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Abstract 

 

MicroRNAs are recently discovered regulators of gene expression, and are becoming 

increasingly recognized as important regulators of heart function. Genome-wide profiling of 

microRNAs in human heart failure has not been reported previously. We measured expression of 

428 microRNAs in 67 human left ventricular samples belonging to control (n=10), ischemic 

cardiomyopathy (ICM, n=19), dilated cardiomyopathy (DCM, n=25), or aortic stenosis (AS, 

n=13) diagnostic groups. miRNA expression between disease and control groups was compared 

by ANOVA with Dunnett’s post hoc test. We controlled for multiple testing by estimating the 

false discovery rate. Out of 428 microRNAs measured, 87 were confidently detected. 43 were 

differentially expressed in at least one disease group. In supervised clustering, microRNA 

expression profiles correctly grouped samples by their clinical diagnosis, indicating that 

microRNA expression profiles are distinct between diagnostic groups. This was further 

supported by class prediction approaches, in which the class (control, ICM, DCM, AS) predicted 

by a microRNA-based classifier matched the clinical diagnosis 69% of the time (p  < 0.001). 

These data show that expression of many microRNAs is altered in heart disease, and that 

different types of heart disease are associated with distinct changes in microRNA expression. 

These data will guide further studies of the contribution of microRNAs to heart disease 

pathogenesis. 

 

Keywords: heart failure; gene expression; expression profiling 
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Introduction 

Pathological changes in cardiomyocyte gene expression lead to cardiomyocyte hypertrophy 

and impaired cardiomyocyte survival and contraction, ultimately resulting in heart failure (12, 

14). However, the molecular mechanisms that regulate gene expression in cardiac hypertrophy 

and failure remain incompletely understood. 

MicroRNAs (miRNAs) are recently discovered, post-transcriptional regulators of gene 

expression (reviewed in refs. 1, 2). These ~22 nucleotide RNAs make complementary base-

pairing interactions with the 3’ untranslated regions (3’ UTRs) of target genes, negatively 

regulating target gene mRNA stability or translation into protein. Each miRNA is estimated to 

influence expression of hundreds of target genes, thereby regulating key cellular processes 

including proliferation, survival, and differentiation. Altered miRNA expression has been 

implicated in oncogenesis and neural disease (1, 2, 7). Out of 475 currently described human 

miRNAs (9), three (miR-1, miR-133, and miR-208) are highly enriched in the heart (3, 11) and 

are important regulators of heart development and myocyte differentiation (5, 20, 23, 24). 

Altered expression of miR-1 and miR-133 were recently reported in human heart failure (4, 22). 

However, global measurement of microRNA expression in human heart disease has not been 

previously reported. 

We performed genome-wide miRNA expression profiling in left ventricular myocardium of 

67 patients belonging to four diagnostic groups (ischemic cardiomyopathy (ICM), dilated 

cardiomyopathy (DCM), aortic stenosis (AS), and non-failing controls). We found that miRNA 

expression profiles were significantly altered in heart disease, and that the pattern of miRNA 

expression was distinct in different forms of heart disease. 
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Methods 

Patients 

Human left ventricle samples belonged to four diagnostic groups (control, ICM, DCM, and 

AS). End-stage ICM and DCM samples were from explanted hearts of transplant recipients. ICM 

and DCM patients on mechanical assist devices or with ejection fraction (EF) greater than 45% 

were excluded. Control samples were from unused transplant donor hearts, with a maximal time 

between cardiectomy and sample collection of two hours. Aortic stenosis (AS) samples were 

obtained at the time of aortic valve replacement. Myocardial samples were snap frozen in liquid 

nitrogen. Areas of fibrosis visible on gross inspection were excluded from the collected 

myocardial samples. Samples were from Brigham and Women’s Hospital (Boston, MA) and 

Georg August University (Göttingen, Germany), and collected under protocols approved by the 

respective Institutional Review Boards.  

miRNA measurement 

RNA was isolated from myocardial samples by homogenization in Trizol (Invitrogen, 

Carlsbad, CA). miRNA profiling was performed using a high-throughput platform based on 

hybridization to optically addressed beads, as previously described (13). Quantitative reverse 

transcription PCR (qRTPCR) was performed on an ABI7300 Real-Time PCR System using Sybr 

Green chemistry and commercial primers (Applied Biosystems, Foster City, CA). 

