images were acquired

in the sagittal orientation using a magnetization-prepared rapid
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gradient-echo sequence (repetition time = 2300ms, echo

time = 2.98ms, flip angle = 9�, field of view = 256 � 256mm2,

matrix size = 256 � 256 and zero filled and interpolated to

512 � 512, slice thickness = 1mm, without interslice gap, voxel

size = 0.5 � 0.5 � 1mm3 and 176 slices) on each subject.

Brain network construction

Anatomical parcellation

To determine the nodes of brain functional and structural connectivity

networks, we used the automated anatomical labelling (AAL) algo-

rithm (Tzourio-Mazoyer et al., 2002) to parcellate the whole cerebral

cortex into 90 non-cerebellar anatomical regions of interest with low

resolution (45 regions of interest for each hemisphere). This parcella-

tion scheme is referred to as AAL-90. A list of anatomical labels of the

nodes is presented in Supplementary Table 2. Considering that the

range of nodal scales and the difference in template parcellations

may result in considerable variation of graph theoretical parameters

of functional connectivity networks (Wang et al., 2009; Fornito

et al., 2010) and structural connectivity network (Zalesky et al.,

2010), we also used a high-resolution parcellation network with

1024 regions of interest to investigate brain functional and structural

connectivity networks, as suggested previously (Fornito et al., 2010;

Zalesky et al., 2010). To this end, we partitioned the 3D grey matter

volume into n contiguous regions while constraining the size of nodes

as uniformly as possible. Specifically, to generate a high-resolution

nodal scale, each node composing the low-resolution native AAL tem-

plate was subdivided into a set of micro-nodes. Each micro-node was

constrained to lie within the volume encapsulated by its parent

low-resolution AAL node and each micro-node was ensured to be

contiguous. In turn, the native AAL segmentation was parcellated

into 1024 micro regions of interest of approximately identical size

(1.2 cm3) across both hemispheres (512 regions of interest for each

hemisphere). This parcellation scheme is referred to as AAL-1024

(Fornito et al., 2010; Zalesky et al., 2010) (Supplementary Fig. 1).

These two types of parcellation schemes were applied in parallel to

the following network analyses, for a cross-validation of our results.

Functional connectivity network construction

Functional images preprocessing was carried out using the Statistical

Parametric Mapping software (SPM8, http://www.fil.ion.ucl.ac.uk/

spm). Functional images, after exclusion of the first 10 images to

ensure steady-state longitudinal magnetization, were initially corrected

for temporal differences and head motion. No translation or rotation

parameters in any given data set exceeded �1mm or �1�, and no

group differences were found in respect to head translation and rota-

tion (both P4 0.05). Functional images were warped into a standard

stereotaxic space at a 3 � 3 � 3mm3 resolution, using the Montreal

Neurological Institute (MNI) echo-planar imaging template. In order to

avoid introducing artificial local spatial correlations, no spatial smooth-

ing was applied, as previously suggested (Salvador et al., 2005;

Achard et al., 2006; Achard and Bullmore, 2007; Wang et al.,

2009). For each subject, representative time series in each region of

interest were obtained by averaging the functional MRI time series

across all voxels in the region of interest. To remove spurious sources

of variance, time series were preprocessed as follows: first, six head

motion parameters, averaged signals from CSF and white matter, and

global brain signal were regressed (Fox et al., 2005, 2009); next, the

time series were band-pass filtered (0.01–0.08Hz). We then obtained

a temporal correlation matrix (N � N, where N = 90 is the number of

regions of interest in low-resolution AAL-90, and N = 1024 for

high-resolution AAL-1024; whose elements are rij) for each subject

by computing Pearson correlation coefficients between the processed

time series of every pair of regions of interest. A weighted network

can incorporate additional information on the strength of functional

connections on continuous scales, enabling more comprehensive

understanding network organizations. To construct weighted function-

al connectivity networks, weighted edges considered as absolute func-

tional connectivity strength between connected regions of interest,

e.g. wij = | rij |, where rij is the correlation coefficient for nodes i and

j. For details about the construction of weighted functional connect-

ivity network, see Supplementary Fig. 2.

Structural connectivity network construction

For each subject, diffusion-weighted images were geometrically cor-

rected using a non-diffusion-weighted B0 image (b = 0 s/mm2) and a

field map, to account for eddy current distortions. Diffusion-weighted

images were co-registered to the B0 image using affine transform-

ations to minimize slight head movements. Diffusion tensor models

were estimated by the linear least-squares fitting method at each

voxel using the Diffusion Toolkit (trackvis.org; Wang et al., 2007).

Whole-brain fibre tracking was performed in native diffusion space

for each subject using the Fibre Assignment by Continuous Tracking

(FACT) algorithm embedded in the Diffusion Toolkit (Wang et al.,

2007). Path tracing proceeded until either the fractional anisotropy

was 50.15 or the angle between the current and the previous path

segment exceeded 35�, as in our previous study (Liao et al., 2011). To

determine the nodes of structural connectivity network in each subject,

regions of interest were defined in native diffusion space (Gong et al.,

2009a; Li et al., 2009). Accordingly, each individual structural image

(i.e. T1-weighted image) was first co-registered to their B0 images in

the native diffusion space using a linear transformation. Co-registered

structural images were then mapped to the ICBM-152 MNI T1-tem-

plate by applying an affine transformation with 12 degrees of freedom

together with a series of non-linear warps characterized by a set of

7 � 8 � 7 basis functions. The derived transformation parameters were

inverted and used to warp the AAL regions of interest from MNI space

to the native diffusion space. This procedure has been applied in pre-

vious studies (Gong et al., 2009a, b; Li et al., 2009; Shu et al., 2009;

Lo et al., 2010; Wen et al., 2011). In native diffusion space, region of

interest (i) and region of interest (j) were considered to be connected

through an edge e = (i, j), in case at least one fibre (f) were presented

between them (Hagmann et al., 2008, 2010; Gong et al., 2009a). For

each edge (e), we calculated the connection density (number of con-

nection per unit surface) between the end-nodes as its weight w(e)

(Hagmann et al., 2008, 2010; Honey et al., 2009), according to

wðeÞ ¼ 2=ðSi þ SjÞ
P

f2Fe
1=lðfÞ.

In particular, Si and Sj are 2D intersects of the individual’s white

matter (Liao et al., 2011) with AAL region of interest (i) and region of

interest (j), respectively; Fe denotes the set of all fibres connecting

regions of interest i and j (hence contributing to the edge e); l(f)

denotes the length of the fibre f along its trajectory. By computing

the weights across edges, we obtained a weighted structural connect-

ivity network for each participant. For further details on weighted

structural connectivity network construction, see Supplementary Fig.

3. Since there is currently no formal consensus regarding selection of

indices for quantifying structural connectivity in tractography measure-

ments, we also evaluated the effects of a variety of alternative entries

in the weighted structural connectivity network, including fibre

number related to the fibre quantity; mean fractional anisostropy

values related to fibre integrity; and a combination of these measures

(fibre number � fractional anisostropy) (Li et al., 2009; Shu et al.,

2009; Lo et al., 2010; Wen et al., 2011) (Supplementary Fig. 4).
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Network analysis
Graph theoretical analyses were carried out on functional and struc-

tural connectivity networks of patients with IGE-GTCS and healthy

controls using the Brain Connectivity Toolbox (http://www.brain-

connectivity-toolbox.net) (Rubinov and Sporns, 2010). For each indi-

vidual structural connectivity network, connection weights were scaled

by the maximum of this matrix to keep each subject’s cost at the same

level (Iturria-Medina et al., 2008; van den Heuvel et al., 2010).

Small-world properties

Small-world properties were originally proposed by Watts and Strogatz

(1998). Here, we investigated small-world properties of weighted

functional and structural connectivity networks (Achard and

Bullmore, 2007; Lo et al., 2010; Wen et al., 2011; Yan et al.,

2011). The weighted clustering coefficient of a node i, Cw
i , which

expresses the likelihood that the neighbourhoods of node i are con-

nected (Onnela et al., 2005), is defined as follows:

Cw
i ¼

P

j,h2N

ðwijwihwjhÞ
1=3

kiðki � 1Þ

where wij is the weight between nodes i and j in the network, and ki

is the degree of node i. The clustering coefficient is zero, Cw
i ¼ 0, if

the nodes are isolated or with just one connection. The overall clus-

tering coefficient, namely Cw
net, was computed as the average of Cw

i

across all nodes in the network:

Cw
net ¼

1

N

X

i2N

Cw
i

extent measure of the local interconnectivity or cliquishness of the

network (Watts and Strogatz, 1998).

The path length between nodes i and j was defined as the sum of

the edge lengths along the path, where each edge’s length was ob-

tained by computing the reciprocal of the edge weight, 1/wij. The

shortest path length Lij between nodes i and j and was defined as

the length of the path with the shortest length between the two

nodes. The weight characteristic shortest path length Lwnet of a network

was measured by a ‘harmonic mean’ length between pairs (Newman,

2003), to overcome the problem of possibly disconnected network

components. Formally, Lwnet is the reciprocal of the average of the

reciprocals:

Lwnet ¼
1

1=ðNðN� 1ÞÞ
P

N

i¼1

P

N

j6¼i

1=Lij

where N is the number of nodes. The weight characteristic shortest

path length quantifies the ability for information propagation in

parallel.

