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Abstract 

Glioblastoma (GBM) displays marked cellular and metabolic heterogeneity that varies among cellular microenviron-

ments within a tumor. Metabolic targeting has long been advocated as a therapy against many tumors including 

GBM, but how lipid metabolism is altered to suit different microenvironmental conditions and whether cancer stem 

cells (CSCs) have altered lipid metabolism are outstanding questions in the field. We interrogated gene expression in 

separate microenvironments of GBM organoid models that mimic the transition between nutrient-rich and nutrient-

poor pseudopalisading/perinecrotic tumor zones using spatial-capture RNA-sequencing. We revealed a striking 

difference in lipid processing gene expression and total lipid content between diverse cell populations from the same 

patient, with lipid enrichment in hypoxic organoid cores and also in perinecrotic and pseudopalisading regions of pri-

mary patient tumors. This was accompanied by regionally restricted upregulation of hypoxia-inducible lipid droplet-

associated (HILPDA) gene expression in organoid cores and pseudopalisading regions of clinical GBM specimens, 

but not lower-grade brain tumors. CSCs have low lipid droplet accumulation compared to non-CSCs in organoid 

models and xenograft tumors, and prospectively sorted lipid-low GBM cells are functionally enriched for stem cell 

activity. Targeted lipidomic analysis of multiple patient-derived models revealed a significant shift in lipid metabolism 

between GBM CSCs and non-CSCs, suggesting that lipid levels may not be simply a product of the microenvironment 

but also may be a reflection of cellular state. CSCs had decreased levels of major classes of neutral lipids compared 

to non-CSCs, but had significantly increased polyunsaturated fatty acid production due to high fatty acid desaturase 

(FADS1/2) expression which was essential to maintain CSC viability and self-renewal. Our data demonstrate spatially 

and hierarchically distinct lipid metabolism phenotypes occur clinically in the majority of patients, can be recapitu-

lated in laboratory models, and may represent therapeutic targets for GBM.
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Introduction
Glioblastoma (GBM) is the most common primary malig-

nant brain tumor in adults. Despite aggressive standard 

treatment strategies including surgical resection followed 

by radiation and chemotherapy, the median survival for 

patients with GBM is approximately 15 months from the 

time of diagnosis [1]. A key challenge to GBM treatment 

is the intratumoral heterogeneity at both the cellular and 
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microenvironmental levels [2, 3]. Maintenance of het-

erogeneity may be driven by a population of cells within 

the tumor termed cancer stem cells (CSCs), which are 

highly plastic and responsive to their environment and 

hold self-renewal and tumor initiation capacity [4, 5]. At 

the single cell level, GBM is highly heterogeneous with a 

spectrum of stem cell and metabolic phenotypes [6, 7], 

and contains both fast-cycling and slow-cycling cells that 

have distinct metabolisms and cancerous phenotypes [8]. 

Critically for treatment, this diversity within the cell pop-

ulation means that while cells from one microenviron-

ment or cellular state may respond to a therapy, others 

may not, resulting in therapeutic resistance of the overall 

tumor.

Lipid metabolism is abnormally regulated in gliomas 

compared to normal cells, with changes in the expres-

sion of lipid-related genes such as SREBP1 and FAS, 

which results in altered lipid composition and lipogenesis 

to keep up with energy demands [9–11]. GBM tumors 

also accumulate more fatty acids than surrounding nor-

mal brain tissue [9]. �ese lipid stores can be used as an 

energy reservoir [12], can fuel GBM cell proliferation 

[13], and must be maintained to avoid oxidative dam-

age and lipotoxicity [14]. Recently, lipid metabolism has 

emerged as a potential therapeutic target to treat glio-

mas, including GBM [9, 14, 15], and brain metastases 

[16].

Lipid droplets are cytosolic organelles that, among 

other functions, serve as a storage medium for the fatty 

acids, protecting the cell from oxidative damage and 

providing an energy source to maintain proliferation in 

unfavorable microenvironments. Lipid droplet formation 

particularly occurs under stressful conditions such as 

hypoxia and nutrient deprivation [17]. Accumulation of 

lipid droplets has been observed in a variety of cancers, 

including hepatic cancer, lung cancer, breast cancer, and 

gliomas, and is an important regulator of critical facets of 

cancer including angiogenesis, inflammatory responses, 

apoptosis and cell death, and hypoxia-mediated altera-

tions of lipid metabolism [18]. Although lipid droplet 

accumulation has been observed in hypoxic cells within 

several tumor types [19, 20], differential lipid metabolism 

between heterogeneous GBM cell types and microen-

vironments has remained unexplored. In this study, we 

analyzed spatial alterations in gene expression and lipid 

content to determine the metabolic alterations present in 

GBM CSCs.

