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Abstract

Background: Obesity is associated with an elevated risk for several types of cancer and thus a major health hazard.

However, the mechanism between overweight and cancer susceptibility is still elusive. Leptin, mainly produced by

adipocytes links food intake and energy expenditure. In addition, recent studies have shown an immunomodulatory

impact of leptin on NK cells. The purpose of the present study was to investigate whether leptin stimulation of NK

cells from obese humans leads to altered functions as compared to NK cells from lean subjects. On the basis of

body mass index 20 healthy individuals were classified in two groups: normal weight (<25 kg/m2) and obese

(>30 kg/m2). Peripheral blood mononuclear cells (PBMC) were isolated from blood samples. We used flow

cytometry to assess differences in phenotype and activity markers (CD107a, CD178 and TRAIL) of PBMCs between

both groups. Furthermore, we determined after short-term in vitro leptin stimulation the phosphorylation of JAK2,

downstream target of the intracellular signaling cascade of the leptin receptor, by Western Blotting and numbers of

NK-cell-tumor-cell-conjugates as well as Granzyme+ and IFN-γ+ NK cells by flow cytometry. Finally, the proliferative

capacity of control and long-term (7 days) leptin-stimulated NK cells was examined.

Results: As opposed to similar NK cell counts, the number of CD3+CD56+ cells was significantly lower in obese

compared to lean subjects. Human NK cells express the leptin receptor (Ob-R). For further determination of Ob-R,

intracellular target proteins of PBMCs were investigated by Western Blotting. Phosphorylation of JAK2 was lower in

obese as compared to normal weight subjects. Furthermore, significantly lower levels of TNF-related apoptosis-

inducing ligand (TRAIL) as an NK cell functional marker in obese subjects were found. In vitro leptin stimulation

resulted in a higher production of interferon-γ in NK cells of normal weight subjects. Interestingly, long-term leptin

stimulation had no significant influence on numbers of proliferating NK cells.

Conclusions: NK cells from obese healthy humans show functional deficits and altered responses after in vitro

leptin challenge.
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Background
Obesity is a major health hazard manifested by its rap-

idly increasing prevalence [1]. Beside a reduced life ex-

pectancy, obesity is associated with an elevated risk for

certain diseases like cardiovascular disease and type 2

diabetes [2] as well as severe inflammations [3]. Further-

more, obese individuals have a higher risk for several

types of cancer, e.g. oesophageal adenocarcinoma, post-

menopausal breast cancer and colon cancer [4,5]. Several

mechanisms behind the link between an increased body-

weight and cancer risk are actually subject of research:

the insulin-IGF (insulin-like growth factor) axis [6,7], in-

creased bioavailability of steroid hormones [8] and adi-

pose tissue-derived hormones and cytokines (adipokines)

[9,10].

One of these adipocyte-derived hormones is the 16-

kDa leptin [11], mainly produced by the white adipose

tissue. The serum levels of leptin the product of the

obese (ob) gene, correlate with body weight and is

higher in obese individuals [12]. There are at least six

alternatively spliced isoforms of the leptin receptor

(Ob-Ra – Ob-Rf ). Beside Ob-Re, the soluble form, all

leptin-receptors share an intracellular binding site for

the receptor-associated Janus-family tyrosine kinase-

(JAK) 2. However, only the long-form, Ob-Rb, is capable

in mediating all leptin actions [13]. Upon ligand binding
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to Ob-Rb, JAK2 becomes auto-phosphorylated and pro-

motes the phosphorylation of three tyrosine residues

(Tyr985, Tyr1077 and Tyr1138) on the intracellular do-

main of Ob-Rb for distinct signaling pathways [14]. Via

JAK2 phosphorylated Tyr1183 recruits the signal trans-

ducer and activator of transcription (STAT) 3 for the

JAK/STAT-pathway. Activated STAT3 translocates to

the nucleus for the regulation of gene expression.

Ob-R, product of the db (diabetes) gene, is localized in

several tissues mediating transport and degradation of

leptin but only the long-form is highly expressed in the

hypothalamus [15]. Moreover, leptin-receptor-deficient

(db/db) mice share an abnormally spliced leptin-receptor

resulting in a phenotype of severely obese animals [16].

Accordingly, leptin links the nutritional status by acting in

hypothalamic nuclei and regulating food intake and en-

ergy expenditure [17].