To examine small-world properties related to Cw
net and Lwnet, brain

networks were compared to random networks. A small-world network

has similar path length but higher clustering than a random network,

that is � ¼ Cw
net=C

w
random41, � ¼ Lwnet=L

w
random � 1 (Watts and Strogatz,

1998). These two conditions can also be summarized into a scalar

quantitative measurement, the small-worldness, � ¼ �=�, which is typ-

ically 41 in the case of small-world organization (Achard et al., 2006;

Humphries et al., 2006). For each individual brain network, a set of

100 comparable random networks with similar degree sequence and

symmetric adjacency matrix were formed, and Cw
random and Lwrandom

were defined as the average weighted clustering coefficient and

weighted path length.

Nodal characteristics analysis

Three nodal topological characteristics, including nodal degree (Swi ),

efficiency (Ewi ) and betweenness centrality (bwi ) were used. These

measures are known to be interrelated, each provides a different view-

point from which to discern major features of the large-scale architec-

ture (Hagmann et al., 2008; Tian et al., 2011). The degree (Swi ) was

computed as the sum of the weights of all the connections of node i,

that is Swi ¼
P

j2N

wij.

The degree Swi quantifies the extent to which a node is relevant to

the graph (Rubinov and Sporns, 2010). The total connection strength

Swnet of the network was computed as the sum of Swi for all nodes N in

the network:

Swnet ¼
1

N

X

i2N

Swi :

The nodal efficiency of a given node i(Ewi ) is defined as the inverse

of the mean harmonic shortest path length between this node and all

other nodes in the network (Achard and Bullmore, 2007; Shu et al.,

2011), according to the formula:

Ewi ¼
1

N� 1

X

i 6¼j2N

1

Lij

where Lij is the weighted shortest path length between nodes i and j

in the network. Ewi quantifies the importance of the nodes for the

communication within the network (Bassett and Bullmore, 2006).

Accordingly, the node i is more important if the value of Ewi is higher.

The betweenness centrality Bw
i of a node i considers the fraction of

all shortest paths in the network that pass through the node (Freeman,

1977). In this study, we computed the normalized betweenness

as bwi ¼ Bw
i = B

w
i

� �

, where Bw
i

� �

is the averaged nodal betweenness

of the network. The global centrality measure bwi captures the influ-

ence of a node over information flow between other nodes in the

network.

Nodes with high weighted degree, Swi can be considered as centres

for information integration; those with high efficiency, Ewi , are relevant

for information flow; those with high betweenness centrality, bwi , may

serve as way stations for network traffic. Accordingly, nodes with

these properties were considered as network hubs. For each node,

we calculated normalized nodal parameters as in the following formula

(Tian et al., 2011):

Xw
normðiÞ ¼

1=M
P

M

k¼1

xnodði,kÞ

1=ðN�MÞ
P

N

j¼1

P

M

k¼1

xnodði,kÞ

In this formula, xnodði,kÞ is an integrated nodal parameter (weighted

degree, efficiency and betweenness centrality) of node i in the net-

work of subject k, M is the number of networks in the healthy controls

(M = 26) and GTCS (M = 26) groups and N is the number of nodes

(N = 90 and N = 1024 for AAL-90 and AAL-1024 parcellation

schemes, respectively). Nodes with Xnorm(i)4mean + SD were con-

sidered as hubs in the brain network (He et al., 2009; Bernhardt et al.,

2011; Tian et al., 2011).

Coupling between functional and
structural connectivity networks
For each subject, we quantified coupling between functional and

structural connectivity networks. The correlation between functional

and structural connectivity was constrained by the edges with
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non-zeros structural connectivity. Specifically, the non-zero structural

connectivity network edges within were extracted to produce a vector

of structural connectivity values. Next, these values were resampled

into a Gaussian distribution (Honey et al., 2009; Hagmann et al.,

2010). The corresponding functional connectivity network edges

were also extracted to form a vector of functional connectivity

values. Subsequently, the Pearson’s correlation between these two

vectors was calculated to quantity the coupling between functional

connectivity network and structural connectivity network. Moreover,

we also calculated the probability densities for the functional connect-

ivity values considering the constraint on structural connectivity

(non-zeros edges) and for the remaining part (zeros edges).

Statistical analysis
We first compared overall graph characteristics of the functional and

structural connectivity networks between the patients with IGE-GTCS

and healthy controls. We selected a fixed cost to ensure that all func-

tional and structural connectivity networks were fully connected and

with a minimum number of spurious edges (Achard et al., 2006;

Achard and Bullmore, 2007; He et al., 2007; Bernhardt et al.,

2011). The overall graph characteristics included the weighted con-

nectivity strength (Swnet), normalized weighted clustering coefficient

(�), normalized weighted characteristic shortest path length (�) and

small-world property (�). Comparisons between IGE-GTCS and healthy

controls were performed using permutation tests (Bassett et al., 2008;

van den Heuvel et al., 2010). Accordingly, we computed actual

between-group differences of the graph parameters (Swnet, �, � and

�) of functional and structural connectivity networks. This difference

was placed into a null permutation distribution of differences, calcu-

lated by randomly assigning each participant to one of the two groups

with the same size as the original groups of IGE-GTCS and healthy

controls. This procedure was repeated for 5000 permutations. We as-

signed a P-value to the between-group difference (IGE-GTCS versus

healthy controls) by computing the proportion of differences exceed-

ing the null distribution values. A threshold of � = 0.05 was used for

testing all graph characteristics. We applied this statistical procedure to

network data from: (i) the AAL-90 scheme; cost = 0.18 for both the

functional connectivity network and structural connectivity network.

The following criteria were applied: all brain networks were fully con-

nected, and the brain networks had a minimum number of spurious

edges and distinguishable properties in comparison to degree-matched

random networks (Achard et al., 2006; Achard and Bullmore, 2007;

He et al., 2007; Liu et al., 2008; Liao et al., 2010; Bernhardt et al.,

2011); and (ii) the AAL-1024 scheme; cost = 0.0068, ensuring that the

mean degree of the network was larger than the log of the number of

nodes (He et al., 2007).

As a previous study suggested that the network of each subject

normally differs in both the number and weighting on the edges

(Wen et al., 2011), we applied a matching strategy prior to compari-

son between patients and healthy controls, in which the same network

cost values ensured each graph having the same number of edges.

Since there is currently no formal consensus regarding selection of

thresholds, here we selected a range of cost threshold (0.054

cost4 0.30, step = 0.01) for functional and structural connectivity net-

works in the AAL-90 scheme. This approach is similar to comparisons

performed by previous studies (He et al., 2007; Bernhardt et al.,

2011).

Using the above permutation framework, we also compared the

nodal properties (Swi , Ewi and bwi ) between the patients with IGE-

GTCS and healthy controls. We used the false discovery rate to correct

the multiple comparisons (Benjamini and Hochberg, 1995).

Finally, we compared the coupling of functional connectivity net-

work–structural connectivity network between patients with IGE-GTCS

and healthy controls by using permutation tests. Testing was per-

formed on the difference of functional–structural connectivity coupling

strength (i.e. the coefficient of correlation between functional connect-

ivity and structural connectivity under constraint of non-zeros

structural connectivity network edges).

Relationship between topological
properties and clinical variables
To investigate the clinical relevance of altered brain network topologies

in IGE-GTCS, we correlated the clinical variables, duration of epilepsy

and seizure frequency, with the topological properties (Swnet, �, �, �,

Swi , Ewi and bwi ) at a fixed cost (cost = 0.18 for both functional and

structural connectivity networks). Moreover, these clinical variables

were correlated to the strength of functional–structural connectivity

network coupling. Pearson’s correlation analysis was used, controlling

for age as confounding variable (P5 0.05).

Reproducibility analysis
To test the reproducibility of our results, we carried out a split-half

analysis (He et al., 2009; Shu et al., 2011). Specifically, we divided the

healthy controls group into two subgroups, matched for age and

gender (HC1: 13 participants, four females, age: 22.54 � 2.14 years;

HC2: 13 participants, five females, age: 22.69 � 2.06 years).

Similarly, we divided the GTCS group into two matched subgroups

(IGE-GTCS1: 13 participants, five females, age: 24.08 � 7.03 years;

IGE-GTCS2: 13 participants, four females, age: 24.15 � 6.96 years)

(all P4 0.43). For each subgroup, both functional and structural con-

nectivity networks were constructed and analysed analogously to

the aforementioned whole-group analysis. To determine whether

there was a consistent topological organization in the population

(He et al., 2009), we computed Pearson’s correlation coefficients for

the correlation patterns of the both functional and structural connect-

ivity networks between HC1 and HC2 subgroups and between

IGE-GTCS1 and IGE-GTCS2 subgroups. We also compared the topo-

logical parameters (Swnet and Lwnet) between each pair of subgroups

using permutation testing.

