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Altered oral and gut microbiota and its association with

SARS-CoV-2 viral load in COVID-19 patients during

hospitalization
Yongjian Wu1,2,3,4,5,8, Xiaomin Cheng 2,8, Guanmin Jiang1,3,6,8, Huishu Tang1,3, Siqi Ming1,3,5, Lantian Tang1,3, Jiahai Lu 2✉,

Cheng Guo 7✉, Hong Shan 3,4✉ and Xi Huang 1,3,4,5✉

The human oral and gut commensal microbes play vital roles in the development and maintenance of immune homeostasis, while

its association with susceptibility and severity of SARS-CoV-2 infection is barely understood. In this study, we investigated the

dynamics of the oral and intestinal flora before and after the clearance of SARS-CoV-2 in 53 COVID-19 patients, and then examined

their microbiome alterations in comparison to 76 healthy individuals. A total of 140 throat swab samples and 81 fecal samples from

these COVID-19 patients during hospitalization, and 44 throat swab samples and 32 fecal samples from sex and age-matched

healthy individuals were collected and then subjected to 16S rRNA sequencing and viral load inspection. We found that SARS-CoV-2

infection was associated with alterations of the microbiome community in patients as indicated by both alpha and beta diversity

indexes. Several bacterial taxa were identified related to SARS-CoV-2 infection, wherein elevated Granulicatella and Rothia

mucilaginosa were found in both oral and gut microbiome. The SARS-CoV-2 viral load in those samples was also calculated to

identify potential dynamics between COVID-19 and the microbiome. These findings provide a meaningful baseline for microbes in

the digestive tract of COVID-19 patients and will shed light on new dimensions for disease pathophysiology, potential microbial

biomarkers, and treatment strategies for COVID-19.
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INTRODUCTION

The ongoing COVID-19 pandemic caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) has jeopardized
global public health and safety. As of June 21, 2021, the COVID-19
pandemic has infected more than 179 million people, resulting in
over 3.8 million causalities globally. Transmission of SARS-CoV-2
has commonly occurred via breathing or direct contact with virus-
containing droplets and aerosols from infected people through
coughing and sneezing. When the SARS-CoV-2 particle reaches
the nasal cavity of the host, it enters the host epithelial cells
through the angiotensin-converting enzyme 2 (ACE2) receptor,
which is prominently presented on epithelial cells lining in the
respiratory and digestive tract systems1,2. Most infections lead to a
prompt innate immune response and the virus gets eradicated or
controlled quickly, manifesting none or mild symptoms. Whereas
in some patients, viruses located in the upper airway replicate
further toward the lower respiratory tract to activate enhanced
pro-inflammatory responses, therefore resulting in severe out-
comes including acute respiratory syndrome, organ malfunction-
ing, and even death3. Not limited to the respiratory tract, SARS-
CoV-2 is known to target different organ systems4. For instance,
around 55% of patients were observed with prolonged viral RNA
present in the feces, even weeks after the viral clearance in their
respiratory tract5. It has been reported that abnormal immune
response, comorbid conditions, and advanced age are risk factors

linked to COVID-19 severity. However, these factors are insufficient
to offer a satisfactory explanation of all patients’ severe disease
outcomes. As global mass vaccination and proven effective
therapy for COVID-19 remain unclear, explorative efforts towards
new perspectives of protection and therapeutic approaches for
COVID-19 are indispensable6,7.
The human microbiome is important for developing and