However, in the last years it becomes evident that lep-

tin also affects both the adaptive and the innate immune

system [18,19]. Natural killer (NK) cells belong with their

abilities in production of cytokines, such as interferon-γ

(IFN-γ), and cytotoxicity against transformed as well as in-

fected cells to the innate immunity. Beside a variety of ac-

tivating and inhibitory receptors, NK cells express Ob-R

and have increased cytotoxicity after leptin stimulation

in vitro [20]. However, a recent study of our group showed

diminished immune functions after long-term leptin ex-

posure of human NK cells [21]. Db/db mice have an im-

paired NK cell activity suggesting leptin as necessary for

the development and activation of NK cells [22]. An 11-

year-follow-up study indicated that low cytotoxic activity

of peripheral-blood lymphocytes is associated with in-

creased cancer susceptibility [23]. Our group demon-

strated attenuated NK cell activity in diet-induced obese

rats after leptin administration caused through abrogated

post-receptor signaling of the JAK/STAT-pathway [24].

However, only few data exist describing the activity of NK

cells in obese compared to normal weight humans. In the

present study, we observed lower activity of NK cells as

well as significantly lower levels of components of the

Ob-R signaling pathway in obese healthy humans. Fur-

thermore, NK cells in obese showed a non-significant

altered proliferation process suggesting leptin as a pos-

sible link between bodyweight, lower NK cell functio-

nality and herewith increased cancer susceptibility in

obese humans.

Methods
Study subjects

The study was approved by the ethics committee of the

Hannover Medical School, Hannover, Germany. Informed

consent has been received from 20 healthy subjects. All

subjects’ data were determined by self-report and mea-

sured with a standardized questionnaire. Exclusion criteria

were an age < 18 or > 65 years, an acute infection, im-

munosuppression or known cancer in anamnesis. On

the basis of body mass index (BMI; kg/m2) the study sub-

jects were classified in two groups: obese with BMI >

30 kg/m2 (3 females and 9 males) and normal weight with

BMI < 25 kg/m2 (4 females and 4 males). All obese sub-

jects were patients in the sleep laboratory of Hannover

Medical School for medical examination of sleep apnea

syndrome.

Isolation of human peripheral blood mononuclear cells

(PBMC) from human subjects and measurement of

triglyceride, cholesterol and glucose

Blood samples were taken from the study subjects be-

tween 8 a.m. and 10 a.m. and immediately heparinized.

A small sample from 10 subjects (normal weight: 5;

obese: 5) was used to measure levels of triglyceride,

cholesterol and glucose via photometry by P800 module

of Roche MODULAR PPE (Roche and Hitachi, Japan).

Furthermore, the blood was diluted with phosphate buff-

ered saline (PBS) and the peripheral blood mononuclear

cells (PBMC) were isolated from cell suspension by

Ficoll gradient (Biocoll, Biochrom, Berlin, Germany) and

collected from the interphase.

Reagents

Recombinant human leptin was obtained from R&D Sys-

tems (Wiesbaden, Germany) and diluted to 50 nM.

Flow cytometry

For phenotypic analyses PBMCs were stained with the

directly labelled monoclonal mouse-anti human anti-

bodies CD3 conjugated with phycoerythrin (PE)-Cy7

(CD3-PE-Cy7) (clone SK7, 1:50), CD56 conjugated with

allophycocyanin (CD56-APC) (clone NCAM16.2, 1:100),

anti-hLeptin R (Ob-R) conjugated with carboxyfluo-

rescein (anti-hLeptin R-CFS) (clone 52263, 1:20) (R&D

Systems, Wiesbaden, Germany), CD253-PE (TRAIL;

clone RIK-2, 1:20) (BD Biosciences, San Diego, CA),

CD107a conjugated with FITC (clone H4A3, 1:10) (BD

Biosciences), and biotinylated CD178 (clone NOK-1,

1:10) (BD Biosciences) followed by labeling with PerCP-

Cy5.5-conjugated streptavidin (1:500) (BD Pharmingen,

Heidelberg, Germany). PBMCs (5 × 105 cells/100 μl) were

incubated in 96 well-round bottom plates with the

above mentioned antibodies for 20 min at 4°C, washed

twice with measuring buffer and analyzed by flow cy-

tometry using a FACSCanto (BD Biosciences, San Jose,

CA) with FACS Diva software v5.0.3. A well with cells

stained with the above mentioned antibodies except for

anti-hLeptin R-CFS served as control for the measure-

ments of Leptin R.
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Intracellular staining

