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Altered genotypic and phenotypic frequencies of aphid
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Abstract

Environmental change is anticipated to negatively affect both plant and animal popula-

tions. As abiotic factors rapidly change habitat suitability, projections range from altered

genetic diversity to wide-spread species loss. Here, we assess the degree to which

changes in atmospheric composition associated with environmental change will influ-

ence not only the abundance, but also the genotypic/phenotypic diversity, of herbivore

populations. Using free-air CO2 and O3 enrichment (FACE) technology, we assess

numerical responses of pea aphids (Acyrthosiphon pisum) exhibiting a pink–green

genetic polymorphism and an environmentally determined wing polyphenism on broad

bean plants (Vicia faba) under enriched CO2 and/or O3 atmospheres, over multiple

generations. We show that these two greenhouse gases alter not only aphid population

sizes, but also genotypic and phenotypic frequencies. As the green genotype was

positively influenced by elevated CO2 levels, but the pink genotype was not, genotypic

frequencies (pink morph : green morph) ranged from 1 : 1 to 9 : 1. These two genotypes

also displayed marked differences in phenotypic frequencies. The pink genotype

exhibited higher levels of wing induction under all atmospheric treatments, however,

this polyphenism was negatively influenced by elevated O3 levels. Resultantly, frequen-

cies of winged phenotypes (pink morph : green morph) varied from 10 : 1 to 332 : 1. Thus,

atmospheric conditions associated with environmental change may alter not just overall

population sizes, but also genotypic and phenotypic frequencies of herbivore popula-

tions, thereby influencing community and ecosystem functioning.

Keywords: air pollution, carbon dioxide, climate change, plasticity, polymorphism, polyphenism,

ozone
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Introduction

Serious concerns have been raised about the effects of

global environmental change on community and eco-

system functioning (Körner & Bazzaz, 1996; Niklaus

et al., 2001). Because of the rapidity of environmental

change, plant and animal populations may be subject to

intense selection pressures (Vitousek, 1994). Altered

abiotic factors, such as increased temperature or

changes in precipitation, may cause many species’

habitats to shift geographically, with present territories

often becoming uninhabitable (Gjerdrum et al., 2003;

Inouye et al., 2003; Root et al., 2003). It is unclear,

however, whether environmental change will induce

extinction events (Williams et al., 2003; Thomas et al.,

2004) or if plant and animal populations will persist,

although with altered diversity (Bazzaz et al., 1995;

Andalo et al., 2001; Tilman & Lehman, 2001).

Greenhouse gases are key factors associated with

global environmental change (IPCC, 2001). Two of these

gases, CO2 and tropospheric O3, are generally stimula-

tory and inhibitory, respectively, for plant growth pro-

cesses (Saxe et al., 1998; Ceulemans et al., 1999;

Karnosky et al., 2003). The effects of these two gases,

however, may offset each other to some degree (Dickson

et al., 1998; Heagle et al., 1998; Donnelly et al., 2000).

Elevated concentrations of CO2 and O3 also alter the

performance of organisms, such as insect herbivores,

at higher trophic levels (Percy et al., 2002; Stacey &
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Fellowes, 2002). Lepidoptera generally increase feeding

rates on nutrient diluted, CO2-enriched foliage, result-

ing in little or no change in growth (Lindroth, 1996;

Bezemer & Jones, 1998; Coviella & Trumble, 1999).

Meanwhile, performance of the same insects may im-

prove on vegetation grown under elevated O3 (Kopper

& Lindroth, 2003). Phloem-feeding insects, such as

aphids, however, exhibit equivocal responses such as

increased, decreased, and no change in growth and

offspring production in response to plants grown under

elevated CO2 or O3 (Hughes & Bazzaz, 2001; Holopai-

nen, 2002).