maintaining immune homeostasis and it is known that microbiota
imbalance or dysbiosis are highly associated with various diseases.
The intestinal tract and oral cavity, with the largest and second-
largest microbiota in the human body, play significant roles in the
pathogenesis of infectious disease. Previous studies have reported
that oral-lung microbes can influence the outcome of many
infectious diseases by regulating the host mucosal immunity8–10.
Intestinal flora can affect the occurrence and progression of viral
infection through the gut–lung axis11–13. Conversely, the indigen-
ous microbiome could be disturbed by a viral infection, leading to
alterations in susceptibility and disease severity through dysbiotic
community structure and function14. The unequivocal association
between influenza viral and bacterial co-infection and disease
severity has been proved in early studies15. Likewise, evidence has
suggested that SARS-CoV-2 infection could predispose patients to
bacterial co-infections and superinfections, resulting in increased
disease severity and mortality14. Further, the dysbiosis of
influenza-infected individuals progresses toward microbiota
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homeostasis, coinciding with viral clearance and recovery,
suggesting that the health status of microbial flora is likely a fine
indication of disease recovery16. Zuo and colleagues have also
suggested that fecal microbiomes from COVID-19 patients were
characterized by proliferation of opportunistic pathogens and
depletion of favorable commensals compared to healthy controls
with the shot-gun metagenomics approach17; however, this study
was limited by its size of subjects used. Moreover, validation of the
profiles at the genus level is currently suggested to be performed
through 16S rRNA gene microbial profiling to evaluate the
presence of undetected microbes in the marker gene-based
profiles18. Accumulated evidence for the oral–gut axis has
revealed its role in modulating the pathogenesis process in
numerous diseases19,20. It is compelling to look into the oral and
intestinal microbiome combined with SARS-CoV-2 infection and
the crosstalk among them, which may provide an improved
understanding of the initiation of viral infection and the path of
disease deterioration.

RESULTS

Overview of microbial composition in the study subjects

A total of 53 patients diagnosed with COVID-19 and 76 healthy
individuals were included in this study. As indicated in Fig. 1a,
serial throat swab samples and fecal specimens were collected

from COVID-19 patients during hospitalization, covering both the
positive viral RNA test period (P-VRTP) and the negative viral RNA
test period (N-VRTP). Depending on the sample availability, a total

of 140 throat swab samples, including 52 during the P-VRTP [PT
(+)] and 88 during the N-VRTP [PT(−)], and a total of 81 fecal
samples, including 50 during the P-VRTP [PF(+)] and 31 during the

N-VRTP [PF(−)] were collected from hospitalized patients (P:
patient). In addition, 44 throat swab samples (HT) and 32 fecal
samples (HF) from sex and age-matched healthy individuals (H:
healthy individual) were included in our study as controls. The
sample distribution, demographics, and relevant clinical informa-
tion about the subjects recruited in the study were summarized in
Supplementary Table 1.
To characterize the microbiotas in those aforementioned

samples, we sequenced the V3–V4 region of the bacterial 16S
rRNA gene. As expected, our data confirmed a distinct microbiota
composition between oral and gut samples21. The three most
abundant phyla Firmicutes, Proteobacteria, and Bacteroidetes
accounted for 79.3% of the community in the oral samples. The
two dominant phyla Firmicutes and Bacteroidetes accounted for
83.7% of the bacterial community in the gut samples (Fig. 1b). The
difference was further illustrated by the principal coordinates
analysis (PCoA) plot and Permutational multivariate analysis of
variance (PERMANOVA) with unweighted UniFrac distance calcu-
lated at the sequence feature level. The microbiota composition of
the oral and gut samples diverged from each other along the first
axis in which 31.87% of the total variance was explained,
indicating that the largest source of variation was the sample
types (Fig. 1c). Similarly, the PERMANOVA result indicated 30.80%
of the total variance was explained by the sample types (oral
samples vs. gut samples, PERMANOVA, R2= 0.308, p < 0.001).
More importantly, samples from patients and healthy individuals
seemed to possess strong dissimilarities for both oral (PERMA-
NOVA, R2= 0.175, p < 0.001) and gut microbiome communities
(PERMANOVA, R2= 0.196, p < 0.001), suggesting overwhelming
shifts of microbiome structure were gained after SARS-CoV-2
infection in both oral cavity and feces. Meanwhile, the microbial
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Fig. 1 The study design and variations of the oral and gut microbiota in COVID-19 patients. a Graphic representation of study design and
sample collection. PT(+), throat swab samples from COVID-19 patients during the positive viral RNA test period; PT(−), throat swab samples
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swab samples from the healthy controls; HF, fecal specimens from the healthy controls. c PCoA plot based on the unweighted UniFrac
distance depicting differences in the bacterial community among groups.