Results

Overall topology of functional and
structural connectivity networks

Both IGE-GTCS and healthy controls showed a small-world organ-

ization (�41) in functional and structural connectivity networks

constructed at all connection densities [w(e)], following either the

low-resolution AAL-90 or high-resolution AAL-1024 parcellation

schemes (Fig. 1 and Supplementary Fig. 5). However, significant

differences between patients and healthy controls (P5 0.05) were

found for specific network organization characteristics with the

AAL-90 scheme, but not for the AAL-1024 scheme. With the

former, functional and structural connectivity networks in patients

with IGE-GTCS showed the similar patterns of network alterations:

decrease in small-world topology (�), decrease in normalized clus-

tering coefficient (�), but no change in normalized characteristic

Altered functional–structural coupling in IGE Brain 2011: 134; 2912–2928 | 2917
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shortest path length (�). While IGE-GTCS showed increased total

connection strength (Swnet) in the functional connectivity network, no

change was found in the structural connectivity network (Fig. 1).

Indices such as fractional anisostropy, fibre number and fractional

anisostropy � fibre number also demonstrated small-world prop-

erty, but no differences in small-worldness (�) between patients

with IGE-GTCS and healthy controls were found. Hence, the struc-

tural networks constructed by these indices were not analysed

further. For overall topological indices of functional and structural

connectivity networks, we found no correlation with duration of

epilepsy and seizure frequency.

Nodal characteristics

Hub regions

We identified similar hub regions using the alternative character-

istics weighted degree, efficiency and betweenness centrality. In

line with the previous reports (Hagmann et al., 2008; Gong et al.,

2009b; He et al., 2009; Shu et al., 2011; Tian et al., 2011; Tomasi

and Volkow, 2011; Yan et al., 2011), we found that several nodes

commonly presented network hub property across three measures

(seven nodes including bilaterla insuli, left mesial orbital part of

superior frontal gyrus, mesial superior frontal gyrus, supramarginal

gyrus and middle frontal gyrus, and right post-central gyrus for

the functional connectivity network; 10 nodes including the left

middle frontal gyrus, paracentral lobule and orbital part of superior

frontal gyrus, the right post-central gyrus, insular, orbital part of

superior frontal gyrus, rectus gyrus, orbital part of middle frontal

gyrus, calcarine fissure and middle occipital gyrus for the structural

connectivity network). Moreover, there were convergent results

between the AAL-90 (Supplementary Fig. 6) and AAL-1024

schemes (Supplementary Fig. 7).

Idiopathic generalized epilepsy-generalized tonic–clonic
seizure-related alterations

Group comparisons on regional degree (Swi ), efficiency (Ewi ), and

betweenness centrality (bwi ) revealed alterations of nodal charac-

teristics in IGE-GTCS, with similar results for AAL-90 and

AAL-1024 parcellation schemes (Fig. 2 and Supplementary Fig. 8).

In the functional connectivity network, increased Swi in

IGE-GTCS were found in bilateral anterior cingulate gyrus, right

amygdala, putamen, thalamus, left middle temporal gyrus and

dorsolateral part of superior frontal gyrus; decreased Swi was

found in left rolandic operculum, superior temporal pole and

right inferior temporal gyrus (Fig. 2A). Differences in Ewi in

IGE-GTCS were similar to those seen in Swi . Increased Ewi was

found in bilateral anterior cingulate gyrus, left dorsolateral part

of superior frontal gyrus, right putamen, amygdala and calcarine

fissure; decreased Ewi was found in left rolandic operculum, super-

ior temporal pole, right inferior temporal gyrus and posterior cin-

gulate gyrus (Fig. 2C). Increased bwi was found in left middle

temporal gyrus and right amygdala; decreased bwi was found in

right posterior cingulate gyrus. Both Swi (r = 0.4275, P = 0.0293)

and Ewi (r = 0.4157, P = 0.0347) of right amygdala positively cor-

related with epilepsy duration.

In the structural connectivity network, increased Swi in IGE-GTCS

was found in left hippocampus; decreased Swi was found in bilat-

eral anterior cingulate gyri, right pallidum and triangular part of

inferior frontal gyrus (Fig. 2B). Increased Ewi in IGE-GTCS was

found in right olfactory cortex, fusiform gyrus and lingual gyrus;

decreased Ewi was found in bilateral anterior cingulate gyrus, right

Figure 1 Overall characteristics of small-world topology (�), normalized clustering coefficient (�), normalized characteristic shortest path

length (�) and total connection strength (Swnet) (left to right, respectively) of low-resolution AAL-90 functional connectivity network (A) and

the structural connectivity network (B) as a function of cost thresholds. The stars indicate the significantly statistical difference between the

IGE-GTCS and healthy controls groups (permutation testing, P5 0.05). The vertical bar indicates the standard deviation across subjects.

The inset barplot indicates the statistical differences between groups at cost = 0.18 (permutation testing, P50.05). FCN = functional

connectivity network; NS = no significance; SCN = structural connectivity network.
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Figure 2 Alterations of Swi , E
w
i and bwi of functional and structural connectivity networks in patients with IGE-GTCS relative to healthy

controls given a low-resolution AAL-90 parcellation scheme. Results were produced using permutation testing, and visualized using the

BrainNet viewer (NKLCNL, Beijing Normal University). Three dimensional rendering maps show group differences of nodal degree (Swi ) of

the functional connectivity network (A) and structural connectivity network (B), group differences of nodal efficiency (Ewi ) of the func-

tional connectivity network (C) and structural connectivity network (D); and betweenness centrality (bwi ) of the functional connectivity

network (E) and structural connectivity network (F). Red/blue spheres denote regions with increased/decreased nodal characteristic in

patients. Grey dots denote regions with no difference between groups. Nodes were positioned according to their centroid stereotaxic

coordinates. Scatter plots show the relationship between nodal characteristics and duration of epilepsy in IGE-GTCS. ACG = anterior

cingulate gyrus; AMYG = amygdala; CAL = calcarine fissure; CUN = cuneus; FCN = functional connectivity network; FFG = fusiform

gyrus; HES = Heschl gyrus; HIP = hippocampus; IFGtriang = triangular part of inferior frontal gyrus; INS = insula; ITG = inferior temporal

gyrus; L = left; LING = lingual gyrus; MTG = middle temporal gyrus; OLF = olfactory cortex; ORBinf = oribital part of inferior frontal

gyrus; ORBsup = orbital part of superior frontal gyrus; PAL = pallidum; PCG = posterior cingulate gyrus; PUT = putamen; REC = rectus

gyrus; R = right; ROL = rolandic operculum; SFGdor = dorsolateral part of superior frontal gyrus; SOG = superior occipital gyrus;

SPG = superior parietal gyrus; SCN = structural connectivity network; THA = thalamus; TPOmid = middle temporal gyrus, temporal pole;

TPOsup = superior temporal gyrus, temporal pole.
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triangular part of inferior frontal gyrus, amygdala, hippocampus,

and rectus gyrus (Fig. 2D). The nodes in bilateral anterior cingulate

gyrus showed a similar pattern of changes in Swi and Ewi . Increased

bwi was found in the right triangularis part of frontal gyrus pars

triangularis; decreased bwi was found in the left anterior cingulate

gyrus. In the structural connectivity network, no correlations

between nodal characteristics and epilepsy variables were found.

Altogether, patterns of Ewi alterations resembled those of Swi ,

but somewhat differed from those of bwi . Based on how frequently

a region displayed significant group-differences across these three

nodal measures, we identified the anatomical subregions as mem-

bers of the core regions associated with IGE-GTCS alteration,

including the regions showing alterations in at least two charac-

teristics (Table 1) and one characteristic (Supplementary Table 3).

Altered functional–structural
connectivity coupling

Similar to previous studies (Koch et al., 2002; Hagmann et al.,

2008, 2010; Honey et al., 2009), our results showed that not

only the probability densities of functional connectivity values of

structurally unconnected, but also that of structurally connected

region pairs varied over a wide range (Supplementary Fig. 9).

Under the constraint of existing structural connections, functional

connectivity values positively correlated with structural connectiv-

ity values across all pairs of brain regions in each participant

(Hagmann et al., 2008, 2010; Honey et al., 2009, 2010). This

structural–functional connectivity statistical coupling was found

for both AAL-90 and AAL-1024 parcellations (Fig. 3).

Compared with the healthy controls (0.2822 � 0.0355 and

0.3412 � 0.0279 for AAL-90 and AAL-1024 schemes), the pa-

tients with IGE-GTCS (0.1924 � 0.0647 and 0.3190 � 0.0386

for the AAL-90 and AAL-1024 schemes) showed a decrease in

strength of functional–structural connectivity coupling (P50.0001

for AAL-90; P = 0.0214 for AAL-1024). Moreover, in patients, the

strength of functional–structural connectivity coupling was nega-

tively correlated with duration of epilepsy (r = �0.4120,

P = 0.0365 for AAL-90; r = �0.5954, P = 0.0013 for AAL-1024)

(Fig. 3).