Bioinformatics and statistical analysis 

Expression threshold was set at average signal intensity detected in samples without input 

miRNA. miRNA expression data by bead-based assay was normalized by the locally weighted 

smooth spline (LOWESS) method on log-scaled raw data (21). After normalization, all 

expression values were transformed to linear scale for statistical comparisons. The miRNA 

expression heat map was constructed by unsupervised hierarchical clustering of miRNAs.  
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Oneway Analysis of Variance (ANOVA) with Dunnett’s post hoc test was performed for 

signal intensity of each miRNA. We used Significance Analysis of Microarray software (18) to 

estimate the false discovery rate for each pairwise comparison between disease group and 

control. Supervised clustering by miRNA expression profiles was performed using Fisher’s 

linear discriminant analysis (21). Class prediction was performed using a classifier derived by a 

supervised machine learning technique (support vector machine, SVM) implemented for the R 

statistical language in CRAN package e1071(6). 

Statistical analysis was performed using JMP IN version 5 statistical software (SAS Institute, 

Cary, NC). Values are reported as mean ± standard deviation. 

Results 

Patient Characteristics 

We purified total RNA from left ventricular myocardium of 67 patients belonging to four 

diagnostic groups (control, n=10; ICM, n=19; DCM, n=25; and AS, n=13). Patient 

characteristics are summarized in Table 1. ICM and DCM patients had severely depressed EF 

and elevated pulmonary capillary wedge pressures. 10 out of 13 AS patients had preserved EF 

(EF > 40%). ICM patients were more likely to be male than controls. AS patients were 

significantly older than controls. ICM, DCM, and AS patients were more likely to be treated with 

medications and to have comorbid conditions than controls. 

Differential expression of miRNAs in human heart disease 

We profiled expression of 428 miRNAs using a high throughput bead-based platform (13). 

This platform was previously validated using Northern blotting (13). We further confirmed the 

reliability of this platform by measuring expression of nine miRNAs in 46 samples using 

qRTPCR. The nine miRNAs were selected to span the range of high, medium, and low intensity 
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signals. There was strong correlation between the bead-based and qRTPCR measurements in 

eight out of nine miRNAs (Supplementary Table 1). Within these 46 samples, seven miRNAs 

were differentially expressed in disease compared to control by bead-based measurements. This 

was supported by qRTPCR measurement in six of the seven cases.  

Eighty-seven miRNAs were expressed above detection threshold in greater than 75% of 

samples (Table 2). Figure 1 displays an overview of these data in a heat map and a dendrogram, 

with samples grouped horizontally by diagnosis, and miRNAs arranged vertically by similarity 

of expression to one another. We focused our attention on these confidently detected miRNAs so 

that the downstream analysis was based on the most reliable expression data. The entire miRNA 

expression dataset is available in Supplementary Table 2. 

To identify individual miRNAs with altered expression in heart disease, we compared miRNA 

expression between each disease group and the control group, using ANOVA with Dunnett’s 

post-hoc test (significance threshold P < 0.05). To address multiple concurrent testing, we also 

required the estimated false discovery rate to be less than 5%. Out of 87 miRNAs that were 

confidently detected, 43 were differentially expressed in at least one disease group (Table 2), 

suggesting that expression of many miRNAs is altered in heart disease. Differential expression of 

these miRNAs persisted after multiple regression to control for sex and body mass index. 

Likewise, correction for age did not influence differential expression between ICM or DCM and 

control. AS patients were significantly older than controls, and the age distributions did not 

permit controlling for this confounding variable by multiple regression (see Discussion). 

Among the miRNAs with known cardiac-enriched expression (miRNA-1, -133, and -208), 

miR-1 was downregulated in DCM and AS, and tended to be downregulated in ICM (P = 0.054). 

Expression of miR-133 and miR-208 were not significantly changed. The most strongly 
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upregulated miRNA was miR-214, which increased 2-2.8 fold in all three disease groups (Table 

2). Upregulation of miR-214 may contribute to cardiac hypertrophy, as cardiomyocyte 

overexpression of miR-214 induced cardiomyocyte hypertrophy (19). The most strongly 

downregulated miRNA family was miR-19. The two miR-19 family members miR-19a and miR-

19b were downregulated 2-2.7 fold in DCM and AS, but not in ICM (Table 2). 

miRNA expression profiles are distinct between diagnostic classes 

The pattern of altered miRNA expression in each disease group was distinct (Figure 2a). 