Y. Wu et al.

2

npj Biofilms and Microbiomes (2021) 61 Published in partnership with Nanyang Technological University

1
2
3
4
5
6
7
8
9
0
()
:,;



compositions of COVID-19 patients collected during the P-VRTP
and the N-VRTP presented no significant discrepancy in oral
samples (PERMANOVA, R2= 0.012, p= 0.080) or in gut samples
(PERMANOVA, R2= 0.016, p= 0.139). Due to their distinctive
characteristics, the oral and gut microbiome profiles and their
potential roles in SARS-CoV-2 infection were addressed in separate
sections followed.

Alterations of the oral microbiota in patients

Given the observation that the SARS-CoV-2 infection may impact
the structure of the microbiome (Fig. 1c), we first investigated the
effects of different disease severity conditions and treatment
therapies on the oral samples from patients. The diversity metrics
among oral microbiomes from the healthy controls (HT), patients
with the non-severe condition [PT(NS)], and patients with the
severe condition [PT(S)] during hospitalization were compared.
Alpha diversity of Faith’s phylogenetic index revealed that the oral
microbial diversity was decreased in COVID-19 patients compared
to the healthy controls (ANOVA, PT(NS) vs. HT, p= 0.016; PT(S) vs.
HT, p < 0.0001). Further, a significant deduction of diversity was
observed in the PT(S) group when comparing to the PT(NS) group
(ANOVA, p < 0.0001, Fig. 2a). Similarly, inter-individual beta
diversity unweighted UniFrac dissimilarity revealed that the
microbiomes of the PT(NS) group (PERMANOVA, R2= 0.238, p <
0.001) and the PT(S) group (PERMANOVA, R2= 0.233, p < 0.001)
clustered apart from that of the healthy controls. We also found a
significant dissimilarity between the PT(S) group and the PT(NS)

group (PERMANOVA, R2= 0.049, p < 0.001, Fig. 2b). The significant
differences were partially attributed to the different dispersions
between the PT(S) group and the PT(NS) group (PERMDISP, p=
0.002). In contrast, the difference in dispersion between the HT
group and the PT(NS) group was not significant (PERMDISP, p=
0.166). We also investigated the impact of clinical antibiotic usage.
The PCoA based on unweighted UniFrac dissimilarity demon-
strated that bacterial communities in the HT group, the patients
without antibiotic interference [PT(abx−)] group and the patients
with antibiotic interference [PT(abx+)] group were mutually
separated (PERMANOVA, PT(abx−) vs. HT, R2= 0.258, p= 0.001;
PT(abx+) vs. HT, R2= 0.204, p= 0.001; PT(abx−) vs. PT(abx+),
R2= 0.016, p= 0.016; Fig. 2c). To identify potential microbial
biomarkers associated with COVID-19 patients, we employed a
combined approach with LEfSe and MaAsLin2 to minimize the
influence of confounding factors. Seventeen significantly different
taxa were identified in the oral microbiome between the healthy
controls and COVID-19 patients (HT and PT, Fig. 2d and
Supplementary Table 2). Specifically, significant decreases of
Neisseria, Corynebacterium, Actinobacillus, Moryella, Aggregatibac-
ter, Treponema, and Pseudomonas at the genus level, as well as
P. intermedia and T. amylovorum were observed in the patients
comparing to the controls. In contrast, Veillonella, Campylobacter,
Granulicatella, Kingella, and Filifactor at the genus level, as well as
H. parainfluenzae, R. mucilaginosa, and N. subflava were enriched
in the oral microbial communities of COVID-19 patients compared
to those of the controls. A similar comparison was conducted
between the PT(NS) and the PT(S) groups to assess the impact of
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disease severity on bacteria (Supplementary Table 3). Bacterial
taxa including Treponema, Aggregatibacter, and P. intermedia were
identified further depleted in the PT(S) group, implying their
associations with disease severity. The comparison between the
controls and the PT(abx–) group was carried out to assess the
impact of infection on bacteria by excluding the antibiotics
interference (Supplementary Table 3). Lastly, the potential
functional consequence resulted from the drastic taxa composi-
tional alteration was evaluated. The global pattern from Procrustes
analysis displayed a good-fit correlation between the oral
microbial community composition and microbial function (Mantel,
rho = 0.403, p= 0.001, Supplementary Fig. 1a). The significant
difference in functional pathways of the oral microbial commu-
nities between COVID-19 patients and the controls was shown in
Fig. 2e. Notably, the top four depleted pathways in patients were
involved in the TCA cycle used by all aerobic organisms to
generate energy, indicating a disturbed microbial community.