Reproducibility of findings

With either the AAL-90 or the AAL-1024 schemes, the previously

constructed and matched split-half subgroups were similar in topo-

logical organization for both the functional connectivity network

and the structural connectivity network. Visual inspection indicated

similar connectivity patterns in these subgroups. Moreover, com-

paring the two healthy control subgroups (HC1 and HC2), we

observed significant correlations in weight networks (r = 0.9495

and r = 0.9659 for AAL-90 functional and structural connectivity

networks respectively; r = 0.8795 and r = 0.9255 for AAL-1024

functional and structural connectivity networks, respectively). A

finding was also seen for the two IGE-GCTS subgroups

(r = 0.9401 and r = 0.9633 for AAL-90 functional and structural

connectivity networks, respectively; r = 0.8787 and r = 0.9218

for AAL-1024 functional and structural connectivity networks, re-

spectively) (Fig. 4 and Supplementary Fig. 10). Comparisons of

topological parameters were performed only for AAL-90. Neither

comparison between the two healthy control subgroups (HC1

versus HC2, P40.05) nor comparison between the two

IGE-GTCS subgroups (IGE-GTCS1 versus IGE-GTCS2, P40.05)

showed significant differences in Swnet and Lwnet. On the other hand,

comparing patient with control groups, we observed significant

differences in Swnet (HC1 versus IGE-GTCS1, HC1 versus IGE-

GTCS2, HC2 versus IGE-GTCS1 and HC2 versus IGE-GTCS2)

and Lwnet (HC2 versus IGE-GTCS1) for the functional connectivity

network (Fig. 4A). In addition, there were significant differences in

the Swnet (HC1 versus IGE-GTCS2 and HC2 versus IGE-GTCS1) and

Lwnet (HC1 versus IGE-GTCS2, HC2 versus IGE-GTCS1 and HC2

versus IGE-GTCS2) for the structural connectivity network (Fig. 4B).

These results suggest a high reproducibility of our findings.

Discussion
The present study applied for the first time graph theoretical ana-

lyses on both functional MRI and diffusion tensor imaging data to

Table 1 Summary of alterations of nodal characteristics in
IGE-GTCS

Region Modality Strength Efficiency Betweenness

ACG.L FCN " " –

SCN # # #

ACG.R FCN " " –

SCN # # –

SFGdor.L FCN " " –

SCN – – –

MTG.L FCN " – "

SCN – – –

PUT.R FCN " " –

SCN – – –

AMYG.R FCN " " "

SCN – # –

LING.R FCN – – –

SCN " " –

ROL.L FCN # # –

SCN – – –

TPOsup.L FCN # # –

SCN – – –

ITG.R FCN # # –

SCN – – –

PCG.R. FCN – # #

SCN – – –

IFGtriang.R FCN – – –

SCN # # #

Upward arrow = region showing increase in the nodal topological characteristic in

patients with IGE-GTCS. Downward arrow = region showing increase in the nodal

topological characteristic. Dash = region showing no significant group difference

of the nodal topological characteristic.

ACG = anterior cingulate gyrus; AMYG = amygdala; FCN = functional connectiv-

ity network; IFGtriang = triangular part of inferior frontal gyrus; ITG = inferior

temporal gyrus; L = left; LING = lingual gyrus; MTG = middle temporal gyrus;

PCG = posterior cingulate gyrus; PUT = putamen; R = right; ROL = rolandic

operculum; SCN = structural connectivity network; SFGdor = superior frontal

gyrus, dorsolateral part; TPOsup = superior temporal gyrus, temporal pole.
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define and compare the functional and structural network top-

ology in patients with IGE-GTCS. Our investigation revealed

three main findings: (i) at the overall topological level, IGE-GTCS

had altered small-worldness in both functional and structural con-

nectivity networks, suggesting a more random organization in

large-scale brain networks; (ii) at a nodal topological level, func-

tional and structural connectivity networks showed altered nodal

characteristics in cortical and subcortical regions previously shown

to be involved in IGE-GTCS, such as the thalamus, anterior cingu-

late gyrus and default mode network regions (Gotman et al.,

2005; Luo et al., 2011b; Song et al., 2011); and (iii) the coupling

of functional and structural connectivity networks was significantly

decreased in IGE-GTCS, and this decrease was more marked in

patients with a longer duration of epilepsy. The last finding may

have clinical implications, as the index of coupling between func-

tional and structural complex brain networks may be a potential

biomarker for observation of epilepsy, and may provide new in-

sights into the understanding of the pathophysiology of

IGE-GTCS.

Altered overall topology of functional
and structural connectivity networks

Consistent with the previous graph theoretical studies on epilepsy

(Ponten et al., 2007, 2009; Schindler et al., 2008; van Dellen

et al., 2009; Horstmann et al., 2010; Liao et al., 2010;

Bernhardt et al., 2011), our results showed that both patients

with IGE-GTCS and healthy controls have a small-world topology

in functional and structural connectivity networks. Such a topology

has been associated with simultaneous global and local parallel

information processing (Bassett and Bullmore, 2006), and has

been related to normal human cognitive functioning (van den

Heuvel et al., 2009b; Wen et al., 2011) and the other pathological

states (Liu et al., 2008; Lo et al., 2010; van den Heuvel et al.,

2010; Wang et al., 2010; Shu et al., 2011; Zalesky et al., 2011),

as presented with structural and functional brain networks. The

present work contributed a novel case that patients with IGE-

GTCS have an aberrant small-worldness, both in functional

and structural connectivity networks (Fig. 1). These results suggest

that patients with IGE-GTCS may have a less optimized network

organization relevant to the specific pathological state than

controls.

In patients with IGE-GTCS, both functional and structural con-

nectivity networks showed significant decreases of normalized

clustering coefficient (�). � is one of the key indices for checking

the shifts of the network small-worldness to be more regular or

random (He and Evans, 2010). The present results indicate a

random shift of brain network architecture in IGE-GTCS.

Concerning alterations of whole-brain network topology in pa-

tients with epilepsy, many studies using graph theoretical analysis

of functional connectivity network have now been published, most

of them using electrophysiological recordings (Ponten et al., 2007,

2009; Kramer et al., 2008, 2010; Schindler et al., 2008). The

periods of recording (interictal versus ictal) may contribute to the

transitions of the network topological organizations. Commonly,

functional network topology modifications during seizures show

complex transitions but essentially a translation towards a more

regular network in both partial and generalized epilepsy (Schindler

et al., 2008; Chavez et al., 2010; Kramer et al., 2010). A recent

Figure 3 Disrupted functional–structural connectivity coupling in IGE-GTCS. Compared to healthy controls (HC), IGE-GTCS showed

decreased functional–structural connectivity coupling (permutation testing, P50.05) in AAL-90 (A) and AAL-1024 (B). The strength of

functional–structural connectivity coupling negatively correlated with duration of epilepsy in patients. The inset plots show the functional–

structural connectivity coupling of selected individuals. FCN = functional connectivity network; SCN = structural connectivity network.
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interictal study using EEG and magnetoencephalography reported

a more regular network in comparison with controls (Horstmann

et al., 2010). Moreover, a more regular topology has also been

observed using structural networks constructed from cortical thick-

ness correlations in a large sample of patients with drug-resistant

temporal lobe epilepsy (Bernhardt et al., 2011). Conversely, using

resting-state functional MRI in relatively young patients with

bilateral temporal lobe epilepsy, Liao and colleagues (2010)

observed a more random topology during interictal periods. It

may be possible that not only the epilepsy phenotype but also

the modality of connectivity measurement partially accounts for

some of those differences. Indeed, as the current results are based

on functional MRI for the functional connectivity network and

diffusion weighted imaging for the structural connectivity network,

Figure 4 Evaluation of the reproducibility of the results for the functional connectivity network (A) and structural connectivity network

(B). Top: mean network matrices of each subgroup (HC1, HC2, IGE-GTCS1 and IGE-GTCS2); the edge represents the connection weight

between nodes. (Bottom left): the correlation between two healthy controls subgroups and between two IGE-GTCS subgroups. (Bottom

right): significant differences in the two nodal characteristics between the two healthy controls subgroups and between the two IGE-GTCS

subgroups. FCN = functional connectivity network; SCN = structural connectivity network.
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they may not necessarily be comparable with data from electro-

physiology for functional connectivity network and structural cor-

relation analysis for structural connectivity network in the same

cohort. Nevertheless, we detected consistent topological alter-

ations in IGE-GTCS in both the functional and structural domain,

thus possibly cross-validating our findings for these two modalities

used.

In IGE-GTCS, the overall level of connectivity strength (Swnet) was

increased only in the functional connectivity network, but not in

the structural connectivity network. Swnet measures the global con-

nectivity strength in the brain network (Hagmann et al., 2008;

Song et al., 2011). An increased level of interictal functional con-

nectivity in IGE-GTCS during resting-state is consistent with find-

ings of several previous functional MRI studies (Luo et al., 2011a,

b; Wang et al., 2011). It has been suggested that such increases

may be associated with functional reorganization and plasticity

(Song et al., 2011; Wang et al., 2011). In contrast to the finding

of increased Swnet in functional connectivity network, no change of

Swnet was found in structural connectivity network in patients with

IGE-GTCS. Inconsistent topological characteristics between func-

tional and structural connectivity networks have been reported

previously (Park et al., 2008). In general, the functional connect-

ivity network is thought to be more flexible; while the structural

connectivity network is relatively stable (Park et al., 2008;

Bullmore and Sporns, 2009). We therefore reasoned that the

structural connectivity network may be less affected in patients

with IGE-GTCS. In contrast, the functional connectivity network

measured by blood oxygenation level-dependant fluctuations may

be highly responsive to the perturbation of epileptic activity

(Aghakhani et al., 2004; Gotman et al., 2005).