Methods
Human cell and organoid culture

Glioblastoma samples were obtained either directly from 

patients undergoing resection following written informed 

consent in accordance with protocol #2559 approved by 

the Cleveland Clinic Institutional Review Board or from 

collaborators as previously established patient-derived 

tumorsphere cultures. Patient tissue samples were either 

finely minced prior to organoid formation or were disso-

ciated into single-cell suspensions, red blood cells were 

then removed by brief hypotonic lysis, and cells were 

counted for number and viability using trypan blue. Cells 

were cultured as tumorspheres in Neurobasal medium 

supplemented with 10 ng/mL EGF (R&D Systems, Min-

neapolis MN), 10  ng/mL bFGF (R&D Systems), B27 

(Invitrogen, Carlsbad CA), glutamine (CCF media core), 

sodium pyruvate (Invitrogen), and antibiotics (Antibi-

otic–Antimycotic, Invitrogen) (“NBM complete”). All 

cells used in this work were patient-derived primary 

cultures, and all specimens were verified by comparison 

of short tandem repeat (STR) analysis performed peri-

odically during the course of experimentation. Tumor-

spheres were used to form xenografts and harvested for 

analysis as previously described [21]. All animal experi-

ments were approved by the Cleveland Clinic Institu-

tional Animal Care and Use Committee. Organoids 

were formed as previously described [22] by suspending 

tumor cells in 80% Matrigel (BD Biosciences, San Jose, 

CA) and forming 20  µL pearls on parafilm molds prior 

to culture. Organoids were cultured in 6-well or 10-cm 

plates with shaking in NBM complete media. For pro-

spective stem cell sorting, subcutaneous xenografts were 

minced and digested with papain (Worthington) as pre-

viously described [23], and dissociated cells were allowed 

to recover overnight prior to use. Following overnight 

recovery from papain digestion, dissociated xenograft 

GBM cells were magnetically sorted based on CD133 

expression using magnetic beads (CD133/2 beads, Milte-

nyi). �is approach has previously been validated to show 

differences in tumorigenic potential between CD133-

positive and CD133-negative fractions [21, 23–26].

Regional isolation of GBM organoids

Regional labeling and subsequent cell isolation from 

organoid layers was achieved using a 20  µM final con-

centration of CellTracker Blue CMAC Dye (Invitrogen, 

#C2110) in media. Mature organoids were incubated 

with dye for 2 h at 37 °C with shaking to allow outer layer 

labeling. Desired labeling depth was verified using a con-

focal microscope and a compatible imaging dish (Mat-

Tek #P35GC-1.0-14-C). After labeling, organoids were 

finely chopped and dissociated using Accutase (Fisher-

Sci, #ICN1000449) at 4  °C for 15  min and then heated 

to 37  °C for another 10  min. Cells were then single-cell 

filtered, and live cells were isolated by fluorescence-acti-

vated cell sorting (FACS) using 1 µM Calcein-AM (Inv-

itrogen, #C3099MP) and 1:2000 TO-PRO3 (Invitrogen, 

#T3605) according to the manufacturer’s protocols. Cell 
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sorting and analysis were performed using a BD FACS 

ARIA II flow cytometer.

RNA-sequencing analysis

Total RNA was extracted using TRIzol reagent (Life 

Technologies) and purified with phenol–chloro-

form extraction including the use of PhaseLock tubes 

(5PRIME). Samples were prepared for RNA-seq accord-

ing to the manufacturer’s instructions (Illumina) and 

sequenced using 101-bp paired-end chemistry on a 

HiSeq-2000 machine in the UTHSCSA Genomic Facil-

ity. FASTQ files were trimmed with TrimGalore, which 

implements Cutadapt [27] and FastQC [28], to remove 

low quality reads and trim adapters. Reads were aligned 

to Gencode v29 using Salmon [29] with correction for 

GC bias, positional bias and sequence-specific bias. 

�e R/Bioconductor package tximport [30] was used to 

generate TPM values. Low-expressed genes without at 

least 1 count in 4 samples were excluded from analysis. 

Comparisons were performed using DESeq2 [31] on raw 

counts. PCA plots were generated using the ‘prcomp’ 

function from the R/Bioconductor package ‘stats’ with 

default arguments. GSEA analysis was performed using 

mSigDB (Broad Institute).

Gene expression measurement by RT-qPCR

Sorted cells (above) were expanded in permissive media 

(NBM complete for CSCs or DMEM with 10% FBS (CCF 

media core) and antibiotics (Antibiotic–Antimycotic, 

Invitrogen) for non-CSCs). Cell pellets were collected by 

centrifugation, flash frozen and stored at − 80 °C for later 

RNA isolation. Total RNA was extracted using TRIzol 

reagent (Life Technologies) and Phase Lock Gel Heavy 

tubes (5PRIME). RNA was quantified using Nanodrop 

2000 spectrophotometer (�ermo Scientific), and sin-

gle strand complementary DNA (cDNA) was prepared 

using SuperScript III Reverse Transcriptase (Invitrogen 

#18080093) using 1 µg of RNA each. RT-qPCR was per-

formed using TaqMan gene expression assays (Invitro-

gen #4331182) for FADS1 (Assay ID #Hs00203685_m1) 

and FADS2 (Assay ID #Hs00927433_m1) in an Applied 

Biosystems 7500 real-time PCR system, with 18S as the 

housekeeping gene. Analysis was performed using the 

ΔΔCt method.

FACS sorting and analysis

Cells were acutely sorted from subcutaneous xenografts 

as described above and incubated with BODIPY 505/515 

(Invitrogen, D3921) or Nile Red (Invitrogen, N1142) for 

15  min in the dark. Cells were washed multiple times 

with sterile PBS and resuspended in Neurobasal medium 

with 0.5% BSA prior to FACS sorting and analysis using a 

BD FACSAria II cytometer in the Cleveland Clinic Flow 

Cytometry core.

Knockdown of FADS1 and FADS2 gene expression

To knockdown gene expression, independent human 

FADS1 and FADS2 specific shRNA clone sequences were 

purchased, along with non-targeting control shRNA 

(Sigma). Recombinant lentiviruses were produced 

by transfection of 293  T cells plated in 10  cm dishes 

(4.5 ×  106 cells/dish) cultured in DMEM (with 10% FBS 

and Antibiotic–Antimycotic) medium. �e FADS1/2 len-

tiviral vector (20 µg), psPAX2 (10 µg), and pMD2.G (5 µg) 

were co-transfected into 293 T cells using calcium phos-

phate mediated transient transfection. �e next morn-

ing, cells were fed with fresh NBM complete medium and 

virus containing media (VCM) were collected twice over 

48  h, filtered using 0.22 micron filter and freeze stored 

at – 80  °C for later use. For infection of GBM CSCs, 

cells were plated in Geltrex matrix coated 10 cm dishes 

(1 ×  106 cells/dish) overnight in NBM complete medium 

which was replaced by VCM the next day. After a day of 

infection, cells were allowed to recover before undergo-

ing antibiotic selection using 2  µg/mL of puromycin in 

NBM medium. Cells surviving antibiotic selection were 

then dissociated and collected. Knockdown efficiency of 

all FADS1 and FADS2 shRNAs were determined by per-

forming RT-qPCR as described above, and 2 shRNAs for 

each gene with the highest knockdown efficiency were 

chosen for downstream experiments.