Alterations of the gut microbiota in patients

Next, we explored whether dysbiosis occurred in the gut
microbiome. Faith’s phylogenetic diversity index showed that its
diversity was significantly lower in patients with the non-severe
condition [PF(NS)] (ANOVA, p < 0.0001) and patients with the
severe condition [PF(S)] (ANOVA, p < 0.0001) in comparisons to the
healthy controls (HF, Fig. 3a). The diversity of the PF(NS) group was
slightly higher than the PF(S) group (ANOVA, p= 0.73). Besides,
the PCoA plot with unweighted UniFrac distances revealed a

cluster separation in the fecal microbiota between PF(NS) and PF
(S) (PERMANOVA, R2= 0.067, p < 0.001), and between the patients
and the healthy controls (PERMANOVA, PF(NS) vs. HF, R2= 0.232,
p < 0.001; PF(S) vs. HF, R2= 0.267, p < 0.001, Fig. 3b). Unlike the
oral microbiome, the gut microbiota in the PF(NS) group seemed
more impacted after infection, as reflected by its greater statistical
dispersion than the HF group (PERMDISP, p= 0.002). Moreover,
the gut microbiota among patients with antibiotic interference [PF
(abx+)], patients without antibiotic interference [PF(abx−)], and
the HF group exhibited mutual clustering separation with
unweighted UniFrac distances based PCoA plot (PERMANOVA,
PF(abx−) vs. HF, R2= 0.262, p= 0.001; PF(abx+) vs. HF, R2= 0.230,
p= 0.001; PF(abx−) vs. PF(abx+), R2= 0.030, p= 0.002; Fig. 3c). In
terms of potential microbial biomarkers, we identified 17 bacterial
taxa again with confounding covariates adjusted. Concretely,
decreased taxa included Blautia, Coprococcus, and Collinsella at the
genus level, and B. caccae, B. coprophilus, B. obeum, and C. colinum
species; and increased taxa included Streptococcus, Weissella,
Enterococcus, Rothia, Lactobacillus, Actinomyces, and Granulicatella
at the genus level as well as C. citroniae, B. longum, and
R. mucilaginosa species (Fig. 3d and Supplementary Table 4).
More interestingly, two normal components of the respiratory
tract flora, Granulicatella and R. mucilaginosa, were significantly
increased in the patients for both oral and gut samples, and
R. mucilaginosa seemed further associated with the disease
severity in the fecal samples (Supplementary Fig. 2). Additional
analysis focusing on the bacteria changes associated with disease
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severity and antibiotics usage in fecal samples were described in
Supplementary Table 5. Notably, no difference in the bacterial taxa
was identified between the PF(NS) group and the PF(S) group.
Similar to the oral microbiome, the global pattern from Procrustes
analysis displayed a good-fit correlation between the microbial
composition and predicted function profile in the gut microbiota
community (Mantel, rho = 0.268, p= 0.001, Supplementary
Fig. 1b). Also, the major distinct functional pathways associated
with SARS-CoV-2 infection were shown in Fig. 3e, including two
depleted pyrimidine deoxyribonucleotides biosynthesis pathways
involved in viral suppression through innate immunity in
patients22.