Altered nodal topology of functional
and structural connectivity networks

Group comparisons of nodal topological characteristics revealed

alterations of network hubs in IGE-GTCS, using a battery of alter-

native nodal measures. Patterns of nodal alterations were consist-

ently using degree measures (Swi ), nodal efficiency (Ewi ) and

betweeness (bwi). The characteristic of Swi is the most fundamental

network measure, and provides information on the total degree of

connectivity; Ewi and bwi can both quantify the importance of the

nodes for the communication within the network. These charac-

teristics can be used to reflect the roles of nodes in information

transport and integration across the network (Sporns et al., 2007;

Hagmann et al., 2008; Song et al., 2011). Given that these meas-

ures indicate similar abnormalities, abnormal hub architecture

seems to be a consistent feature network disruption in IGE-GTCS.

Regions with increased hubness overlapped, in part, with re-

gions previously shown to be involved in pathological subcorto-

cortical networks of IGE (Archer et al., 2003; Aghakhani et al.,

2004; Gotman et al., 2005; Bernhardt et al., 2009). The similar

findings have previously been shown in temporal lobe epilepsy,

where the authors also observed a higher proportion of paralimbic

hubs in patients than in controls (Bernhardt et al., 2011).

In the thalamus, we observed increases in Swi in the functional

connectivity network. These findings likely underlie the central role

of this structure in the generation, propagation and modulation of

epileptic activity in IGE (Blumenfeld, 2003, 2005; Gotman et al.,

2005; Tyvaert et al., 2009). Imaging evidence has also shown

increased functional connectivity of the thalamocortical network

in IGE (Blumenfeld, 2003, 2005). Our findings were consistent

with the literature. Moreover, the findings might support the hy-

pothesis that the epileptic focus may correspond to a strongly

connected network node (Frei et al., 2010).

We found the inferior temporal gyrus and temporal pole regions

showed a decrease in Ewi , and the posterior cingulate gyrus

showed decreases in both Ewi and bwi . These regions are known

to be included in the default mode network (Raichle et al., 2001;

Fransson, 2005). Evidence from EEG-related functional MRI

(Gotman et al., 2005) and resting-state functional MRI studies

(Luo et al., 2011a; Song et al., 2011; Wang et al., 2011) has

indicated that the abnormal default mode network function

might underlie the pathophysiological mechanism of cognitive im-

pairment in IGE. The present result repeated the functional

abnormalities in the brain default mode regions in IGE-GTCS

through the decreases in nodal topological properties.

In bilateral anterior cingulate gyrus relative to controls, we

observed altered Swi and Ewi in both the functional and structural

connectivity networks. This region is considered as a predominant

hub that may participate in multiple affective, cognitive and motor

processes in the healthy brain (Achard and Bullmore, 2007; Seeley

et al., 2007; Buckner et al., 2009; Tomasi and Volkow, 2011). In

the pathophysiological process of IGE, mesial frontal regions and

the anterior cingulate gyrus have also been shown to play import-

ant roles in the spreading and generalization of epileptic dis-

charges and thalamocortical linkage (Isnard et al., 2004; Gotman

et al., 2005; Stefan et al., 2009).

Rather unexpectedly, we also observed that the amygdala pre-

sented increases in all three nodal topological characteristics in

patients with IGE-GTCS. These alterations were furthermore

shown to be positively correlated with duration of epilepsy in

the characteristics of Swi and Ewi . While the amygdala is consist-

ently shown to be involved in temporal lobe epilepsy (Bonelli

et al., 2009; Mitsueda-Ono et al., 2011), its role in IGE is less

clear. On the other hand, being densely connected with both the

thalamus and anterior cingulate gyrus, as shown by functional

connectivity and diffusion tractography in humans (Behrens

et al., 2003; Di Martino et al., 2008), the amygdala may partici-

pate in similar pathological processes as these two pathological

hub regions during seizure generalization. Of note, amygdala

kindling is an important technique in animal studies to elicit gen-

eralized seizures (McIntyre et al., 1991). Another possibility is that

the increased connections of amygdala might reflect emotional

symptoms in IGE (Shehata and Bateh Ael, 2009). Future studies

combining behavioural and neuroimaging data may be conducted

to test these hypotheses.

Another unexpected finding was the asymmetry in the spatial

distributions of altered nodes in IGE-GTCS. It is conventionally

considered that the brain of IGE is bilaterally and symmetrically

involved in IGE. Nonetheless, our findings are consistent with

recent investigations, which have evidenced the asymmetric

(Walser et al., 2009) and lateralized (Casaubon et al., 2003) fea-

tures in IGE.

Altered functional–structural coupling in IGE Brain 2011: 134; 2912–2928 | 2923

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
/a

rtic
le

/1
3
4
/1

0
/2

9
1
2
/3

2
2
4
4
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Interestingly, bilateral anterior cingulate gyrus and the right

amygdala showed oppositely altered Swi and Ewi between function-

al and structural connectivity networks. At present, this finding

remains unclear. We can cautiously explain it on the basis of the

difference in the underlying physiology between functional and

structural connectivity. Enhanced functional connectivity may be

related to a functional imbalance produced by epileptic activity

(Luo et al., 2011a, b; Wang et al., 2011); conversely, a decrease

in structural connectivity may be due to anatomical impairments

related to the disease (Yogarajah et al., 2008; Liao et al., 2011).

We believe that this opposed pattern of functional and structural

connectivity network changes might mostly contribute to the

functional–structural connectivity decoupling in the patients with

IGE-GTCS.

Decoupling between functional and
structural connectivity networks

In the present study, we combined functional MRI and diffusion

tensor imaging techniques to investigate the structure–function

relations in large-scale brain networks in patients with IGE-GTCS

and healthy subjects. Functional network undergoes temporal co-

herence of blood oxygenation level-dependant fluctuations, and

structural network takes advantage of water diffusion along mye-

linated nerve fibre tracts (Catani et al., 2002; Johansen-Berg and

Rushworth, 2009). Convergent functional and structural connect-

ivity has been found in different levels varying from single cortical

slice (Koch et al., 2002) to resting-state networks (van den Heuvel

et al., 2008, 2009a; Greicius et al., 2009) and even to large-scale

whole-brain network (Hagmann et al., 2008, 2010; Honey et al.,

2009). It is currently considered that structural connections are

highly predictive of, and place constraint on, functional connec-

tion. Conversely, functional connections exert effects on structural

connection through mechanisms of plasticity (Hagmann et al.,

2010). It has been previously observed that functional–structural

connectivity coupling can be configured under physiological

(Honey et al., 2009; Hagmann et al., 2010) or pathological states

(Skudlarski et al., 2010). This study for the first time concerns the

function–structure relations in large-scale whole-brain networks in

pathological state.

As we predicted, the network coupling between functional and

structural connectivity was decreased in the patients with

IGE-GTCS. The finding suggests that there is functional–structural

connectivity decoupling in IGE-GTCS. The negative correlation be-

tween the coupling strengths and epilepsy durations further indi-

cates that the functional–structural connectivity decoupling may

be related to the progress of long-term impairment in patients.

As aforementioned, no correlation was found between epilepsy

durations and the overall characteristics of brain networks in any

single imaging modality. Hence, we conclude that the index of

functional–structural connectivity coupling has priority to capture

the subtle changes of brain integration in IGE-GTCS. Of note, the

causality between disturbed structural connectivity network archi-

tecture and cortical functional connectivity network dysfunction

remains to be evaluated in future work.