CellTiter-Glo luminescent cell viability assay

Cells collected after FADS1/2 knockdown were resus-

pended in NBM complete medium, counted and plated 

in Geltrex matrix coated 96-well plates (2000 cells/well). 

Cells were then grown in a 37 °C tissue culture incubator 

in culture media for 5 days. Cell viability was determined 

using CellTiter-Glo luminescent cell viability assay (Pro-

mega, G7570) as per manufacturer’s instructions.

Limiting dilution assay

To determine tumorsphere-propagating potential, live 

cells were FACS sorted into wells of 96-well plates at con-

centrations ranging from 1 to 32 cells per well. For cells 

from FADS1/2 knockdown, cells were counted and plated 

into 96-well plates at concentrations ranging from 1 to 

128 cells per well. Cells were then grown in a 37 °C tissue 

culture incubator in culture media for 14 days. �e pres-

ence or absence of spheres in each well was then assessed 

and analyzed using the ELDA analysis tool (http:// bioinf. 

wehi. edu. au/ softw are/ elda/) to calculate stem cell fre-

quencies [32].

http://bioinf.wehi.edu.au/software/elda/
http://bioinf.wehi.edu.au/software/elda/
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Oil Red O histochemistry

For organoid Oil Red O staining, whole organoids were 

fixed in 4% paraformaldehyde, cryoprotected in 30% 

sucrose, and snap frozen in OCT using an isopentane 

bath chilled with dry ice. Tissue sections with a thickness 

of 10 µm were cut on a cryomicrotome and mounted on 

glass slides. Oil Red O staining was performed by the 

Cleveland Clinic Lerner Research Institute imaging core 

following standard core protocols using commercial 

control slides. Slides were digitized with a Leica Aperio 

digital slide scanner (Leica). For primary patient GBM 

samples, freshly resected GBM tissue specimens from 

the Department of Neurosurgery, Odense University 

Hospital, Odense, Denmark, were frozen at – 40 °C using 

the MCC cryoembedding compound and PrestoCHILL 

device (Milestone). Tissue sections with a thickness of 

8  µm were cut on a cryomicrotome and mounted on 

glass slides. �e slides were left to dry for 15 min at room 

temperature and fixed for one hour. Following fixation, 

slides were washed three times with deionized water 

and incubated with Oil Red O staining solution (Fluka, 

CI26125, dissolved in 60% triethyl phosphate) for 30 min. 

After staining, slides were washed with deionized water 

three times and counterstained with Mayer’s hematoxy-

lin (Merck). Slides were then rinsed with deionized water 

for 5  min and mounted with a coverslip using Aquatex 

mounting medium. Finally, slides were digitalized with 

the NanoZoomer 2.0HT digital image scanner (Hama-

matsu, Japan). �e use of tissue specimens was approved 

by the Danish Data Inspection Authority (approval num-

ber 16/11065) and the Regional Scientific Ethical Com-

mittee of the Region of Southern Denmark (approval 

number S-20150148).

Targeted lipidomic pro�ling

Quantification of neutral lipids and glycerophospholipids 

was conducted as previously described [33, 34]. Briefly, 

approximately 10 mg of frozen mouse liver was homog-

enized in 800 mL ice-cold 0.1 N HCl:CH3OH (1:1) using 

a tight-fit glass homogenizer (Kimble/Kontes Glass, 

Vineland, NJ) for ~ 1  min on ice. �e suspension was 

then transferred to cold 1.5 mL microfuge tubes (Labo-

ratory Product Sales, Rochester, NY) and vortexed with 

400 mL cold  CHCl3 for 1 min. �e extraction proceeded 

with centrifugation (5 min, 4 °C, 18,000 g) to separate the 

two phases. �e lower organic layer was collected, and 

the solvent was evaporated. �e resulting lipid film was 

dissolved in 100  mL isopropanol:hexane:100  mmol/L 

 NH4CO2H(aq) (58:40:2) (mobile phase A). Quantification 

of glycerophospholipids was achieved by the use of a liq-

uid chromatography–mass spectrometry technique using 

synthetic (non-naturally occurring) diacyl and lysophos-

pholipid standards. Typically, 200 ng of each odd-carbon 

standard was added per 10–20  mg tissue. Glycerophos-

pholipids were analyzed on an Applied Biosystems/

MDS SCIEX 4000 Q TRAP hybrid triple quadrupole/

linear ion trap mass spectrometer (Applied Biosystems, 

Foster City, CA) and a Shimadzu high-pressure liquid 

chromatography system with a Phenomenex Luna Silica 

column (2, 3, 250 mm, 5 mm particle size) using a gra-

dient elution. �e identification of the individual spe-

cies, achieved by liquid chromatography-tandem mass 

spectrometry, was based on their chromatographic and 

mass spectral characteristics. �is analysis allows identi-

fication of the two fatty acid moieties but does not deter-

mine their position on the glycerol backbone (sn-1 vs. 

sn-2). Triacylglycerol (TAG), diacylglycerol (DAG), and 

monoacylglycerol (MAG) from frozen mouse liver tissue 

(10–15 mg) were extracted by homogenizing tissue in the 

presence of internal standards (500 ng each of 14:0 MAG, 

24:0 DAG, and 42:0 TAG) in 2  mL PBS and extracting 

with 2 mL ethyl acetate: trimethylpentane (25:75). After 

drying the extracts, the lipid film was dissolved in 1 mL 

hexane:isopropanol (4:1) and passed through a bed of 60 

Å Silica gel to remove the remaining polar phospholipids. 