After 24 h of cell culture and stimulation with leptin

(50nM; R&D Systems) the expression of intracellular cy-

tokines by NK cells was analyzed using a FACSCanto

cytometer. Prior to intracellular labelling cell surface

staining was performed. PBMCs (5 × 105 cells/100 μl in

96-well round-bottom plates) were stained with CD3-PE

(1:250) and CD56-APC (1:100). After 15 min at 4°C,

cells were washed twice with measuring buffer and in-

cubated with PBS supplemented with 4% paraformal-

dehyde (Merck, Darmstadt, Germany) in the dark for

10 min at room temperature. Cells were washed twice

with measuring buffer and centrifuged for 3 min at

400 g. Thereafter cells were washed once with saponin

buffer (aqua dest. supplemented with 0.1% saponin and

0.01 M HEPES), then resuspended in saponin buffer and

stained with the directly labelled mononuclear mouse

anti-human antibodies granzyme A (GzmA) conjuga-

ted with fluorescein isothiocyanate (GzmA-FITC) (clone

CB9, 1:100) and IFN-γ-PE-Cy7 (clone 4S.B3, 1:100) (both

BD Biosciences). To prevent non-specific binding via

Fc receptors, each well was supplemented with 5 μl

Pentaglobin. Finally cells were washed three times and

centrifuged for 3 min at 400 g. The data from flow cy-

tometric analyses were processed with FACS Diva soft-

ware v5.0.3. A well with cells stained with the above

mentioned antibodies except for IFN-γ-PE-Cy7 served

as control for the measurements of IFN-γ expression

by NK cells.

Conjugate-forming assay

After two days of culture and 24 h in vitro stimulation

with leptin (50 nM) or vehicle in R10 medium (contain-

ing 10% FCS, 100 U/ml penicillin, 100 μg/ml strepto-

mycin) cell surface staining of the PBMCs (5 × 105 cells/

100 μl) was performed in 96-well round-bottom plates

by adding CD3-PE (1:250) and CD56-APC (1:100) and

incubating for 15 min at 4°C. After two washes and a

centrifugation (400 g for 3 min), each well was supple-

mented with 1×106/ml cells of the K562 erythroleukemia

line (which were maintained in suspension culture flasks

at 37°C in a humidified atmosphere with 5% CO2). Cells

were centrifuged at 100 g for 3 min at 4°C and incubated

for 15 min at 37°C, 5% CO2 and 85% RH. Cells were

carefully resuspended and transferred into FACS tubes

using pipet tips with expanded apertures. After gently

mixing the cells, conjugate formation was analyzed using

a FACSCanto (BD Biosciences) by gating on PBMC and

K562 cells, excluding CD3+ T cells.

Proliferation assay

PBMCs (0.5 × 106 cells / 250 μl) were incubated with

CFSE (Carboxy Fluorescein Succinimidyl Ester; final con-

centration 1.5 μM) for 7 min at 37°C in a cell incubator.

Cells were resuspended in 250 μl of R10 culture medium

(1 × 106/ml) including IL-2 (0.001%) and leptin (50 nM)

or vehicle and incubated for 7 days. Medium was re-

freshed on day 4. After 7 days of culture cell surface stain-

ing of PBMCs (5 × 105 cells/100 μl) was performed in

96-well round-bottom plates by adding CD3-PE (1:250)

and CD56-APC (1:100) and incubating for 15 min at

4°C. Cells were washed twice with measuring buffer

and analyzed by flow cytometry using a FACSCanto

(BD Biosciences) with FACS Diva software v5.0.3. The

percentage of proliferating cells was determined as the

number of gated NK cells that displayed a distinctively

lesser fluorescence.