Methodological considerations

Graph theoretical analysis of large-scale brain networks is a rapidly

developing research field, but there are still some controversy con-

cerning optimal analysis strategies (Bullmore and Bassett, 2011;

Wig et al., 2011). The current study employed several parallel

data analysis approaches to provide a rich pool of information

and furthermore cross-validate findings. Nevertheless, these find-

ings also produced some inconsistent results. Such divergence

might be driven by different node definitions by prior anatomic

brain templates (Wang et al., 2009) or node scales (Fornito et al.,

2010; Zalesky et al., 2010). Secondly, we used four indices to

construct the brain structural connectivity network, and we

mainly discussed the results for the index of weight index connec-

tion density, w(e), in line with the previous studies (Hagmann

et al., 2008, 2010; Honey et al., 2009; Liao et al., 2011; Yan

et al., 2011). This index combines fibre count and length between

two nodes, and is likely to reflect the long-distance connections in

complex neural systems (Hagmann et al., 2008) better than other

indices. Thirdly, such weighted networks contain information

about connection strength that reflects heterogeneity in capacity

and intensity of connections, and may thus be a more valid ap-

proach for brain network modelling. Moreover, it has been argued

that using weighted networks is useful for reducing the influence

of weak and potentially non-significant connections (Rubinov and

Sporns, 2010). However, using weighted networks requires eval-

uating connectivity metrics at different thresholds, and thereby

increases the problem complexity. Conversely, unweighted net-

works, having only binary edges, are simpler to use for statistical

comparisons (Rubinov and Sporns, 2010). However, it does not

directly reflect physical information related to the graph (Bullmore

and Bassett, 2011). Fourthly, we used multiple cost thresholds

(0.054 cost4 0.3, step = 0.01) to evaluate the stability of the

topological organization in networks calculated with low-

resolution AAL-90 scheme. However, for comparing the overall

and nodal characteristics between groups, we used a fixed cost

(cost = 0.18 for both functional and structural connectivity net-

works with the AAL-90 scheme). Since multiple cost thresholds

cannot be applied to structural connectivity networks constructed

by deterministic tractography with the AAL-1024 structural con-

nectivity network scheme, we used a fixed cost value (cost =

0.0068, the mean degree of the resulting network will being

larger than the log of the number of node). Finally, we mainly

used matched strategies to construct the structural connectivity

network. The matched strategy meets the criterion that each net-

work must have the same number of edges for brain network

comparisons (Bullmore and Bassett, 2011). The unmatched strat-

egy, for which all the edges are kept as long as there is a defined

connection between two nodes, has also been used in the previ-

ous studies (Shu et al., 2009, 2011; Lo et al., 2010; Zalesky et al.,

2011). In this case, the numbers of edges of each individual net-

work are potentially different from each other. We also explored

the effect of different thresholds of fibre number on the structural

connectivity network by using fibre number threshold values from

1 to 5. For each threshold value, the indices of Swnet, C
w
net, �, � and

� were calculated. Group comparison analyses of these indices did

not yield significant difference (Supplementary Table 4).
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Limitations

Several limitations in the current study are noteworthy. First, our

design does not allow us to control for confounding effects of

anti-epileptic drugs, which can affect normal neuronal function

and produce cognitive impairments (Ortinski and Meador,

2004). Secondly, we could not evaluate the potential effects on

the brain networks of interictal epileptiform discharges since no

simultaneous EEG data were acquired. Thirdly, previous studies

have suggested that specific cognitive functions (Wen et al.,

2011) and also general intellectual performance (Li et al., 2009;

van den Heuvel et al., 2009b) are associated with brain network

topological characteristics. Although we demonstrated alterations

of network topologies in IGE-GTCS, the possible contribution to

the behavioural and cognitive impairments in IGE-GTCS is still

unclear, and requires future investigations. Finally, deterministic

tractography was used to define the edges of the structural con-

nectivity network according to other studies (Lo et al., 2010; Liao

et al., 2011; Shu et al., 2011; Yan et al., 2011). The tracking

procedure always stops when it reaches regions with fibre cross-

ings (Mori and van Zijl, 2002), which might result in a loss of

sensitivity. Probabilistic tractography techniques (Gong et al.,

2009b) may be helpful to address the issue in future work.

Conclusion
In the present study, we combined the functional connectivity

network (functional connectivity MRI) and the structural connect-

ivity network (diffusion tractography) to investigate the alterations

of the complex brain network organization in patients with

IGE-GTCS. Although IGE-GTCS and healthy controls exhibited

small-world topology in functional and structural connectivity net-

works, the patients showed reductions of the optimal topological

organization in functional and structural connectivity networks. In

addition, functional and structural connectivity networks showed

altered nodal characteristics within a few key nodes associated

with cortical and subcortical regions involved in IGE-GTCS.

Importantly, we found deceased functional–structural connectivity

network coupling in IGE-GTCS, and this decoupling was related to

duration of the disorder, suggesting that the functional–structural

connectivity network coupling may reflect the progress of

IGE-GTCS. Overall, the present study demonstrates for the first

time that the IGE-GTCS is associated with a disrupted topological

organization in large-scale brain structural and functional network,

opening up new avenues to better understanding this disorder.

Acknowledgements
We thank the patients and volunteers for participating in this

study. We thank the anonymous reviewers for their constructive

suggestions to improve this work. We thank Dr Yong He, Beijing

Normal University, China, for his contribution to this work. We

thank Andrew Zalesky, the University of Melbourne and

Melbourne Health, Australia, for his providing code of high-

resolution node parcellation and for his assistance. We also

thank Ruopeng Wang, Van J. Wedeen, TrackVis.org, Martinos

Center for Biomedical Imaging, Massachusetts General Hospital,

for providing Diffusion Toolkit and TrackVis freely.

Funding
Natural Science Foundation of China (Grant nos. 30800264,

30971019, 90820006, 81020108022 and 61035006); Grants for

Young Scholars in Jinling Hospital (Grant nos. Q2008063,

2011060); D.M. is a post-doc fellow of the Research Foundation

Flanders (FWO) (Grant no. A4/5-SDS15387 to D.M.). Foundation

of Changjiang Scholars and Innovative Research Team in

University of Electronic science and technology of China.

Supplementary material
Supplementary material is available at Brain online.

References
Achard S, Bullmore E. Efficiency and cost of economical brain functional

networks. PLoS Comput Biol 2007; 3: e17.

Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient,

low-frequency, small-world human brain functional network with

highly connected association cortical hubs. J Neurosci 2006; 26:

63–72.

Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F,

Dubeau F, et al. fMRI activation during spike and wave discharges

in idiopathic generalized epilepsy. Brain 2004; 127: 1127–44.

Andermann F, Berkovic SF. Idiopathic generalized epilepsy with general-

ized and other seizures in adolescence. Epilepsia 2001; 42: 317–20.

Archer JS, Abbott DF, Waites AB, Jackson GD. fMRI "deactivation" of

the posterior cingulate during generalized spike and wave.

Neuroimage 2003; 20: 1915–22.

Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist 2006;

12: 512–23.

Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR,

Meyer-Lindenberg A. Hierarchical organization of human cortical net-

works in health and schizophrenia. J Neurosci 2008; 28: 9239–48.

Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-

Kingshott CA, Boulby PA, et al. Non-invasive mapping of connections

between human thalamus and cortex using diffusion imaging. Nat

Neurosci 2003; 6: 750–7.

Benjamini Y, Hochberg Y. Controlling the false discovery rate—a prac-

tical and powerful approach to multiple testing. R Stat Soc Series B

Stat Methodol 1995; 57: 289–300.

Bernhardt BC, Chen Z, He Y, Evans AC, Bernasconi N. Graph-Theoretical

Analysis reveals disrupted small-world organization of cortical thickness

correlation networks in temporal lobe epilepsy. Cereb Cortex 2011;

21: 2147–57.

Bernhardt BC, Rozen DA, Worsley KJ, Evans AC, Bernasconi N,

Bernasconi A. Thalamo-cortical network pathology in idiopathic gen-

eralized epilepsy: insights from MRI-based morphometric correlation

analysis. Neuroimage 2009; 46: 373–81.

Betting LE, Li LM, Lopes-Cendes I, Guerreiro MM, Guerreiro CA,

Cendes F. Correlation between quantitative EEG and MRI in idiopathic

generalized epilepsy. Hum Brain Mapp 2010; 31: 1327–38.

Blumenfeld H. From molecules to networks: cortical/subcortical inter-

actions in the pathophysiology of idiopathic generalized epilepsy.

Epilepsia 2003; 44 (Suppl 2): 7–15.

Altered functional–structural coupling in IGE Brain 2011: 134; 2912–2928 | 2925

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
/a

rtic
le

/1
3
4
/1

0
/2

9
1
2
/3

2
2
4
4
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Blumenfeld H. Cellular and network mechanisms of spike-wave seizures.

Epilepsia 2005; 46 (Suppl 9): 21–33.

Blumenfeld H, Taylor J. Why do seizures cause loss of consciousness?

Neuroscientist 2003; 9: 301–10.

Blumenfeld H, Varghese GI, Purcaro MJ, Motelow JE, Enev M,

McNally KA, et al. Cortical and subcortical networks in human

secondarily generalized tonic-clonic seizures. Brain 2009; 132:

999–1012.

Blumenfeld H, Westerveld M, Ostroff RB, Vanderhill SD, Freeman J,

Necochea A, et al. Selective frontal, parietal, and temporal networks

in generalized seizures. Neuroimage 2003; 19: 1556–66.

Bonelli SB, Powell R, Yogarajah M, Thompson PJ, Symms MR,

Koepp MJ, et al. Preoperative amygdala fMRI in temporal lobe epi-

lepsy. Epilepsia 2009; 50: 217–27.

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al.

Cortical hubs revealed by intrinsic functional connectivity: mapping,

assessment of stability, and relation to Alzheimer’s disease. J

Neurosci 2009; 29: 1860–73.

Bullmore ET, Bassett DS. Brain graphs: graphical models of the human

brain connectome. Annu Rev Clin Psychol 2011; 7: 113–40.

Bullmore E, Sporns O. Complex brain networks: graph theoretical ana-

lysis of structural and functional systems. Nat Rev Neurosci 2009; 10:

186–98.