Solvent from the collected fractions was evaporated, and 

lipid film was redissolved in 100 mL  CH3OH:CHCl3 (9:1) 

containing 10 mL of 100 mmol/L  CH3COONa for mass 

spectrometry analysis as described previously [33, 34].

Measurement of de novo lipogenesis �ux

Bulk GBM tumors were sorted to enrich populations 

in cancer stem cells (CD133+) or non-stem (CD133-) 

populations which were seeded in 35-mm plates. Meas-

urement of de novo lipogenesis rates was accomplished 

by tracing [14C]-acetate or [3H]-oleate into triacylglyc-

erol and total phospholipids as described previously [33, 

35]. Sorted cell populations were simultaneously incu-

bated with 0.5  µCi [14C]-acetate (substrate for de novo 

fatty acid synthesis) or 1  µCi [3H]-oleate (substrate for 

direct esterification into complex lipids), and then cells 

were harvested at various time points (30  min, 60  min, 

120 min and 240 min) post substrate addition. From each 

time point cells were rinsed with PBS (twice), lipids were 

extracted using a Folch extraction [36], and separated by 

thin layer chromatography (TLC) using hexane:diethyl 

ether:acetic acid (70:30:1) as a solvent system. Total phos-

pholipids and Triacylglycerol spots were scraped off of 

the plate, and the incorporation of [14C]-acetate and 

[3H]-oleate into each lipid class was determined by liquid 

scintillation counting. Radiation count was normalized to 

amount of protein, as quantified by BCA assay (Pierce).
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Results
GBM organoids mimic the pathologic transition zones 

and molecular heterogeneity of GBM patient tumors

GBM tumors have a complex microenvironment defined 

by histologic hallmarks of angiogenesis and pseudo-

palisading necrosis, and these two anatomic features 

harbor distinct GBM cell populations. CSCs are particu-

larly enriched in the perivascular niche of glioblastoma 

tumors [37]. Current culture models fail to replicate the 

complex microenvironments of CSCs, limiting our ability 

to study and therapeutically target GBM. We previously 

developed 3D patient-derived GBM organoids that show 

a heterogeneous mix of cells forming zones compara-

tive to the pathologic transition zones in patient tumors 

[22]. GBM organoids can be conceptually divided into 

two zones—an outer cell-dense rim consists of dividing 

cells in a high-oxygen and high-nutrient environment 

provided by the nearby media, mimicking the conditions 

of the tumor perivascular niche, and a hypoxic core with 

necrotic cells relatively deprived of the nutrient media 

components, which phenotypically mimics the hypoxic 

and perinecrotic regions of GBM tumors (Fig. 1A).

To determine whether these ex  vivo culture regions 

molecularly mimic the corresponding patient GBM 

tumor regions, we developed a method to three-dimen-

sionally label and sort live GBM cells from our orga-

noid cultures (Fig. 1B). Whole organoids were incubated 

with a blue lipophilic dye for an optimized period that 

we empirically determined to be sufficient to label only 

the outer proliferative niche as viewed by live confocal 

z-section imaging. Organoids were then dissociated and 

sorted via FACS to separate these spatially distinct cell 

populations. Cells in the outer rim display enhanced self-

renewal, a CSC hallmark, compared to cells within the 

core, as determined by limiting-dilution assay (Fig. 1C).

We performed spatially defined RNA-sequencing 

of the different regions of GBM organoids to inves-

tigate the gene expression in each niche population. 

Recently, Neftel et  al. [7] defined single-cell heteroge-

neity of patient GBM cell populations as being domi-

nated by clusters of genes that change in relationship to 

each other, called meta-modules. We compared these 

gene expression signatures to these meta-module gene 

signatures from single cell RNA sequencing (scRNA-seq) 

of clinical GBM. We found distinct cell-type signatures 

enriched within spatially separate niches in our orga-

noids (Fig.  1D). As anticipated, the cells from the orga-

noid core were enriched for hypoxia hallmark genes as 

determined by gene set enrichment analysis (GSEA; FDR 

q value = 3.22 ×  10−16) and displayed a signature of the 

hypoxia-dependent mesenchymal-like 2 (MES2) meta-

module defined by scRNA-seq of patient tumor cells. In 

contrast, cells from the organoid rim were enriched for 

genes found in the astrocyte-like (AC) and oligodendro-

cyte precursor cell (OPC)-like meta-modules (Fig.  1D). 

Additionally, the cells from the organoid rim highly 

expressed genes related to the G1/S meta-module, 

indicating high proliferation in this niche. Overall, the 

expression profiles within our spatially segregated orga-

noid microenvironments represent 3 out of 4 categories 

of discrete GBM cell types identified in clinical tumors by 

Neftel et al. [7].

While these data provide resolution to connect the 

diverse cell types present in GBM organoids with indi-

vidual cell signatures from clinical tumors, the single-

cell sequencing data cannot be directly traced to spatial 

tumor subregions. To correlate the niche-specific gene 

expression in organoids and the gene expression of dif-

ferent regions of primary GBM tumors, we reflected our 

sequencing data upon subregion sequencing data from 

41 patient samples in the Ivy Glioblastoma Atlas Project 

(Ivy GAP) database [38] (Fig.  1E). We found that genes 

significantly enriched in the organoid core were specifi-

cally highly expressed in the pseudopalisading and peri-

necrotic tumor regions of primary GBM. Conversely, 

the organoid rim was found to be enriched for genes 

expressed in the cellular tumor regions and depleted of 

those expressed in regions of hypoxia. Taken together, 

these data show that the 3D environments within GBM 

organoids recapitulate at least part of the cellular and 

microenvironmental diversity within primary GBM 

tumors at both a histologic and molecular level.