Differential expression of 13 miRNAs was specific to AS, while 8 miRNAs were differentially 

expressed in cardiomyopathy groups (ICM + DCM) and did not overlap with those altered in AS 

(Figure 2a; Table 2). This suggests that altered expression of some miRNAs reflects distinct 

disease mechanisms or disease stage in AS compared to cardiomyopathy samples. 

To further assess whether miRNA expression profiles were distinct between diagnostic 

groups, we performed supervised clustering of samples. Using Fisher’s linear discriminant 

analysis (21), miRNA expression profiles segregated the samples by etiological diagnosis with 

100% accuracy (Figure 2b). These results indicate that each form of heart disease is 

characterized by a miRNA expression profile that is sufficiently distinctive to allow construction 

of a discriminator that can accurately cluster samples by diagnostic group. 

To further investigate the association of heart disease classes with distinct miRNA expression 

profiles, we asked if the expression profiles could predict clinical diagnosis. We used a 

supervised learning technique, SVM, to develop a miRNA-based classifier. After training on the 

set of 67 samples, the SVM-derived classifier assigned class labels that matched the clinical 

diagnosis in all cases. Next, we performed cross-validation studies in which 45 randomly chosen 

samples were used for SVM training, and the resulting classifier was applied to the remaining 22 
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samples. This procedure was repeated 20,000 times (Figure 3a). The classes assigned by the 

SVM-generated classifier matched the clinical diagnosis 69.2% ± 3.8% of the time (Figure 3b). 

The likelihood of achieving this performance by chance was less than 0.001, estimated by SVM 

training on datasets in which the sample labels were randomly permuted (20,000 datasets with 

randomly permuted sample labels, each with 20,000 cross-validation studies). These results 

suggest that miRNA expression profiles are sufficiently distinct between disease classes to 

predict clinical diagnosis with moderate success.  

Discussion 

In this work, we report the first extensive genome-wide profiling of miRNA expression in 

human heart disease. We found that expression of many miRNAs changed significantly in 

diseased myocardium. Multiple independent lines of evidence corroborate our profiling data. 

First, miRNA expression measurements correlated closely between bead-based and qRTPCR 

platforms (Supplementary Table 1).  Second, our study yielded results largely concordant with 

previously reported findings. Olson and colleagues used northern blotting to compare miRNA 

expression in six DCM samples to four controls (19). They reported on 11 miRNAs, 10 miRNAs 

that were detectably expressed on our platform. The two studies were in agreement for 9 of the 

10 miRNAs. Northern analysis suggested that miR-208 expression was not altered in human 

ICM (20), consistent with our data (Table 2). miR-1 was recently reported to be downregulated 

in four different murine models of cardiac hypertrophy or failure (4, 15), consistent with our 

finding of miR-1 downregulation in AS and DCM.  

However, not all studies are in agreement. While miR-133 was not significantly changed in 

our study, it was reported to be downregulated in hypertrophic cardiomyopathy and in dilated 

atrial myocardium (4). We found that miR-1 was downregulated in ICM, while Yang and 
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colleagues recently reported it was upregulated in ICM (22). An oligonucleotide microarray 

study of a small number of samples (DCM, n = 6; control, n = 4) was recently published, and 

overall there was low concordance between data sets (16). These divergent findings may reflect 

differences in tissues sampled (endocardial versus transmural; atrial versus ventricular), 

diagnostic groups studied, heterogeneity in human myocardial samples, systematic differences in 

the manner in which control or diseased samples are collected, and sample size differences that 

can lead to false discovery as well as false negatives (17). Additional miRNA profiling studies 

with larger sample numbers and careful attention to patient characteristics and details of tissue 

procurement will be necessary to resolve these differences. 

miRNAs are emerging as important post-transcriptional regulators of gene expression, with 

each miRNA predicted to regulate hundreds of target genes (1, 2). A growing body of data 

indicates that miRNAs are key regulators of cardiac development, contraction, and conduction 