Scaling short-term developmental responses of indi-

vidual insects to population-level effects has been

relatively unsuccessful (Bezemer et al., 1999; Awmack

et al., 2004), as reproductive and somatic tissue alloca-

tion may be altered in a non-linear fashion in response

to various environmental factors (Leather, 1988). Envir-

onmental change also has the potential to alter not only

overall herbivore population sizes, but genotypic

and phenotypic frequencies (Thomas et al., 2001; Rank

& Dahlhoff, 2002). By evaluating genotypic and pheno-

typic frequencies (i.e. the proportion of each geno-

type and phenotype out of the total population of

genotypes and phenotypes; Conner & Hartl, 2004), it

is possible to determine the direction and rate of selec-

tion on a trait in a population. Moreover, as herbivore

genotypic and phenotypic frequencies oscillate, higher

trophic levels are likely to be affected. For example, the

top-down effects of natural enemies on prey popula-

tions are strongly influenced by the frequencies of

genotypes, and associated patterns of phenotypic ex-

pression, in herbivore populations (Lewontin, 1970;

Losey et al., 1997).

Aphids are good model organisms with which to

assess the effects of environmental change. As aphids

have short generation times, experiments can be con-

ducted over multiple generations (Dixon, 1998).

Furthermore, as aphids are parthenogenetic during

the summer months, genetic colour polymorphisms

can be used as genotypic markers to identify individual

asexual lineages (Tomiuk &Wöhrmann, 1982; Conner &

Hartl, 2004). Pea aphids, Acyrthosiphon pisum, for exam-

ple, exhibit a pink–green genetic polymorphism (Losey

et al., 1997). Besides colour, other traits differ among

asexual lineages, such as the ability to exhibit an envi-

ronmentally determined wing induction response (Mül-

ler et al., 2001). The extent to which this wing polyphen-

ism is induced by atmospheric change may have large

effects on trophic functioning. Winged individuals

evade natural enemies more easily (Dixon, 1998) and

are chief plant virus vectors (Ng & Perry, 2004).

Here, we describe a field experiment, conducted at

the Aspen free-air CO2 and O3 enrichment (FACE) site,

investigating the effects of elevated levels of CO2

and O3 on the genotypic and phenotypic frequencies

of pea aphid populations. Firstly, we assessed whether

atmospheric change significantly altered the frequen-

cies of individuals exhibiting a pink–green genetic

polymorphism, as evidenced by different numbers of

the two morphs. Secondly, we assessed whether atmo-

spheric composition altered phenotypic frequencies (i.e.

the proportion of individuals of the two genotypes

exhibiting an environmentally determined wing poly-

phenism).

Methods

FACE experiment

Aspen FACE is a 32 ha site located near Rhinelander,

WI, USA (45.71 latitude, 89.71 longitude), consisting of

12, 30m diameter rings. The site was constructed and

trees planted inside each ring in 1997 (Dickson et al.,

2000). Each FACE ring is divided into three sectors: (1)

trembling aspen genotypes (Populus tremuloidesMichx.);

(2) trembling aspen and sugar maple (Acer saccharum

Marsh.); and (3) trembling aspen and paper birch

(Betula papyrifera Marsh.). Stands have been exposed

to ambient or elevated levels of CO2 and/or O3 since

1998 (Dickson et al., 2000).

The FACE experiment is a randomized complete

block design, consisting of three blocks of four rings

(i.e. treatments): (1) control (367 � 15mLL�1 CO2 and

38 � 13 nLL�1O3), (2) elevated CO2 (1CO2, 537 �
77 mLL�1), (3) elevated O3 (1O3, 51 � 22 nLL�1), and

(4) elevated CO2 and O3 (1CO21O3, 537 � 77 mLL�1

1 51 � 22 nLL�1, respectively) (Dickson et al., 2000).

Carbon dioxide levels are elevated to represent levels

predicted for 2060, while ozone levels are elevated in a

diurnal pattern approximately 1.5-fold that of ambient

levels (Dickson et al., 2000). A trace-gas monitoring

system continually adjusts the concentrations of CO2

and O3 applied to the forest stands.