Western blotting

PBMCs were stained in wells with 1,000,000 cells per

well. Negative controls were incubated with PBS whereas

the samples were stimulated with 50 nM leptin for 5 and

15 min at 37°C. Stimulated PBMCs were collected on

ice, centrifuged (500 g, 3 min, 4°C) and supernatants

were removed. Afterwards, the pellets were resuspended

in PBS, re-centrifuged and supernatants removed. The

pellets were lysed in RIPA buffer (50 mM Tris, pH 7.5,

150 mM NaCl, 0.5% sodium deoxycholate, 1% Nonidet

P-40, and 0.1% SDS) containing protease inhibitor

(Complete Mini; Roche, Mannheim, Germany), 1 mM

sodium orthovanadate, 50 mM NaF, and 200 μg/l oka-

daic acid for 10 min on ice and stored at −80°C.

Protein concentrations of samples were determined

via photometry by Olympus AU400 (Olympus). Equal

amounts of protein samples were denatured in 15 μl

Laemmli buffer (containing 5% beta mercaptoethanol

of total volume; Bio-Rad Laboratories, Hercules, CA)

and heated at 95°C for 10 min. The samples were loa-

ded (7 μg per lane) into a NuPAGE 4-12% Bis-Tris gel

(Invitrogen, Carlsbad, CA), resolved in sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

and transferred onto nitrocellulose membranes with a

pore size of 0.2 μm (SERVA Electrophoresis, Heidelberg,

Germany).

The membranes were blocked with 5% nonfat milk

in Tris-buffered saline (50 mM TrisHCl, pH 7.4 and

150 mM NaCl) containing 0.1% Tween-20 (TBS-T) at

room temperature for 60 min on a shaking table, fol-

lowed by an overnight incubation with primary an-

tibodies in 5% BSA/TBS-T at 4°C on a shaking table.

Primary antibodies were anti-phospho-Jak2 (Tyr1007/

1008) (dilution 1:1250; New England Biolabs, Frankfurt,

Germany) and anti-beta-actin (dilution 1:1250; Sigma-

Aldrich, St. Louise, MO). Membranes were rinsed three

times (5 min each) with TBS-T, followed by an incuba-

tion with horseradish peroxidase-conjugated secondary

antibody (dilution 1:3000; New England Biolabs) for

60 min at room temperature. The peroxidase activity
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on the membrane was visualized on X-ray film by a

standard enhanced chemiluminescence (ECL plus;

Amersham, GE Healthcare, Freiburg, Germany) pro-

cedure. Quantitative analysis of the Western blots of 3

normal weight and 3 obese individuals was performed

using ImageJ 1.48v (http://rsb.info.nih.gov/ij). Values

were normalized to actin.

Statistics

Data are expressed as means + SEM. P-values of less then

0.05 were considered significant. The software used was

GraphPad Prism 4 (GraphPad Software Inc.). Results were

analyzed using one-way ANOVA with the factor ‘body

weight’ or ‘stimulation’. If overall effects showed signifi-

cant differences / interactions Tukey multiple comparison

test for post hoc analysis was implemented.

Results
BMI and clinical characteristics

In total, 20 subjects were investigated in the study

(normal weight: 4 females, 4 males; obese: 3 females,

9 males). No significant differences between the two

groups (normal weight and obese) in age and height

were found (Table 1). However, the two groups signifi-

cantly differed in the weight (mean body weight of

70.0 kg vs. 121.6 kg; p < 0.0001) resulting in a signifi-

cant BMI difference of 22.2 kg/m2 vs. 38.5 kg/m2 (p <

0.0001). From 10 subjects (normal weight: 5; obese: 5)

triglycerides, cholesterol and glucose levels were deter-

mined. Concerning triglycerides, cholesterol and glu-

cose levels no significant difference could be detected

between normal weight and obese subjects.

NK cell numbers

In both groups approximately 11% of all lymphocytes

were NK cells (Figure 1A). NK cells can be divided in

CD56dim and CD56bright by the expression of CD56 [25].

CD56dim NK cells express the surface antigen in low

concentration and have the capability to form conjugates

with target cells whereas the CD56bright NK cells pre-

dominantly produce pro-inflammatory cytokines, e.g.

TNF-α and IFN-γ. No significant difference between

normal weight and obese concerning the expression of

CD56dim and CD56bright was found (Figure 1B-D).

CD3+CD56+ cells

CD3+CD56+ cells have structural similarities with NK

cells (CD56; NK1.1) and T cells (CD3; αβ T cell re-

ceptors) [26] and are activated by lipid-based antigens

presented by CD1d [27]. Obese individuals showed sig-

nificantly lower amounts of CD3+CD56+ cells as com-

pared to the normal weight controls (Figure 1E). No

distinct difference concerning the T cell numbers from

obese and normal weight subjects could be observed

(Figure 1F).