Casaubon L, Pohlmann-Eden B, Khosravani H, Carlen PL, Wennberg R.

Video-EEG evidence of lateralized clinical features in primary general-

ized epilepsy with tonic-clonic seizures. Epileptic Disord 2003; 5:

149–56.

Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive

dissection of white matter fasciculi in the human brain. Neuroimage

2002; 17: 77–94.

Cavanna AE, Monaco F. Brain mechanisms of altered conscious states

during epileptic seizures. Nat Rev Neurol 2009; 5: 267–76.

Chavez M, Valencia M, Navarro V, Latora V, Martinerie J. Functional

modularity of background activities in normal and epileptic brain net-

works. Phys Rev Lett 2010; 104: 118701.

Damoiseaux JS, Greicius MD. Greater than the sum of its parts: a review

of studies combining structural connectivity and resting-state function-

al connectivity. Brain Struct Funct 2009; 213: 525–33.

Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z,

et al. Functional connectivity of human striatum: a resting state FMRI

study. Cereb Cortex 2008; 18: 2735–47.

Engel J Jr. A proposed diagnostic scheme for people with epileptic seiz-

ures and with epilepsy: report of the ILAE task force on classification

and terminology. Epilepsia 2001; 42: 796–803.

Fornito A, Zalesky A, Bullmore ET. Network scaling effects in graph ana-

lytic studies of human resting-state FMRI data. Front Syst Neurosci

2010; 4: 22.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME.

The human brain is intrinsically organized into dynamic, anticorrelated

functional networks. Proc Natl Acad Sci USA 2005; 102: 9673–8.

Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and

observed anticorrelated resting state brain networks. J Neurophysiol

2009; 101: 3270–83.

Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an

fMRI investigation of the resting-state default mode of brain function

hypothesis. Hum Brain Mapp 2005; 26: 15–29.

Freeman LC. A set of measures of centrality based upon betweenness.

Sociometry 1977; 40: 35–41.

Frei MG, Zaveri HP, Arthurs S, Bergey GK, Jouny CC, Lehnertz K, et al.

Controversies in epilepsy: debates held during the Fourth International

Workshop on Seizure Prediction. Epilepsy Behav 2010; 19: 4–16.

Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, et al. Mapping

anatomical connectivity patterns of human cerebral cortex using

in vivo diffusion tensor imaging tractography. Cereb Cortex 2009a;

19: 524–36.

Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC. Age- and

gender-related differences in the cortical anatomical network. J

Neurosci 2009b; 29: 15684–93.

Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau F.

Generalized epileptic discharges show thalamocortical activation and

suspension of the default state of the brain. Proc Natl Acad Sci USA

2005; 102: 15236–40.

Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state func-

tional connectivity reflects structural connectivity in the default mode

network. Cereb Cortex 2009; 19: 72–8.

Guye M, Bettus G, Bartolomei F, Cozzone PJ. Graph theoretical analysis

of structural and functional connectivity MRI in normal and patho-

logical brain networks. MAGMA 2010; 23: 409–21.

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ,

et al. Mapping the structural core of human cerebral cortex. PLoS Biol

2008; 6: e159.

Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, Wedeen VJ,

et al. White matter maturation reshapes structural connectivity in the

late developing human brain. Proc Natl Acad Sci USA 2010; 107:

19067–72.

He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the

human brain revealed by cortical thickness from MRI. Cereb Cortex

2007; 17: 2407–19.

He Y, Evans A. Graph theoretical modeling of brain connectivity. Curr

Opin Neurol 2010; 23: 341–50.

He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, et al. Uncovering

intrinsic modular organization of spontaneous brain activity in humans.

PLoS One 2009; 4: e5226.

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, et al.

Predicting human resting-state functional connectivity from structural

connectivity. Proc Natl Acad Sci USA 2009; 106: 2035–40.

Honey CJ, Thivierge JP, Sporns O. Can structure predict function in the

human brain? Neuroimage 2010; 52: 766–76.

Horstmann MT, Bialonski S, Noennig N, Mai H, Prusseit J, Wellmer J,

et al. State dependent properties of epileptic brain networks: compara-

tive graph-theoretical analyses of simultaneously recorded EEG and

MEG. Clin Neurophysiol 2010; 121: 172–85.

Humphries MD, Gurney K, Prescott TJ. The brainstem reticular formation

is a small-world, not scale-free, network. Proc Biol Sci 2006; 273:

503–11.

ILAE. Proposal for revised classification of epilepsies and epileptic syn-

dromes. Commission on Classification and Terminology of the

International League Against Epilepsy. Epilepsia 1989; 30: 389–99.

Isnard J, Guenot M, Sindou M, Mauguiere F. Clinical manifestations of

insular lobe seizures: a stereo-electroencephalographic study. Epilepsia

2004; 45: 1079–90.

Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, Aleman-Gomez Y,

Melie-Garcia L. Studying the human brain anatomical network via

diffusion-weighted MRI and graph theory. Neuroimage 2008; 40:

1064–76.

Johansen-Berg H, Rushworth MF. Using diffusion imaging to study

human connectional anatomy. Annu Rev Neurosci 2009; 32: 75–94.

Kaiser M, Hilgetag CC. Nonoptimal component placement, but short

processing paths, due to long-distance projections in neural systems.

PLoS Comput Biol 2006; 2: e95.

Koch MA, Norris DG, Hund-Georgiadis M. An investigation of functional

and anatomical connectivity using magnetic resonance imaging.

Neuroimage 2002; 16: 241–50.

Kramer MA, Eden UT, Kolaczyk ED, Zepeda R, Eskandar EN, Cash SS.

Coalescence and fragmentation of cortical networks during focal seiz-

ures. J Neurosci 2010; 30: 10076–85.

Kramer MA, Kolaczyk ED, Kirsch HE. Emergent network topology at

seizure onset in humans. Epilepsy Res 2008; 79: 173–86.

Li Y, Du H, Xie B, Wu N, Wang J, Wu G, et al. Cerebellum abnormalities

in idiopathic generalized epilepsy with generalized tonic-clonic seizures

revealed by diffusion tensor imaging. PLoS One 2010; 5: e15219.

Li Y, Liu Y, Li J, Qin W, Li K, Yu C, et al. Brain anatomical network and

intelligence. PLoS Comput Biol 2009; 5: e1000395.

Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, et al. Altered

functional connectivity and small-world in mesial temporal lobe epi-

lepsy. PLoS One 2010; 5: e8525.

2926 | Brain 2011: 134; 2912–2928 Z. Zhang et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
/a

rtic
le

/1
3
4
/1

0
/2

9
1
2
/3

2
2
4
4
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, et al. Default mode

network abnormalities in mesial temporal lobe epilepsy: a study com-

bining fMRI and DTI. Hum Brain Mapp 2011; 32: 883–95.

Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, et al.

Disrupted small-world networks in schizophrenia. Brain 2008; 131:

945–61.

Lo CY, Wang PN, Chou KH, Wang J, He Y, Lin CP. Diffusion tensor

tractography reveals abnormal topological organization in structural

cortical networks in Alzheimer’s disease. J Neurosci 2010; 30:

16876–85.

Luo C, Li Q, Lai Y, Xia Y, Qin Y, Liao W, et al. Altered functional

connectivity in default mode network in absence epilepsy: a

resting-state fMRI study. Hum Brain Mapp 2011a; 32: 438–49.

Luo C, Li Q, Xia Y, Lei X, Xue K, Yao Z, et al. Resting state basal ganglia

network in idiopathic generalized epilepsy. Human Brain Mapp 2011b,

doi: 10.1002/hbm.21286.

McIntyre DC, Don JC, Edson N. Distribution of [14C]2-deoxyglucose

after various forms and durations of status epilepticus induced by

stimulation of a kindled amygdala focus in rats. Epilepsy Res 1991;

10: 119–33.

Mitsueda-Ono T, Ikeda A, Inouchi M, Takaya S, Matsumoto R,

Hanakawa T, et al. Amygdalar enlargement in patients with temporal

lobe epilepsy. J Neurol Neurosurg Psychiatry 2011; 82: 652–7.

Moeller F, Maneshi M, Pittau F, Gholipour T, Bellec P, Dubeau F, et al.

Functional connectivity in patients with idiopathic generalized epilepsy.

Epilepsia 2011; 52: 515–22.

Moeller F, Siebner HR, Wolff S, Muhle H, Boor R, Granert O, et al.

Changes in activity of striato-thalamo-cortical network precede gen-

eralized spike wave discharges. Neuroimage 2008; 39: 1839–49.

Mori S, van Zijl PC. Fiber tracking: principles and strategies - a technical

review. NMR Biomed 2002; 15: 468–80.

Newman MEJ. The structure and function of complex networks. SIAM

Review 2003; 45: 167–256.

Onnela JP, Saramaki J, Kertesz J, Kaski K. Intensity and coherence of

motifs in weighted complex networks. Phys Rev E Stat Nonlin Soft

Matter Phys 2005; 71: 065103.

Ortinski P, Meador KJ. Cognitive side effects of antiepileptic drugs.