Changes in herbivore genotypic and phenotypic
frequencies

Fifteen, 15 cm diameter pots were filled with local

topsoil (Musson Brothers, Rhinelander, WI, USA) and

placed within the aspen-maple sector of each of the 12

FACE rings. Two broad bean, Vicia faba cv. Broad Wind-

sor, seeds were planted in each pot. A wooden stake

was placed mid-centre and a 30� 60 cm2 mesh bag was

placed over each pot and attached with rubber bands, to

deny access to naturally colonizing insects. After the

plants had germinated and reached a height of ca.

45 cm, 8–10 leaf pairs (averaged across FACE rings)
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insects were added to treatment pots. Each pot was

randomly assigned, using a random number generator

(JMP IN 5.1, SAS Institute, 2005) to one of the following

treatments: (1) no aphids (control), (2) two green apter-

ous adult pea aphids, or (3) two pink apterous adult pea

aphids (n5 3, 6, and 6 of each treatment per ring).

Genotypes were reared in different pots, to better

understand the sole effect of atmospheric composition

on aphid population dynamics, without the confound-

ing effect of intraspecific competition. We used the pea

aphid as a model herbivore species as it naturally

colonizes understory plants at Aspen FACE.

Experimental aphids were derived from single green

and pink asexual lineages, initially obtained from red

clover, Trifolium pratense, in Rhinelander, WI. The two

genotypes had been reared in the laboratory for ap-

proximately 12 months prior to the experiment. Aphids

used in the experiment were newly moulted adults

reared under ambient, low-density conditions, to mini-

mize any prior effects of crowding on winged offspring

production. After placement of aphids on the treatment

plants, five pots from each FACE ring (n5 1, 2, and 2

of the aforementioned treatments, respectively) were

destructively sampled each week, for 3 weeks (ca. two

aphid generations). We chose to run our experiment for

only 3 weeks so that declining host plant quality, as a

result of feeding damage from large aphid populations,

would not be a factor in our experiment. Each week,

plants were thoroughly examined for numbers, ages

(first/second instars (ca. 0–2mm), third/fourth instars

(ca. 2–4mm) and adults (44mm)), and if adult, phe-

notypes (unwinged and winged), of aphids developing

under the different atmospheres.

Statistics

Data were analysed with split-plot ANOVAs (JMP IN 5.1,

SAS Institute, 2005). Whole-plot effects consisted of the

atmospheric treatments CO2 (ambient vs. elevated) and

O3 (ambient vs. elevated), fully crossed. Ring block was

incorporated as a whole-plot random variable (block 1

vs. 2 vs. 3). Subplot factors were time (week 1 vs. 2 vs. 3)

and aphid genotype (pink vs. green). All interactions

among gas treatments, time, and genotype were in-

cluded as subplot interactions. A separate split-plot

ANOVA was performed for each aphid age class and

phenotype (i.e., first/second instars, third/fourth in-

stars, unwinged adults, and winged adults).

As experimental replication of the fumigation treat-

ments involves entire FACE rings, individual assays of

each genotype within each ring are not true replicates.

As a result, numbers of aphids of each age group, from

each treatment pot, were calculated. We then obtained

the mean number of aphids of each age class and

phenotype, per genotype per FACE ring per week.

Numbers of aphids were transformed [x0 5
p
(x)1p

(x1 1)] prior to analysis to achieve normality and

equalize variances (Zar, 1984). Our no aphid (control)

Table 1 The effects of CO2 and/or O3 on the abundances of different age classes and phenotypes of single genotypes of pink and

green pea aphids, Acyrthosiphon pisum, on broad bean, Vicia faba, as determined by split-plot ANOVAs

Treatment(df)