(4, 15, 19, 20, 22-24). In this study, we found that expression of many miRNAs was altered in 

human heart disease, albeit the magnitude of expression changes was generally small. These 

changes are not a simple epiphenomenon of end-stage heart disease, because AS patients had at 

the same time the most distinctive miRNA expression profile and largely compensated 

ventricular function. Rather, these miRNA changes likely contribute to heart disease 

pathogenesis by mediating pathological changes in gene expression. The distinctive pattern of 

miRNA expression changes between heart disease etiologies further suggests that miRNAs 

contribute to etiology-specific gene expression changes. The functional significance of these 

broad but often subtle changes in miRNA expression will need to be studied in model systems 

where levels of one or more miRNAs can be finely manipulated. 
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One long term goal of expression profiling studies is to develop expression signatures that can 

be used in clinically relevant classification problems, such as prognosis or prediction of drug 

responsiveness (8, 10). In this study, we showed the miRNA expression profiles can classify 

samples by etiological diagnosis. This provides proof-of-concept that miRNA expression profiles 

may be useful in other more challenging and clinically relevant class prediction problems, and 

supports further studies of miRNAs as potential biomarkers for determining prognosis and 

response to therapy. 

Analysis of human myocardial tissue is complicated by limited availability and by biological 

variability arising from differences in age, gender, body habitus, medications, co-morbidities, 

and individual course of disease. Intergroup differences in confounding variables was an 

important limitation of this study. We were able to control for some of these variables (gender, 

BMI, and age in DCM and ICM). However, we were unable to control for co-morbidities or 

medication use. In addition, AS patients were significantly older than cardiomyopathy patients or 

controls. We cannot exclude the possibility that the age difference contributed to altered miRNA 

expression in the AS group. However, we found no significant correlation between miRNA 

expression and age for any of the differentially expressed miRNAs within the control group, 

suggesting that miRNA expression does not systematically vary with age through adult life. 

This study demonstrated that expression of many miRNAs is altered in human heart disease, 

and that the pattern of alteration differs by underlying disease etiology. This dataset of human 

miRNA expression in nonfailing and diseased hearts will guide further studies on the 

contribution of miRNAs to heart disease pathogenesis. 
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Table 1. Clinical Characteristics of the Study Subjects 

Control ICM DCM AS 

Sample number 10 19 25 13 

Age --  decades 5.8 ± 1.4 6.6 ± 0.6 6.0 ± 1.5 8.6 ± 0.7 

Male sex -- no. (%) 6 (60%) 17 (89%) 17 (68%) 6 (46%) 

BMI --kg/m
2

24.2 ± 4.7 25.4 ± 5.1 23.5 ± 2.9 26.9 ± 3.0 

Medical History -- no (%)     

Hypertension 6 (60%) 11 (58%) 5 (20%) 7 (50%) 

DM 1 (10%) 11 (58%) 5 (20%) 3 (21%) 

Atrial fibrilation 0 (0%) 3 (16%) 9 (36%) 3 (21%) 

Cardiac function     

LVEF --  % 65.0 ± 5.0† 20.0 ± 7.5 15.9 ± 7.5 55.8 ± 16.9 

PCWP -- mmHg N/A 20.2 ± 8.6 20.5 ± 7.9 29.8 ± 4.3†† 

Medication -- no.(%)     

ACE inhibitor/ AR blockers 0 (0%) 14 (74%) 20 (80%) 8 (62%) 

Beta-blockers 2 (20%) 10 (53%) 15 (60%) 7 (54%) 

Diuretics 0 (0%) 17 (90%) 19 (76%) 10 (77%) 

Digoxin 0 (0%) 11 (58%) 15 (60%) 3 (23%) 

† only available for three patients 
†† only available for seven patients

 

BMI, body mass index; DM, diabetes mellitus; LVEF, left ventricular ejection fraction; PCWP, 
pulmonary capillary wedge pressure. ACE, angiotensin converting enzyme; AR, angiotensin II 
receptor. 
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Table 2. Confidently detected miRNAs. 

 

The miRNAs listed in this table were expressed above detection threshold in more than 75% of 

samples. Orange boxes indicate significant differences from control (P < 0.05, ANOVA with 

Dunnett’s post-hoc testing; and false discovery rate (q) < 5%). 