Components of the Ob-R signaling pathway

We determined the Ob-R expression on peripheral blood

NK cells with flow cytometry and observed slightly more

Ob-R+ NK cells in obese subjects (Figure 2A). There are

six alternatively spliced Ob-R isoforms sharing the same

extracellular domain but only the long form, Ob-Rb, is

capable of signal transduction [28]. To evaluate the signal

transduction via Ob-Rb we determined the phosphoryl-

ation of JAK2 in isolated PBMCs after in vitro stimulation

with leptin for 5 and 15 min by Western blotting. Lower

levels of p-JAK2, a downstream target of the intracellular

signaling cascade of the Ob-Rb receptor, were detected

PBMCs in obese subjects (Figure 2B).

TRAIL, CD107a and CD178 expression by NK cells

To evaluate differences in the activity of human NK cells

in obese and normal weight subjects we measured the

expression of TNF-related apoptosis-inducing ligand

Table 1 Baseline characteristics of study population

Normal weight Obese Significance Reference range

(mean ± SEM) (mean ± SEM)

Age (years) 39.3 ± 6.4 47.5 ± 3.9 Ø n.a.

Height (m) 1.77 ± 0.04 1.78 ± 0.03 Ø n.a.

Weight (kg) 70.0 ± 4.2 121.6 ± 5.3 <0.0001 n.a.

BMI (kg/m2) 22.2 ± 0.6 38.5 ± 0.8 <0.0001 n.a.

Triglycerides§ 1.0 ± 0.3 1.8 ± 0.4 Ø [0.5–2.95 mmol/l]

Cholesterol§ 4.4 ± 0.4 4.3 ± 0.3 Ø [4.1–5.2 mmol/l]

Glucose§ 4.3 ± 0.3 5.2 ± 0.3 Ø [3.8–5.5 mmol/l]

SEM = standard error of the mean.

BMI = body mass index.

n.a. = not applicable.

§ = measured for 5 normal weight and 5 obese individuals.
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(TRAIL), CD107a and CD178 by flow cytometry. Surface-

bound TRAIL is well-known as one effector mechan-

ism of NK cells to induce apoptosis [29,30]. Compared

to normal weight subjects the TRAIL positive NK cells

were significantly lower in the obese (Figure 3A). No

difference between normal weight and obese subjects

could be observed concerning the number of CD178

(Fas ligand; a crucial promoter for programmed cell death

by apoptosis; [31,32]) expressing NK cells (Figure 3B).

The number of NK cells expressing CD107a, another

marker of NK cell activity (e.g. for IFN-γ and TNF-α

cytokine production; [33]), were reduced by nearly 40%

in the obese subjects as compared to the lean controls

(Figure 3C).

Intracellular IFN-γ expression

To evaluate the influence of a leptin stimulation on dif-

ferent functional parameters, human NK cells were

stimulated with human recombinant leptin for 24 h.

Numbers of NK-cell-tumor-cell-conjugates as well as

Granzyme positive and IFN-γ positive NK cells were

determined by flow cytometry. Short-term leptin ad-

ministration resulted in slightly improved levels of NK-

cell-tumor-cell-conjugates as compared to the vehicle

treated controls both in normal weight and obese subjects

(Figure 4A). NK cells induce cell death via Granzymes

released into target cells [34,35]. Leptin stimulation was

without effect on the numbers of Granzyme+ NK cells

(Figure 4B). However, the intracellular IFN-γ expres-

sion after leptin administration was significantly higher

in normal weight subjects as compared to the correspon-

ding normal weight controls (Figure 4C). No stimu-

lation effect could be seen in the NK cells from obese

subjects.