Genes that are differentially overexpressed in tumor 

compared to normal brain tissue may suggest a possible 

therapeutic window for a candidate therapeutic target in 

brain tumors. To determine genes from our analysis that 

Fig. 1 GBM organoids mimic the pathologic transition zones and molecular heterogeneity of GBM patient tumors. A H&E staining of GBM 3D 

organoids (right panel) reveals histological zones comparable to GBM primary patient tumors (left panel). The perivascular region and hypoxic 

core in primary patient tumors (left panel) are mimicked by the organoid proliferative rim and hypoxic core regions (right panel), respectively. B To 

compare the molecular signature of these histological regions, the organoids were stained whole to label the entire outer rim region, and single 

cells were isolated. C Limiting-dilution assays showed that the organoid proliferative rim is functionally enriched for stem cells compared to the 

hypoxic core. Calculated stem cell frequencies and 95% confidence intervals are shown. D Upon RNA-seq analysis of single cells, distinct cell-type 

signatures were found to be enriched within spatially separate niches in the organoids. E Mapping expression in organoids to the regional Ivy GAP 

database showed region-specific enrichment. Scale bar = 100 µm

(See figure on next page.)
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may be upregulated in tumor compared to normal brain, 

and upregulated in increasing grades of tumor, we com-

pared the TCGA, Gravendeel, Bao and Ivy GAP datasets 

using the GlioVis portal [39]. First, to validate our findings, 

we chose to look at differential expression of specific genes 

that represent the different regions, particularly highlight-

ing representative genes from the three different meta-

modules, including a well-established hypoxia marker, 

Carbonic Anhydrase 9 (CAIX, Additional file  1: Fig. S1). 

We found that CAIX and vimentin (VIM) (Mes2 meta-

module) were highly expressed in GBM brain tumor com-

pared to non-tumor tissue, due in part to their increase in 

pseudopalisading regions. �is was reflected in GBM orga-

noids where expression of the CAIX and VIM genes was 

likewise increased in the core region compared to the rim. 

Although the expression of the OLIG1 (OPC meta-mod-

ule) and AQP4 (AC meta-module) genes was not signifi-

cantly increased in GBM compared to non-tumor tissue, 

these genes are differentially expressed within GBM patient 

tumor regions and these differences are again recapitulated 

in the corresponding organoid regions. Taken together, 

the above findings demonstrate that we can recapitulate 

tumor-relevant cellular heterogeneity and maintain micro-

environmentally regulated GBM cell behavior ex vivo.

Lipid droplets accumulate in the core of GBM organoids 

and the corresponding perinecrotic and pseudopalisading 

zones of GBM patient tumors

In addition to the above genes, we identified the gene 

hypoxia-inducible lipid droplet-associated (HILPDA), 

which encodes a protein necessary for lipid trafficking in 

cytosolic lipid droplets, to be consistently differentially 

expressed in the different regions of 3D GBM organoids 

and GBM clinical datasets (Fig.  2A). HILPDA expression 

was significantly higher in brain tumor tissue compared 

to normal brain and higher in GBM compared to lower-

grade brain tumors. Moreover, in primary GBM, HILPDA 

expression was significantly higher in the pseudopalisading 

region of the tumor. �e increase in HILPDA expression 

in only GBM and not lower-grade brain tumors, combined 

with the specific increase in pseudopalisading regions, is 

consistent with brain tumor pathology as pseudopalisad-

ing necrosis is a defining diagnostic feature of GBM. We 

observed similar differences in the corresponding regions 

of GBM organoids: HILPDA expression was significantly 

higher in the core region of organoids compared to the rim 

(Fig. 2A).

Although we had not initially sought to investigate 

lipid metabolism, the increase in HILPDA expression, 

combined with an increase in hallmark adipogenesis 

genes (p = 2.45 ×  10−5, FDR q-value = 1.36 ×  10−4) and 

cholesterol homeostasis genes (p = 2.16 ×  10−5, FDR 

q-value = 1.36 ×  10−4) in the organoid core compared to 

the rim, prompted us to investigate whether there was 

any lipid accumulation phenotype that would indicate 

an overall alteration in lipid metabolism and storage. We 

therefore stained sections from primary GBM samples and 

lab-grown GBM organoids with a lysochrome diazo dye, 

Oil Red O, for histological visualization of lipid droplets. 

We observed notable differences in lipid droplet staining 

within the two regions of organoids. Oil Red O staining 

was concentrated in the cells of the core region of GBM 

organoids, indicating accumulation of lipid droplets in 

these cells, whereas the cells in the rim region were devoid 

of the stain (Fig. 2B, Additional file 1: Fig. S2). To determine 

whether this ex vivo phenotype is representative of human 

tumors, we further analyzed multiple primary patient GBM 

sections. Similar to the GBM organoids, cells in the cor-

responding pseudopalisading and perinecrotic regions of 

primary tumors specifically stained for the Oil Red O dye, 

while the cells in the cellular tumor region lacked the stain 

(Fig.  2C, Additional file  1: Fig. S3). �is staining pattern 

held true for the vast majority (73%) of samples (Fig. 2D). 

�ese results demonstrate that our initial in vitro findings 

represent a clinically relevant phenomenon of altered lipid 

metabolism and storage between different regions of GBM 

tumors.

Di�erential lipid accumulation marks GBM CSC 

and non-CSC populations

As the rim region of GBM organoids is enriched for 

CSCs and the hypoxic core has limited CSCs (Fig. 1C), 

we investigated whether lipid droplet accumulation 

is associated with stem cell phenotype. Since GBM 

organoids are a relatively new technology and can be 

strongly influenced by the choice of media and culture 

conditions, we chose to utilize in  vivo patient-derived 

xenograft (PDX) models for this purpose. In  vivo 

tumors are a gold standard for tumor biology and rep-

resent perhaps the most realistic and cellularly diverse 

recapitulation of human tumor microenvironments 

(See figure on next page.)