 

DCM ICM AS 

miRNA fold p q (%) fold p q (%) fold p q (%) 

let-7a 1.07 0.192 3.3 1.07 0.158 2.0 1.03 0.709 7.5 

let-7b 1.39 0.046 1.7 1.23 0.034 <0.02 1.10 0.593 6.4 

let-7c 1.32 0.039 1.7 1.21 0.019 <0.02 1.24 0.011 <0.02 

let-7d 1.10 0.217 8.9 1.06 0.356 10.0 1.04 0.727 11.9 

let-7d* 4.10 0.576 15.2 1.80 0.929 24.1 0.65 0.994 2.7 

let-7e 1.08 0.996 43.8 1.10 0.313 17.1 1.34 <0.001 <0.02 

let-7f 0.80 0.053 <0.02 0.97 0.936 34.4 0.85 0.078 <0.02 

let-7g 0.89 0.690 26.5 0.99 1.000 36.4 0.87 0.402 4.3 

miR-1 0.62 0.023 <0.02 0.82 0.054 <0.02 0.68 <0.001 <0.02 

miR-10a 0.83 1.000 43.8 1.23 0.614 15.5 0.24 0.013 <0.02 

miR-10b 1.04 0.995 43.1 1.57 0.069 2.0 0.45 0.111 <0.02 

miR-15a 0.91 1.000 43.8 1.08 0.767 17.1 0.98 0.996 29.9 

miR-15b 1.68 0.010 1.7 1.28 0.242 12.3 1.69 0.001 <0.02 

miR-16 0.95 0.996 43.1 1.00 1.000 31.4 0.98 0.933 21.6 

miR-17-5p 0.82 0.002 <0.02 0.92 0.266 19.1 0.88 0.072 2.7 

miR-19a 0.41 <0.001 <0.02 0.76 0.073 12.9 0.37 <0.001 <0.02 

miR-19b 0.50 0.001 <0.02 0.80 0.100 12.9 0.46 <0.001 <0.02 

miR-20a 0.75 0.005 <0.02 0.87 0.101 12.3 0.76 0.002 <0.02 

miR-20b 0.75 0.007 <0.02 0.82 0.034 12.9 0.72 0.001 <0.02 

miR-21 0.75 0.346 6.3 1.03 0.989 31.4 0.71 0.183 0.8 

miR-22 1.09 0.997 43.1 1.04 0.906 24.1 1.13 0.204 0.8 

miR-23a 1.24 0.001 <0.02 1.14 0.013 <0.02 1.31 <0.001 <0.02 

miR-23b 1.08 0.659 15.2 1.00 0.999 31.4 1.24 <0.001 <0.02 

miR-24 1.14 0.334 11.8 1.14 0.036 <0.02 1.29 <0.001 <0.02 

miR-26a 1.08 0.295 8.9 1.07 0.177 2.0 1.04 0.584 8.8 

miR-26b 0.81 0.111 1.8 0.96 0.790 29.3 0.80 0.006 <0.02 

miR-27a 1.10 0.196 7.7 1.15 0.045 <0.02 1.21 0.008 <0.02 

miR-27b 1.05 0.742 22.7 1.06 0.409 10.0 1.22 <0.001 <0.02 

miR-28 0.86 0.001 <0.02 0.89 0.023 5.2 0.91 0.104 2.7 

miR-29a 1.01 1.000 47.4 1.08 0.625 12.3 0.98 0.991 28.4 

miR-29b 0.76 0.542 19.1 1.03 0.957 26.7 0.81 0.137 <0.02 

miR-29c 0.80 0.327 9.3 0.96 0.944 34.5 0.83 0.168 <0.02 

miR-30a-3p 0.94 0.850 46.7 0.88 0.256 19.1 0.92 0.636 21.6 
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miR-30a-5p 0.90 0.560 19.1 0.96 0.657 29.3 0.91 0.190 <0.02 