NK cell proliferation after long-term leptin stimulation

To evaluate the proliferative capacity of control and

long-term (7 days in vitro) leptin stimulated NK cells in

normal weight and obese subjects levels of proliferating

NK cells were determined by flow cytometry. No sig-

nificant difference could be detected between numbers

of proliferating NK cells in obese subjects as compared

to corresponding normal weight (~60% of all NK cells;

Figure 5B). Long-term leptin stimulation resulted in a

non-significant higher amount of proliferating NK cells

in obese as compared to vehicle treated controls. Inter-

estingly, obese subjects showed a non-significant higher

amount of multiple proliferating NK cells as compared

to normal weight individuals (Figure 5A).
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Discussion
Excess bodyweight is associated with an increased risk of

malignancy, e.g. esophageal adenocarcinoma and colon

cancer [5,6]. However, the link between obesity and

cancer susceptibility is still elusive. Leptin is a hormone

secreted by adipocytes linking nutritional status with

neuroendocrine and immune functions. The impact of

leptin on human NK cells, part of the innate immune

system, especially of a short- and long-term leptin ex-

posure, needs to be further investigated.

In this study, we observed no difference of CD56bright

(expressed in high density on surface with activity in

producing cytokines) and CD56dim (expressed in low

density with focus on cytotoxic features) NK cells be-

tween obese and normal weight individuals. NKT cells

that have structural characteristics from NK as well

as T cells were found to have a role in tumor immunity

of mice without and following stimulation (such as

αGalCer or IL-12 [36]). The reported anti-metastatic

effect was dependent on IFN-γ production and NK cell

activation through NKT cells [37,38]. Our data present

significantly lower levels of NKT (CD3+CD56+) cells in

obese subjects supporting the impaired protective ac-

tivity due to obesity. Recent studies revealed type I and II

NKT cells by different molecular markers [39]. Interes-

tingly, patients with obesity (BMI > 40) and cancer had

higher levels of type I NKT cells in the greater omen-

tum compared to a lean control group [27]. Furthermore,

clinical studies implied a correlation between type I NKT

cell counts and prognosis for several human cancer

types. By contrast, type II NKT cells were found to sup-

press anti-tumor immunity in several mouse models by

producing IL-13 [39].

Like human T lymphocytes [18] and murine mono-

cytes, NK cells express Ob-R. NK cells show increased

levels of activated STAT3 as well as transcripted IL-2

and Perforin genes following leptin stimulation through

Ob-Rb [20]. To evaluate the impact of endogenous high

elevated leptin levels in obese subjects on the Ob-R ex-

pression we determined Ob-R on peripheral blood NK

cells with flow cytometry. In obese subjects (with long-

term endogenous leptin exposure) non-significant higher

levels of Ob-R+ NK cells were found. However, we know

from former studies in diet-induced obese rats [24] and

human PBMCs [21] that Ob-R post receptor signaling is

altered. Therefore we evaluated downstream signaling

in response to an in vitro leptin challenge. Sanchez-

Margalet et al. showed a transient activation of JAK2 in
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stained with antibodies and analyzed by flow cytometry; (A) Numbers of Ob-R positive NK cells are shown in percentage of NK cells. Data are

expressed as mean + SEM. Representative flow cytometry dot plots of ObR+ and ObR- NK cells from a normal weight (middle panel) and an

obese individual (right panel) are shown. (B) Isolated PBMCs from normal weight and obese individuals (shown with body mass index (BMI)) were

stimulated for 5 and 15 min with 50 nM human recombinant leptin. Phosphorylation of JAK2 (p-JAK2) was determined by Western blotting. Actin

was used as control for equal loading. The experiment was repeated with 3 normal weight and 3 obese individuals, and a representative Western

blot is shown. Quantitative analysis of the Western blots for p-JAK2. Values were normalized to actin and are shown as fold induction in arbitrary

units (AU). Data are expressed as mean + SEM. Significant effects of obese vs. normal weight subjects are indicated by an asterisk *p < 0.05.
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human PBMCs between 5 and 20 minutes after stimula-

tion [38]. Post receptor signaling of Ob-R revealed lower

levels in phosphorylation of JAK2 in PBMCs after leptin

administration as compared to PBMCs of normal weight

subjects confirming our data from previous studies.