Relationship between SARS-CoV-2 virus and bacterial species

The viral loads in the throat swab and fecal samples spanning the
full collection period were compared. The median time span of the
throat swabs collection was 10 (IQR: 6–12) days for P-VRTP and 10
(IQR: 3–18) days for N-VRTP. The median time span of the fecal
samples collection was 8 (IQR: 3.75–14) days for P-VRTP and 8 (IQR:
2–12) days for N-VRTP. The viral copy numbers derived from the E
gene showed a relatively higher abundance over the numbers
derived from the N gene (Fig. 4a). As E-gene and N-gene copy
numbers showed a strong correlation therefore both can
accurately reflect the abundance of viral copy (throat swab
samples: Spearman rho = 0.872, p < 0.001; fecal samples: Spear-
man rho = 0.923, p < 0.001). The overall viral loads in throat swab
samples seemed equally abundant with fecal specimens collected
from patients during the P-VRTP, which is consistent with the
previous studies23. Based on unweighted UniFrac distance, it was
found that the differences in beta diversity between the HT and PT
(+) groups (PERMANOVA, R2= 0.234, p= 0.001), the HT and PT(−)
groups (PERMANOVA, R2= 0.218, p= 0.001), were significant from
each other. Likewise, unweighted UniFrac dissimilarity revealed
that the microbiomes of the PF(+) group (PERMANOVA, R2=
0.233, p= 0.001) and the PF(−) group (PERMANOVA, R2= 0.250,
p= 0.001) were significantly different from that of the healthy
controls. During the N-VRTP, we observed a microbial community
recovery towards the healthy controls, that is, unweighted UniFrac
distance between PT(−) vs. HT was lower than that between PT(+)
vs. HT (Fig. 4b). Compared to the oral microbiome, this recovery
trend in the microbiome in the gut was less evident, which may be
attributed to a relatively shorter time span of sample collection
and microbiome robustness in the fecal samples. Additionally, we
investigated whether the SARS-CoV-2 viral load was associated
with any oral and gut bacterial species. In the oral microbiota,
Pelomonas was identified as positively correlated with the viral
load of SARS-CoV-2 (Fig. 4c). While in the gut microbiota, P. copri
and E. dolichum were identified positively correlated with the viral
load of SARS-CoV-2, and S. anginosus, Dialister, Alistipes, Rumino-
coccus, C. citroniae, Bifidobacterium, Haemophilus, and H. parain-
fluenzae were identified negatively correlated with the viral load of
SARS-CoV-2.

DISCUSSION

The oral and gut microbiome offers a range of valuable properties
to the host. Several most significant contributions of these
microbes are to boost metabolism, improve digestive health and
strengthen resistance against pathogens. Furthermore, the com-
plex crosstalk between commensal microbes and different body
systems is essential for the functioning of the immune system24.
Our data revealed profound alterations in both oral and gut

microbiomes, which were reflected in the dramatic changes in
community structure, potential bacterial marker species, and
predicted functional profile. The decline in commensal bacterial
diversity has been considered as a key dysbacteriosis indicator in
several diseases25. Coherently, the oral and gut microbiome of

COVID-19 patients in our study exhibited decreased diversities
compared to the healthy controls. This trend of microbial
imbalance in patients with severe conditions compared to non-
severe patients was also observed in both sample types, though
the alpha diversity was not significant (ANOVA, p= 0.73) in the
fecal samples. Moreover, the microbiomes from the severe and
the non-severe patients were partitioned into two clusters in both
microbial populations. Overall, diversity results of impaired
microbiota suggested the strong association between the
microbiome community complexity and the disease severity in
COVID-19 patients. Though experimental validation is needed, our
result has highlighted the possibility of personalized microbiota to
affect the disease outcome of COVID-19 patients26.
Numerous studies have reported high occurrences of bacterial