miR-30b 0.95 0.807 26.5 0.93 0.119 12.9 0.94 0.230 2.7 

miR-30c 1.03 0.647 12.4 0.97 0.667 29.3 1.01 0.987 27.2 

miR-30d 1.12 0.340 8.9 1.01 0.992 31.4 1.11 0.226 0.8 

miR-30e-3p 0.99 1.000 43.8 0.91 0.451 29.3 0.98 0.989 29.9 

miR-30e-5p 0.54 0.005 <0.02 0.81 0.120 12.9 0.54 <0.001 <0.02 

miR-92 0.91 0.218 26.5 0.84 0.314 29.3 0.83 0.327 19.2 

miR-93 1.21 0.575 31.9 1.22 0.073 7.3 1.44 <0.001 0.8 

miR-98 0.83 0.888 46.7 0.96 0.918 36.4 0.92 0.762 25.3 

miR-99a 1.13 0.923 41.0 1.07 0.592 15.5 1.16 0.092 0.8 

miR-99b 1.39 0.037 3.3 1.16 0.233 7.3 1.50 <0.001 <0.02 

miR-100 1.60 0.013 1.7 1.46 0.002 <0.02 1.74 <0.001 <0.02 

miR-101 0.53 0.019 <0.02 0.88 0.499 29.3 0.53 <0.001 <0.02 

miR-103 1.44 0.002 1.7 1.27 0.006 <0.02 1.24 0.029 0.8 

miR-106a 0.82 0.003 <0.02 0.91 0.231 19.1 0.88 0.093 3.9 

miR-106b 0.99 0.997 47.4 1.12 0.431 10.0 1.11 0.548 8.8 

miR-107 1.13 0.551 22.7 1.02 0.992 31.4 1.01 0.998 33.4 

miR-125a 1.15 0.473 12.4 1.03 0.978 31.4 1.18 0.199 1.5 

miR-125b 1.37 0.026 1.7 1.17 0.086 <0.02 1.44 <0.001 <0.02 

miR-126 0.89 0.448 19.1 0.96 0.767 29.3 0.82 0.004 <0.02 

miR-126* 0.58 <0.001 <0.02 0.80 0.019 <0.02 0.56 <0.001 <0.02 

miR-130a 1.27 0.185 8.9 1.16 0.209 2.0 1.20 0.132 1.5 

miR-133a 1.02 0.932 41.0 0.97 0.885 33.6 1.02 0.948 24.2 

miR-133b 1.02 0.877 34.5 0.96 0.626 29.3 1.01 0.984 27.2 

miR-140* 1.38 0.019 1.7 1.24 0.032 <0.02 1.52 <0.001 <0.02 

miR-143 1.05 0.951 37.0 1.09 0.507 7.3 1.06 0.771 19.2 

miR-145 1.21 0.724 21.1 1.05 0.924 24.1 1.32 0.015 <0.02 

miR-146a 0.89 0.969 47.4 0.94 0.910 35.7 0.81 0.298 4.3 

miR-146b 0.75 0.562 26.5 0.84 0.565 29.3 0.62 0.069 2.7 

miR-150 1.41 0.337 13.7 1.04 0.994 31.4 1.15 0.837 19.2 

miR-151* 1.23 0.185 9.6 1.09 0.361 7.3 1.11 0.284 0.8 

miR-152 1.03 0.896 41.3 1.11 0.227 15.5 0.93 0.601 21.6 

miR-181a 1.70 0.132 13.7 1.32 0.196 10.0 1.73 0.001 <0.02 

miR-185 1.01 0.790 46.7 0.88 0.399 32.3 0.98 0.990 33.4 

miR-191 1.40 0.034 8.9 1.26 0.022 2.0 1.57 <0.001 <0.02 

miR-191* 0.80 0.869 46.7 0.80 0.141 19.1 0.77 0.116 4.8 

miR-195 1.14 0.01 <0.02 1.19 0.020 <0.02 1.02 0.991 27.2 

miR-199a* 1.70 0.012 1.7 1.65 0.002 <0.02 1.33 0.218 3.3 

miR-208 0.51 0.623 24.0 1.21 0.630 17.1 0.57 0.190 <0.02 

miR-214 2.83 0.003 1.7 2.07 0.011 2.0 2.11 0.014 <0.02 

miR-222 0.59 <0.001 <0.02 0.58 <0.001 <0.02 0.92 0.778 21.6 
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miR-320 1.44 0.238 12.4 1.36 0.011 <0.02 1.44 0.004 <0.02 