Fig. 2 Lipid droplet accumulation in perinecrotic and pseudopalisading tumor regions and corresponding GBM organoid cores. A Publicly 

available databases show that HILPDA is consistently increased in GBM tumors and specifically enriched in hypoxic pseudopalisading cells, which is 

recapitulated by the organoid core. * p < 0.01; ** p < 0.001; ns, p > 0.05. Lipid droplet staining with Oil Red O shows higher staining in the B organoid 

core and C pseudopalisading and perinecrotic regions of primary tumors. Scale bar for wide field images = 100 µm and 50 µm for other images. D Pie 

charts representing the findings in 11 patient tumors and 9 organoids
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and stem cell populations. Although stem-like cells 

within a tumor are controversial and likely exist along 

a spectrum as opposed to a dichotomous population, 

prospective sorting into CSC-enriched and -depleted 

populations requires selection of a surface marker. We 

utilized the CD133 epitope which is the most long-

standing such marker in GBM and has previously been 

shown effective in enriching CSCs in the cell models 

used in this study [21, 23–26]. We collected and disso-

ciated GBM tumor xenografts to obtain a heterogene-

ous mix of single tumor cells, then magnetically sorted 

the cells into populations of CD133-positive cancer 

stem cells (CSCs) and CD133-negative non-stem can-

cer cells (non-CSCs) (Fig.  3A). Upon flow cytometric 

analysis, we observed increased fluorescence in the 

non-CSC populations of all three PDX specimens for 

both lipid dyes tested (Fig. 3C). Oil Red O dye staining 

of fixed sorted cells also confirmed this result (Fig. 3B).

To further validate this observation, we asked 

whether lipid content can enrich for CSCs with 

increased sphere-forming capability. We sorted dissoci-

ated GBM cells for CD133 as above, stained the CSCs 

and non-CSCs with BODIPY lipid dye, FACS sorted 

BODIPY-high and BODIPY-low populations, and tested 

their sphere-forming capability by limiting-dilution 

assay. Non-CSCs had uniformly low sphere-forming 

capability, as expected. However, BODIPY-low CSCs 

were functionally enriched for sphere-forming behavior 

compared to CSCs with high lipid content (Fig. 3D). We 

therefore conclude that CSCs are enriched among cells 

with reduced lipid droplet accumulation and that lipid 

accumulation may be an indicator of the CSC/non-CSC 

cell state.

To ask whether the enhanced lipid droplet accumula-

tion seen in non-CSCs was due to increased de novo lipid 

synthesis by these cells, and to shed light on the sepa-

rate lipid biosynthetic pathways that may be utilized, we 

used radiocarbon labeled acetate or tritiated oleate and 

measured their incorporation into complex lipids over 

time in either GSCs or non-GSCs. �e acetate incor-

poration is indicative of the de novo lipogenic pathway, 

while incorporation of tritiated oleate is indicative of 

direct esterification of the existing labeled fatty acid into 

a complex lipid. Lipids were extracted and separated into 

total phospholipids (PL) or triacylglycerols (TG, stored 

in cytosolic lipid droplets) then analyzed by liquid scin-

tillation counting (Additional file  1: Fig. S4). We found 

a dramatic increase in radiolabeled phospholipids in 

GSCs compared to non-GSCs, and this was due to both 

de novo synthesis and esterification pathways. We did 

not observe a difference in the contribution of de novo 

synthesis to TG in either cell population, suggesting that 

increased de novo fatty acid synthesis in non-CSCs is not 

driving this phenotype. Taken together, these data show 

that GSCs prefer to shuttle de novo synthesized (from 

acetate) or exogenous (oleate) fatty acids into bulk phos-

pholipids and away from triacylglycerols. We did find a 

notable increase in esterified oleate in non-GSCs at the 

later timepoint (Additional file  1: Fig. S4D), suggesting 

that esterification of existing fatty acids play a contribut-

ing role to the higher lipid droplet content maintained in 

these cells.

Lipidomic pro�ling of CSCs and non-CSCs 

from patient-derived samples reveals increased neutral 

lipid species in non-CSC populations

Non-CSCs have higher lipid accumulation in comparison 

to CSCs, but we cannot resolve individual lipid species 

by dye. We therefore investigated the differences in lipid 

metabolism between CSCs and non-CSCs using targeted 

lipidomic approaches. We isolated cells from 5 patient-

derived PDX models, sorted for CD133 ± cell popula-

tions, and analyzed these as pools of CD133 + CSCs and 

CD133- non-CSCs (Fig. 4A) via targeted lipidomic profil-

ing as previously described [33, 34]. We found that the 

high lipid content in the non-CSC population is due to a 

broad increase in lipids known to be preferentially stored 

in cytosolic lipid droplets. Neutral lipid species including 

diacylglycerol (DAG) and triacylglycerol (TAG) were sig-

nificantly enriched in the non-CSCs (Fig.  4B, C). �ese 

data are consistent with the marked accumulation of 

cytosolic lipid droplets in non-CSCs.