Epilepsy Behav 2004; 5 (Suppl 1): S60–5.

Park C, Kim SY, Kim YH, Kim K. Comparison of the small-world topology

between anatomical and functional connectivity in the human brain.

Physica A: Stat Mech Appl 2008; 387: 5958–62.

Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy:

graph theoretical analysis of intracerebrally recorded mesial temporal

lobe seizures. Clin Neurophysiol 2007; 118: 918–27.

Ponten SC, Douw L, Bartolomei F, Reijneveld JC, Stam CJ. Indications

for network regularization during absence seizures: weighted and

unweighted graph theoretical analyses. Exp Neurol 2009; 217:

197–204.

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA,

Shulman GL. A default mode of brain function. Proc Natl Acad Sci

USA 2001; 98: 676–82.

Rubinov M, Sporns O. Complex network measures of brain connectivity:

uses and interpretations. Neuroimage 2010; 52: 1059–69.

Rubinov M, Sporns O, van Leeuwen C, Breakspear M. Symbiotic rela-

tionship between brain structure and dynamics. BMC Neurosci 2009;

10: 55.

Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E.

Neurophysiological architecture of functional magnetic resonance

images of human brain. Cereb Cortex 2005; 15: 1332–42.

Schindler KA, Bialonski S, Horstmann MT, Elger CE, Lehnertz K. Evolving

functional network properties and synchronizability during human epi-

leptic seizures. Chaos 2008; 18: 033119.

Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H,

et al. Dissociable intrinsic connectivity networks for salience processing

and executive control. J Neurosci 2007; 27: 2349–56.

Shehata GA, Bateh Ael A. Cognitive function, mood, behavioral aspects,

and personality traits of adult males with idiopathic epilepsy. Epilepsy

Behav 2009; 14: 121–4.

Shu N, Liu Y, Li K, Duan Y, Wang J, Yu C, et al. Diffusion tensor

tractography reveals disrupted topological efficiency in white matter

structural networks in multiple sclerosis. Cereb Cortex 2011,

doi:10.1093/cercor/bhr039.

Shu N, Liu Y, Li J, Li Y, Yu C, Jiang T. Altered anatomical network in

early blindness revealed by diffusion tensor tractography. PLoS One

2009; 4: e7228.

Skudlarski P, Jagannathan K, Anderson K, Stevens MC, Calhoun VD,

Skudlarska BA, et al. Brain connectivity is not only lower but different

in schizophrenia: a combined anatomical and functional approach. Biol

Psychiatry 2010; 68: 61–9.

Song M, Du H, Wu N, Hou B, Wu G, Wang J, et al. Impaired

resting-state functional integrations within default mode network of

generalized tonic-clonic seizures epilepsy. PLoS One 2011; 6: e17294.

Sporns O. Networks of the brain. Cambridge: MA: MIT Press; 2010.

Sporns O. The human connectome: a complex network. Ann N Y Acad

Sci 2011; 1224: 109–25.

Sporns O, Honey CJ, Kotter R. Identification and classification of hubs in

brain networks. PLoS One 2007; 2: e1049.

Stefan H, Paulini-Ruf A, Hopfengartner R, Rampp S. Network character-

istics of idiopathic generalized epilepsies in combined MEG/EEG.

Epilepsy Res 2009; 85: 187–98.

Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V.

Development of functional and structural connectivity within the de-

fault mode network in young children. Neuroimage 2010; 52:

290–301.

Tian L, Wang J, Yan C, He Y. Hemisphere- and gender-related differ-

ences in small-world brain networks: a resting-state functional MRI

study. Neuroimage 2011; 54: 191–202.

Tomasi D, Volkow ND. Association between functional connectivity hubs

and brain networks. Cereb Cortex 2011; 21: 2003–13.

Tononi G, Sporns O, Edelman GM. A measure for brain complexity:

relating functional segregation and integration in the nervous

system. Proc Natl Acad Sci USA 1994; 91: 5033–7.

Tyvaert L, Chassagnon S, Sadikot A, LeVan P, Dubeau F, Gotman J.

Thalamic nuclei activity in idiopathic generalized epilepsy: an

EEG-fMRI study. Neurology 2009; 73: 2018–22.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O,

Delcroix N, et al. Automated anatomical labeling of activations in SPM

using a macroscopic anatomical parcellation of the MNI MRI

single-subject brain. Neuroimage 2002; 15: 273–89.

van Dellen E, Douw L, Baayen JC, Heimans JJ, Ponten SC,

Vandertop WP, et al. Long-term effects of temporal lobe epilepsy

on local neural networks: a graph theoretical analysis of corticography

recordings. PLoS One 2009; 4: e8081.

van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a

review on resting-state fMRI functional connectivity. Eur

Neuropsychopharmacol 2010; 20: 519–34.

van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE. Functionally

linked resting-state networks reflect the underlying structural connect-

ivity architecture of the human brain. Hum Brain Mapp 2009a; 30:

3127–41.

van den Heuvel M, Mandl R, Luigjes J, Hulshoff Pol H. Microstructural

organization of the cingulum tract and the level of default mode func-

tional connectivity. J Neurosci 2008; 28: 10844–51.

van den Heuvel MP, Mandl RC, Stam CJ, Kahn RS, Hulshoff Pol HE.

Aberrant frontal and temporal complex network structure in schizo-

phrenia: a graph theoretical analysis. J Neurosci 2010; 30: 15915–26.

van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE. Efficiency of

functional brain networks and intellectual performance. J Neurosci

2009b; 29: 7619–24.

Vlooswijk MC, Jansen JF, de Krom MC, Majoie HM, Hofman PA,

Backes WH, et al. Functional MRI in chronic epilepsy: associations

with cognitive impairment. Lancet Neurol 2010; 9: 1018–27.

Walser G, Unterberger I, Dobesberger J, Embacher N, Falkenstetter T,

Larch J, et al. Asymmetric seizure termination in primary and

secondary generalized tonic-clonic seizures. Epilepsia 2009; 50:

2035–9.

Altered functional–structural coupling in IGE Brain 2011: 134; 2912–2928 | 2927

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
/a

rtic
le

/1
3
4
/1

0
/2

9
1
2
/3

2
2
4
4
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Wang R, Beener T, Sorensen AG, Weeden VJ. Diffusion toolkit: a soft-

ware package for diffusion imaging data processing and tractography.

Proc Intl Soc Mag Reson Med 2007; 3720.

Wang Z, Lu G, Zhang Z, Zhong Y, Jiao Q, Tan Q, et al. Altered resting

state networks in epileptic patients with generalized tonic-clonic seiz-

ures. Brain Res 2011; 1374: 134–41.

Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, et al.

Parcellation-dependent small-world brain functional networks: a

resting-state fMRI study. Hum Brain Mapp 2009; 30: 1511–23.

Wang L, Yu C, Chen H, Qin W, He Y, Fan F, et al. Dynamic functional

reorganization of the motor execution network after stroke. Brain

2010; 133: 1224–38.

Watts DJ, Strogatz SH. Collective dynamics of ’small-world’ networks.

Nature 1998; 393: 440–2.

Wen W, Zhu W, He Y, Kochan NA, Reppermund S, Slavin MJ, et al.

Discrete neuroanatomical networks are associated with specific cogni-

tive abilities in old age. J Neurosci 2011; 31: 1204–12.

Wig GS, Schlaggar BL, Petersen SE. Concepts and principles in the ana-

lysis of brain networks. Ann N Y Acad Sci 2011; 1224: 126–46.

Yan C, Gong G, Wang J, Wang D, Liu D, Zhu C, et al. Sex- and brain

size-related small-world structural cortical networks in young adults: a

DTI tractography study. Cereb Cortex 2011; 21: 449–58.

Yogarajah M, Powell HW, Parker GJ, Alexander DC, Thompson PJ,

Symms MR, et al. Tractography of the parahippocampal gyrus and

material specific memory impairment in unilateral temporal lobe epi-

lepsy. Neuroimage 2008; 40: 1755–64.

Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, et al.

Whole-brain anatomical networks: does the choice of nodes matter?

Neuroimage 2010; 50: 970–83.

Zalesky A, Fornito A, Seal ML, Cocchi L, Westin CF, Bullmore ET, et al.

Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry

2011; 69: 80–9.

Zhang Z, Lu G, Zhong Y, Tan Q, Liao W, Chen Z, et al. Impaired per-

ceptual networks in temporal lobe epilepsy revealed by resting fMRI. J

Neurol 2009; 256: 1705–13.

Zhang Z, Lu G, Zhong Y, Tan Q, Liao W, Wang Z, et al. Altered spon-

taneous neuronal activity of the default-mode network in mesial tem-

poral lobe epilepsy. Brain Res 2010; 1323: 152–60.

Zielinski BA, Gennatas ED, Zhou J, Seeley WW. Network-level structural

covariance in the developing brain. Proc Natl Acad Sci USA 2010; 107:

18191–6.

2928 | Brain 2011: 134; 2912–2928 Z. Zhang et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
/a

rtic
le

/1
3
4
/1

0
/2

9
1
2
/3

2
2
4
4
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