miR-335 0.82 0.237 9.3 0.87 0.415 29.3 0.81 0.189 4.3 

miR-342 1.46 0.006 1.7 1.15 0.263 7.3 1.30 0.012 0.8 

miR-361 1.11 0.925 41.3 1.04 0.910 31.4 1.16 0.137 6.4 

miR-365 1.33 0.610 21.1 1.13 0.698 15.5 1.13 0.702 7.9 

miR-374 0.65 0.109 1.8 0.95 0.864 32.3 0.67 0.002 <0.02 

miR-422b 0.89 0.012 <0.02 0.83 0.014 <0.02 0.98 0.970 28.4 

miR-423* 1.41 0.234 9.6 1.20 0.251 3.6 1.37 0.027 <0.02 

miR-424 0.75 0.995 47.4 1.26 0.141 3.6 0.67 0.066 <0.02 

miR-451  1.10 0.863 22.7 1.30 0.438 7.3 0.92 0.007 <0.02 

miR-483* 0.99 1.000 47.4 1.03 0.989 31.4 1.06 0.902 27.2 

miR-495  0.65 0.552 27.7 0.67 0.111 12.3 0.88 0.054 1.5 

miR-499 0.65 0.075 <0.02 0.67 0.264 0.9 0.88 0.044 <0.02 
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Figure Legends 

Figure 1. miRNA expression in human heart failure. Heat map summarizing miRNA 

expression.  Each column represents one of 67 samples, and each row represents one of 87 

detectable miRNAs. Samples were grouped by diagnosis, and miRNAs arranged by 

unsupervised hierarchical clustering. Red and blue indicate up- and down-regulation, 

respectively, relative to the overall mean for each miRNA.  

Figure 2. miRNA expression profiles accurately segregated samples by diagnosis. a. Venn 

diagram summarizing differential expression of individual miRNAs in each disease group 

compared to control, after controlling for age, sex, and BMI. Numerals indicate number of 

miRNAs falling into the indicated region. b. Supervised clustering was performed using linear 

discriminant analysis. Samples were plotted in the space of two linear discriminants (LD1 and 

LD2).  

Figure 3. Diagnostic class prediction by miRNA expression profiles. a. Schema of cross-

validation study. A classifier derived by training a support vector machine on 45 randomly 

selected samples was tested on the remaining 22 samples. This procedure was repeated for 

20,000 permutations, yielding 22/67 * 20,000 ~ 6600 assigned labels per sample. b. Summary of 

results of cross-validation study. The percent of times each of the 67 samples was assigned each 

of the four diagnostic labels is plotted. Overall diagnostic accuracy (assigned class matched 

clinical diagnosis) was 69%. 
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Supplementary Table 1. Correlation between bead-
based and qRTPCR platforms 

 
Correlation between platforms in 46 samples representing the 
four diagnostic groups. miRNAs were chosed to include low, 
medium, and high expression values, displayed as mean ± sd. 
Relative miRNA expression values by qRTPCR were 
normalized to total input RNA.‡

miRNA 

Average 
expression in bead-

based assay 

Pearson 
correlation 
coefficient p-value  

miR-1 8654 ± 1820 0.497 <0.001  

miR-30b† 1800 ± 170 -0.201 0.203  

miR-103 126 ± 21 0.458 0.003  

miR-126* 685 ± 185 0.720 <0.001  

miR-133a§ 1210 ± 141 0.583 <0.001  

miR-140* 196 ± 48 0.575 <0.001  

miR-191 98 ± 25 0.608 <0.001  

miR-199a* 85 ± 29 0.753 <0.001  

miR-208 133 ± 89 0.909 <0.001  

†qRTPCR assay measured both miR-30b and -30c. The assay did not 
detect miR-30a, -30d, or -30e. Expression levels of miR-30b and miR-30c 
were quite similar in the bead-based assay (r=0.860, p<0.001, Pearson 
correlation coefficient). 

§qRTPCR did not distinguish miR-133a and miR-133b. Expression levels of 
miR-133a and miR-133b were quite similar in the bead-based assay 
(r=0.898, p<0.001, Pearson correlation coefficient). 

‡U6 was not used as an internal control because its expression changed 
significantly in heart disease. 
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Figure 2
Ikeda et al.
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