First/second

instars

Third/fourth

instars Apterous adults Alate adults

F P F P F P F P

CO2 (1, 8) 7.81 0.02 3.57 0.09 10.58 0.008 0.05 0.82

O3 (1, 8) 0.01 0.97 2.05 0.18 0.02 0.90 5.51 0.04

CO2�O3 (1, 8) 4.79 0.05 1.54 0.24 8.54 0.01 0.08 0.78

Time(2, 34) 53.86 o0.001 34.81 o0.001 60.48 o0.001 22.85 o0.001

CO2� time (2, 34) 4.90 0.01 1.38 0.26 3.22 0.05 0.38 0.68

O3� time (2, 34) 0.45 0.64 0.69 0.51 0.43 0.65 3.61 0.04

CO2�O3� time(2, 34) 2.93 0.07 1.08 0.35 2.16 0.13 0.07 0.94

Genotype(1, 34) 19.09 o0.001 12.87 o0.001 11.80 0.002 40.91 o0.001

CO2� genotype(1, 34) 6.14 0.02 5.71 0.02 4.35 0.04 0.38 0.28

O3� genotype(1, 34) 0.12 0.74 0.38 0.54 0.12 0.73 5.35 0.03

CO2�O3� genotype(1, 34) 2.01 0.17 1.23 0.28 2.32 0.14 0.07 0.79

Time� genotype(1, 34) 7.82 0.002 0.19 0.83 7.50 0.002 16.64 o0.001

CO2� time� genotype(1, 34) 2.74 0.08 1.18 0.32 1.05 0.36 1.76 0.19

O3� time� genotype(1, 34) 0.10 0.91 0.29 0.75 0.06 0.95 1.48 0.24

CO2�O3� time� genotype(1, 34) 2.79 0.08 0.91 0.41 3.57 0.04 0.12 0.89

Bold values indicate significant (P�0.05) effects.
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pots were not included in the statistical analyses, but

rather, allowed us to verify that natural aphid popu-

lations were not colonizing our experimental plants.

Results

We observed significant differences in the numerical

responses of different aphid genotypes to altered atmo-

spheric conditions (Table 1). The pink genotype showed

a high rate of population growth under all atmospheres,

while atmospheric composition strongly influenced the

population sizes of the green genotype (Fig. 1). The pink

genotype markedly outperformed the green genotype,

largely because of strong genotype�CO2 interactions

(Fig. 1). The green genotype exhibited increased popu-

lation growth, reaching levels similar to that of the pink

genotype, when both CO2 and O3 were elevated. In

general, these differences in population sizes became

more pronounced over time. As a result, the genotypic

frequencies ranged from 1 : 1 to 9 : 1 (pink morph : green

morph), depending on the atmospheric composition

(Fig. 2).

Atmospheric conditions also influenced phenotypic

expression of the two genotypes. Unlike genotypic

frequencies, which were largely CO2 dependent,

wing induction responses were strongly O3 dependent

(Table 1). When O3 levels were elevated, wing induction

responses were depressed and became even more so

over the duration of the experiment (Table 1, Fig. 3). The

pink genotype was much more likely to exhibit wing

induction, but elevated O3 levels, both singly and in

combination with elevated CO2, depressed wing-induc-

tion responses more strongly in the pink than the green

genotype (Fig. 3). As a result, frequencies of adult
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aphids exhibiting wing-induction responses ranged

from 10 : 1 to 332 : 1 (pink morph : green morph)

(Fig. 4). The latter, more heavily skewed, phenotypic

frequencies are based on very small values. It was clear,

however, that wing-induction responses were exhibited

almost exclusively by the pink genotype across all gas

treatments.

Discussion

Environmental change has the potential to alter the

composition, and hence stability, of communities and

ecosystems (McNaughton, 1993; Tilman & Downing,

1994; Vitousek, 1994; Tilman, 1999). The success or

failure of taxa in future environments will depend to

a large degree on the amount of genetic, and associated

phenotypic, diversity within populations and whether

genotypes can cope with shifting selection pressures

(Potvin & Tousignant, 1997; Etterson, 2004). Here, we

have shown that elevated levels of CO2 and tropo-

spheric O3, associated with environmental change, alter

both the genotypic and phenotypic frequencies of aphid

populations. As changes in both genotypic and pheno-

typic frequencies of aphid populations were observed

in only two generations, our FACE experiment provides

confirmatory evidence that some genotypes are rela-

tively impervious to, while other genotypes are strongly

influenced by, atmospheric composition.