Beside cytokine secretion, NK cells can induce apop-

tosis. TRAIL belongs to the TNF superfamily with its

death receptor pathway for apoptosis. After stimulation

with IFN-γ NK cells express TRAIL [30]. TRAIL is

crucial for the IFN-γ dependent NK cell-derived protec-

tion from subcutaneous tumor growth as well as tumor

metastasis in mice [29,30]. Moreover, mice infected with

encephalomyocarditis virus showed earlier death after

administration of anti-TRAIL mAb [40]. Interestingly,

in vitro experiments showed that only inactivation of

Fas ligand, Perforin and TRAIL decreases NK cell cytotox-

icity against susceptible target cells [41]. With CD107a,

there is an additional marker of NK cell activity. It has
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the differences of functional parameters in normal weight and obese subjects. (A) TNF-related apoptosis-inducing ligand (TRAIL) positive NK cells,

(B) CD178 positive NK cells, and (C) CD107a positive NK cells as percentage of NK cells. Representative flow cytometry dot plots of CD107a from

a normal weight (middle panel) and an obese individual (right panel). Inserts in both dot plots show the prior gating for NK cells (CD56+CD3−) in

the upper left quadrant. Data are expressed as mean + SEM. Significant effects of obese vs. normal weight subjects are indicated by an

asterisk *p < 0.05.

Figure 4 Effects of a leptin stimulation on NK-cell-tumor-cell-conjugates and IFN-γ and Granzyme production of human NK cells.

PBMCs from healthy normal weight and obese subjects were stimulated with 50 nM human recombinant leptin or treated with vehicle for 24 h.

Thereafter, cells were stained with antibodies and analyzed by flow cytometry. (A) Numbers of NK-cell-tumor-cell-conjugates (K562 erythroleuke-

mia line), (B) Granzyme positive NK, (C) IFN-γ positive NK cells are shown as percentage of NK cells. Data are expressed as mean + SEM. Significant

effects of leptin stimulated IFN-γ positive vs. non-stimulated NK cells in the normal weight group are indicated by an asterisk *p < 0.05.
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been demonstrated that CD107a expression correlates

in vitro with lysis of target cells as well as cytokine pro-

duction [33,42].

Here we present significantly higher levels of TRAIL+

NK cells in obese subjects. In contrast to expectations,

the expression of CD178 and CD107a on NK cells re-

vealed no difference between normal weight and obese

individuals.

To further explain the discrepancy of normal OB-R+

NK cell counts and lower levels of p-JAK2 we investi-

gated several NK cell activity parameters following lep-

tin challenge. Wrann et al. showed diminished NK cell

immune functions (such as IFN-γ secretion) after long-

term incubation (72 h) with leptin. In contrast, short-

term leptin stimulation revealed significantly higher

functions of human NK cells [21] as well as in human NK

cell lymphoma cell lines YT and NK-92 [20]. Takeda et al.

demonstrated, that IFN-γ is essential for the suppression

of subcutaneous tumor growth through TRAIL. Here we

show comparable numbers of IFN-γ+ NK cells in normal

weight and obese subjects. The amount of IFN-γ+ NK

cells in normal weight subjects was significantly higher

following short-term leptin challenge, whereas no effect

was seen in the obese. This is in line with demonstrations

of Wrann et al.: only short-term incubation (18 h) in-

creased IFN-γ production of NK cells [21] and points to-

wards a higher activity of innate immunity in normal

weight individuals.

Beside cytotoxic activity, proliferation of NK cells is

crucial for immune responses. In the present study, we

observed no difference in the proliferation rate of hu-

man NK cells in both investigated groups. Interestingly,

obese subjects had a non-significant higher amount of

multiple proliferating NK cells as compared to normal

weight subjects, suggesting a modified proliferation pro-

cess in the obese.

Further studies with isolated NK cells and co-cultures

with tumor cells are required to investigate the contri-

bution of leptin and other adipocytokines on NK cell

functions. Furthermore, other receptor pathways remain

major goals to understand increased cancer susceptibility

in obesity.

Figure 5 Effect of leptin stimulation on cell proliferation of human NK cells. PBMCs from healthy normal weight and obese subjects were

stimulated with 50 nM human recombinant leptin or vehicle for 7 days, stained with antibodies and analyzed with flow cytometry. (A)

Representative histograms of CSFE staining showing four proliferation peaks of NK cells from a normal weight (upper histogram) and an obese

(lower histogram) subjects. The peaks, from P4 (parental generation) to P1, represent successive generations. (B) Numbers of proliferating NK cells

as percentage of NK cells. Data are expressed as mean + SEM.
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Conclusions
The present study demonstrates significant lower TRAIL

and p-JAK2 expression in NK cells from obese healthy

humans. Chronically elevated endogenous leptin levels

may be one mechanism for NK cell dysfunctions and con-

secutive increased cancer susceptibility in obese humans.
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