GBM CSCs from patient-derived samples exhibit 

species-speci�c alterations in glycerophospholipids

Most, but not all (Additional file  1: Fig. S5), molecular 

species of neutral lipids (DAGs and TAGs) were enriched 

in non-CSC populations. However, we observed numer-

ous species-specific alterations in glycerophospholipid 

levels (Figs.  4, 5 and 6). Analysis of total levels of glyc-

erophospholipids revealed that CSCs exhibit mod-

est decreases in minor phospholipid classes including 

phosphatidic acid (PA), phosphatidylethanolamine (PE), 

phosphatidylglycerol (PG), phosphatidylinositol (PI) and 

phosphatidyl (Fig.  4D, E). However, the most abundant 

class of glycerophospholipids, phosphatidylcholines (PC), 

was unaltered (Fig.  4D). When we examined molecu-

lar species within each class, CSC populations exhibited 

a general decrease in the levels of longer-chain polyun-

saturated fatty acid (PUFA) species of PS (Fig.  5A), PG 

(Fig. 5B), PtdOH (Fig. 5C), PE (Fig. 5D), PC (Fig. 5E), and 

LPC (Fig. 5F) lipid classes, indicating that the esterifica-

tion of PUFAs into these complex lipids may be selec-

tively impaired (summarized in Fig. 5G).
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Fatty acid desaturases are upregulated in CSCs

Within the PI class, we observed a marked decrease in 

38:4 PI and a reciprocal increase in 38:3 PI (Fig.  6A). 

It is generally accepted that 38:4 PI contains arachi-

donic acid (AA; 20:4; n-6) in the sn-2 position, while 

38:3 PI is expected to harbor di-homo-γ-linolenic acid 

(DGLA; 20:3; n-6) in the sn-2 position. �is reciprocal 

alteration prompted us to examine the expression levels 

of the delta-5 desaturase enzyme fatty acid desaturase 

1 (FADS1), which converts DGLA to AA. Interestingly, 

the expression of FADS1 and that of the delta-6 desatu-

rase FADS2 was elevated in CSC populations (Fig. 6B, 

C). We also found that both FADS1 and FADS2 were 

significantly upregulated in the organoid rim region 
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and corresponding cellular tumor regions in patient 

tumors (Fig.  6D, E). A recent report showed that 

another PUFA-synthesizing enzyme, fatty acid elon-

gase 2 (ELOVL2), exhibits a similar distribution [40]. 

Increased ELOVL2 and FADS2 further process AA into 

long-chain PUFAs, thus preventing high AA accumula-

tion in CSCs despite high PUFA pathway activity. Given 

these findings, there is growing evidence for a role for 

PUFA synthesis in supporting tumorigenesis within the 

GBM microenvironment.

FADS1 and FADS2 are essential for GBM CSC survival 

and maintenance

To functionally test the requirement for FADS1 and 

FADS2 activity in CSCs, we identified 2 independ-

ent shRNA sequences each for FADS1 and FADS2 with 

validated effective RNA knockdown, achieving approxi-

mately 87–97% gene expression knockdown by qPCR 

(Additional file  1: Fig. S6). We found that upon FADS1 

or FADS2 knockdown, GBM CSCs were unable to nor-

mally proliferate and survive. Proliferation assays indi-

cated significantly fewer cells in wells containing FADS1 

or FADS2 shRNA knockdown cells compared to control 

shRNA (Fig. 6F, G). Additionally, limiting dilution assays 

performed to determine the tumorsphere forming capa-

bility of GBM CSCs showed that functionally stem-like 

cell behavior was almost non-existent after FADS1 or 

FADS2 knockdown (Additional file 1: Fig. S7).

�e current evidence suggests that the generation 

of PUFA-enriched glycerophospholipids appears to be 

favored in the nutrient-rich CSC microenvironment 

and supported by high FADS1 and FADS2 expression, 

whereas lipid accumulation and storage are favored in 

the nutrient-low non-CSC microenvironment (Fig.  6H). 

Taken together, our results demonstrate a striking degree 

of metabolic diversity in GBM depending on each cell’s 

microenvironment and CSC state, and this heterogeneity 

must be taken into account in both basic research and in 

therapeutic targeting of GBM.

Discussion
To meet energy demands in resource-sparse tumor 

microenvironments, tumor cells undergo metabolic 

reprogramming, which is known as a hallmark of GBM 

in addition to many other cancers [41, 42]. Metabolic 

targeting has been proposed as a therapy for many 

tumor types, and inhibition of DGAT1 has recently 

been proposed to alter fat metabolism and increase 

oxidative stress in GBM [14]. However, cellular heter-

ogeneity and plasticity are features of GBM and drive 

therapeutic resistance [43]. Recently, intratumoral het-

erogeneity has become a highly researched focus of 

both pre-clinical and clinical GBM studies aiming to 

develop targeted treatment methodologies [44], and 

it is critically important to mimic this feature through 

in vitro cultures for more relevant study outcomes. Our 

overall findings show that lipid droplets accumulate in 

the hypoxic core of GBM organoids and also in peri-

necrotic and pseudopalisading regions of GBM patient 

tumors. �is was accompanied by overall increased 

accumulation of fatty acid species in the CD133-nega-

tive non-CSC population versus matched CD133-posi-

tive CSCs obtained from patient-derived xenografts. In 

short, we show that intratumoral lipid metabolism het-

erogeneity exists and must be considered at the patho-

logic, cellular and molecular levels.

Pioneering studies by Patel et  al. [3], and more 

recently by Neftel et  al. [7], used single-cell RNA 

sequencing (scRNA-seq) to show that GBM cells vary 

in their expression of different transcriptional pro-

grams, including those associated with proliferation 

and hypoxia. Consistent with these studies, we found 

that distinct meta-module signatures from patient 

tumor cells are enriched within our distinct GBM 3D 

organoid spatial regions. While cells from the orga-

noid core highly express genes belonging to the mes-

enchymal-like (MES) meta-module, cells from the rim 

have higher expression of the astrocyte-like (AC) and 

oligodendrocyte-progenitor (OPC)-like meta-modules. 