Numerical responses of aphid populations, and re-

sulting genotypic frequencies, were chiefly influenced

by CO2 levels. The green genotype responded favorably

to enriched CO2 atmospheres, primarily when O3 was

also elevated. Our pink genotype, however, did not

exhibit substantial population changes in response to

either CO2 or O3. The effects of these two greenhouse

gases on population growth were consistent across

instars for both genotypes, indicating that the gases

do not differentially alter the growth and development

of juveniles vs. adults, as is true for some aphid species

(Awmack et al., 1997). Perhaps most interestingly, these

data suggest that increases, decreases, and no change in

aphid population sizes may all be possible outcomes in

response to altered atmospheric conditions (Bezemer

et al., 1999; Hughes & Bazzaz, 2001; Holopainen, 2002),

depending on the herbivore genotypes used in experi-

ments. Unfortunately, the vast majority of experiments

on aphids and other herbivores do not specify the

lineages of the insects.

Phenotypic frequencies of aphid populations (i.e.,

wing-induction responses) were also altered in re-

sponse to atmospheric composition. Our pink genotype,

compared with our green genotype, exhibited much

higher rates of phenotypic plasticity. While CO2 levels

were more predictive of overall population sizes, aphid

polyphenisms were more dependent on O3 levels.

Whether the costs of producing winged progeny under

enriched O3 atmospheres are prohibitive is uncertain

(Mondor et al., 2004). An alternative explanation is that

plants grown under enriched O3 atmospheres are of

higher nutritional quality (Awmack et al., unpublished

data), thus reducing wing-induction responses in off-

spring. Irrespective of the underlying mechanism, the

number of winged morphs in a colony and the factors

inducing these phenotypic changes (Müller et al., 2001)

are of great interest, as large numbers of winged mor-

phs could greatly alter plant-virus dynamics (Werker

et al., 1998).

It is intriguing that the genotype most affected by

atmospheric conditions exhibited low levels of pheno-

typic plasticity, at least with respect to wing-induction

responses. Meanwhile, the genotype little affected by

enriched CO2 and O3 environments exhibited high

levels of plasticity. Widely fluctuating environmental

conditions are believed to be one consequence of cli-

mate change (Schneider, 1993). Furthermore, phenoty-

pic plasticity is believed, in some instances, to facilitate

genetic adaptation of organisms to novel environments

(Sakai et al., 2001; Price et al., 2003; Yeh & Price, 2004). It

is tempting to hypothesize that genotypes with greater

levels of phenotypic plasticity will be better equipped to

cope with changing climatic conditions (Thomas et al.,

2001). The relationship between plasticity and environ-

mental tolerance, however, will undoubtedly depend

on what trait is being considered. As environmental
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change is occurring at an unprecedented rate (Vitousek,

1994), it is difficult to predict, a priori, whether altered

phenotypic expression under conditions of atmospheric

change is adaptive (Mondor et al., 2004). Such reaction

norms (Schlichting & Smith, 2002) will undoubtedly be

the subject of increased investigation as climate change

progresses.

In conclusion, our FACE experiment demonstrates

that idiosyncratic life history responses of herbivores

to global atmospheric change may not be only species-

specific, but genotype-specific. A large degree of intras-

pecific variation may explain why aphid life history

responses to CO2 and O3 have been so variable in

previous research (Bezemer et al., 1999; Hughes &

Bazzaz, 2001; Holopainen, 2002). Such intraspecific

heterogeneity may cascade among trophic levels, alter-

ing community and ecosystem functioning (Whitham

et al., 2003).
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