Although spatial information is lost when tumors are 

dissociated for scRNA-seq, it is assumed that these dif-

ferent populations from patient tumors derive from dif-

ferent microenvironments within the tumor. Here, we 

further showed that the gene expression in organoids 

corresponds to the gene expression in the regional Ivy 

GAP database [38]. �e genes enriched in the organoid 

core reflect the patient pseudopalisading and perine-

crotic tumor regions in the Ivy GAP data, whereas the 

genes enriched in the organoid rim were associated 

with the gene enriched in the cellular tumor region. 

(See figure on next page.)

Fig. 6 Fatty acid desaturases are upregulated in CSCs and required for CSC survival. A GBM CSCs and non-CSCs have notable differences in 

phosphatidylinositol species. In particular, CSCs have reduced arachidonic acid (AA) levels but increased levels of its precursor DGLA. B and 

C qRT-PCR shows that FADS1 and FADS2 levels are higher in CSCs compared to non-CSCs from PDX models. D and E RNA-seq shows higher 

expression of FADS1 and FADS2 in cells of the GBM organoid proliferative rim and patient cellular tumor regions. CellTiter-Glo cell viability assay 

shows decreased viability of GBM cells upon FADS1 (F) or FADS2 (G) knockdown. H Proposed mechanism of high accumulation vs high flux of lipids 

in GBM non-CSCs and CSCs, respectively. * p < 0.01; ** p < 0.001; *** p < 0.0001
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�us, we successfully ascertained that molecular het-

erogeneity in the 3D organoid culture corresponds to 

primary GBM tumors at both the single-cell and spatial 

microenvironmental levels. �is spatial heterogeneity 

is especially important to appreciate when looking at 

datasets derived from small patient samples as the sam-

ple site selection may have a profound influence upon 

the obtained data (for instance, whether a pseudopalli-

sade was present within the sample site when investi-

gating HILPDA expression).

We show that HILPDA expression, which is canonically 

driven by HIF-1α, is consistently increased in primary 

GBM tumors and specifically in the pseudopalisading/

perinecrotic region of GBM (Fig.  2A). �is supports a 

finding by Mao et al. showing that HILPDA was upregu-

lated in GBM compared to normal brain tissue or lower-

grade gliomas and in GBM cells cultured in hypoxic 

conditions [45]. Additionally, studies show that HILPDA 

is involved in triglyceride fatty acid secretion [46] and 

regulates lipid metabolism and hypoxia-induced lipid 

droplet biogenesis [47]. When we investigated lipid drop-

let accumulation in our 3D GBM organoid model, we 

discovered that lipid droplets were exclusively enriched 

in the hypoxic core region of the 3D organoids. We fur-

ther traced this finding back to patients, showing that all 

patients in our panel with clear pseudopalisading necro-

sis by pathology, and most patients overall, accumulate 

lipid droplets in the hypoxic regions of their tumors. To 

our knowledge, this is the first concrete demonstration of 

lipid droplet accumulation as a marker of cells surround-

ing pseudopalisading necrosis.

It is an outstanding open question in the field [42] 

whether there is a link between self-renewal and lipid 

metabolism in GBM. Here, we addressed this ques-

tion using GBM patient tissue, fresh patient-derived 3D 

ex  vivo cultures, and patient-derived xenografts. We 

obtained consistent findings at the single molecular, tran-

scriptional, cellular, and tissue scales, all of which show 

increased lipid content in nutrient-poor and non-stem 

GBM cells. Our results support findings showing that 

slower-cycling GBM cells (as found in GBM organoid 

cores (Fig.  1D and previous work [22])) have increased 

lipid droplet content [8] and that targeting lipid homeo-

stasis in GBM has antiproliferative effects [14]. However 

this also contrasts with findings that slow-cycling tumor 

cells may be CSCs [8] and that cultured colorectal cancer 

CSCs have increased lipid content compared to non-CSC 

populations [48]. Hypoxia is indeed known to promote 

the GBM stem cell phenotype [49–51] and we observe 

rare functionally verified CSCs within organoid cores 

(Fig. 1C). �ese hypoxic CSCs may have a different lipid 

profile, or at least a different place within the tumor cell 

spectrum, than hypoxic non-CSCs or non-hypoxic CSCs 

and warrant individualized studies.

Along with lipogenesis, lipolysis (through oxidation of 

fatty acids) is critical for the renewal of stem cells and 

maintenance of stemness [52], which could explain the 

decreased lipid accumulation and overall decrease of 

lipids in CSCs despite high lipid synthesis rates (Fig. 3D). 

One initial paradox in our data was the increased 20:4 

AA species in non-CSCs despite lower DGLA (20:3) spe-

cies compared to CSCs. Upon examining the expression 

levels of the fatty acid desaturase genes involved in AA/

DGLA catabolism, FADS1 and FADS2, we found that 

both are enriched in the CSC-rich organoid rim. Addi-

tionally, ELOVL2, a critical enzyme downstream of AA, 

has been shown to be enriched in SOX2- and OLIG2-

positive GBM cells [40]. We propose that ELOVL2 and 

FADS2 in CSCs facilitate turnover/utilization of lipid 

species in high nutrient conditions, unlike in non-CSCs 

and GBM cells in nutrient-poor environments, where the 

fatty acids accumulate, forming lipid droplets. We believe 

that this potential mechanism makes intuitive sense from 

a standpoint of survival, where energy storage is favored 

in environments where nutrient resources are scarce and 

uncertain. Also we have demonstrated that CSCs have a 

high dependence on FADS1 and FADS2 function to pro-

liferate and maintain self-renewal. �ere are multiple 

commercial or published FADS1/2 or PUFA inhibitors 

including: CP 24,879 [53, 54]; 8,11-Eicosadiynoic Acid 

[55]; and compound-326 [56, 57]. Our work suggests that 

targeting PUFA synthesis in GBM with these or other 

improved FADS inhibitors may have therapeutic benefit 

in GBM.
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