co-infection in hospitalized COVID-19 patients, and the odds of
the bacterial infection get even higher for ICU patients27,28.
Among the list of eight bacterial taxa with enlarged relative
abundance in patients in Fig. 2d, Veillonella, Campylobacter,
R. mucilaginosa, Granulicatella, Kingella, and Filifactor belongs to
a group of periodontitis-correlated taxa, adding evidence to
support the previous work denotative of a close relationship
between periodontitis and SARS-CoV-2 infection29. Periodontal-
associated cytokines may proliferate contacts of bacteria between
the lungs and the mouth via driving the alteration of the
respiratory epithelium and thereby promote respiratory infection
in COVID-19 patients14. H. parainfluenzae and Kingella, two
enriched taxa in the oral cavity of COVID-19 patients, are
opportunistic pathogens well-known for respiratory tract infec-
tions, infective endocarditis, and meningitis30,31. The abrupt loss of
Neisseria in patients, which is the highly abundant genus in the
normal oral cavity, could raise serious damage to the oral
microbiota32,33. In addition, all increased bacteria were previously
classified as bacteremia-associated bacteria, implying a potential
association between oral dysbiosis and secondary bacterial infection
in COVID-19 patients34. Typically, mechanical ventilation supports
may predispose the COVID-19 patients with severe symptoms of
dyspnea to pulmonary bacterial co-infection, as the penetration of
the device provides an entrance for those opportunistic infectious
agents to access the lower respiratory tract from the oral cavity.
Given the non-ignorable association between the oral microbiome
with bacterial co-infections suggested by our and others’ data35,36,
correct and frequent oral health care measurements should be
recommended by physicians to protect COVID-19 patients from
secondary infections and improve survival, especially for the ones
with the severe disease condition.
Elevated levels of Streptococcus, Rothia, and Actinomyces were

identified in COVID-19 patients’ feces, which is consistent with
previous findings37. The host immunity symbionts beneficial
bacterial species B. obeum, whose parent genus Blautia was listed
as the top decreased taxon in COVID-19 patients’ feces in our data,
was identified to be depleted in another study17. Notably, two
normal components of the respiratory tract flora, Granulicatella,
and R. mucilaginosa, were identified enriched in patients’ feces,
which is likely a reflection of the migration of extra-intestinal
microbes into the gut or the flourishment of potentially
pathogenic bacteria. Typically, the fecal enrichment of specific
oral taxa, which was suggested to be linked with the increased
oral–fecal microbial transmission, has frequently been regarded as
a hallmark of disease20. As SARS-CoV-2 viral RNA was detected in
stools, the route of viral transmission from the respiratory tract to
the intestinal tract can be hinted by the path of the oral flora
translocation and colonization38. Moreover, R. mucilaginosa
seemed further associated with the disease severity in the fecal
samples in our study. As some severe patients with COVID-19
linked with cardiovascular disease comorbidities, this finding
supports previous work wherein patients with cardiovascular
disease comorbidities tended to have a higher prevalence of the
Rothia ASV associated with SARS-CoV-239,40. In addition, increased
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expression of ACE2 receptor was observed in B. longum treated
mice; hence changes of B. longum might impact the individual’s
susceptibility to SARS-CoV-2 through modulating ACE2 expres-
sion41. It is worth noticing that a decreased relative abundance of
B. caccae and B. coprophilus was observed in the gut flora of
COVID-19 patients. A recent study by Martino et al.42, has
demonstrated that Bacteroides may regulate viral adhesion via
modifying heparan sulfate (HS), and loss of HS-modifying
Bacteroides strains could predispose individuals to SARS-CoV-2
infection. Concordance of these findings with ours provides
evidence for a potential relationship between B. caccae and B.
coprophilus and susceptibility to SARS-CoV-2 infection.
The Mantel and Procrustes analysis indicated the predicted

function profiles aligned well with the bacterial taxonomy profile
in both oral and fecal samples as expected. Compared to the gut
microbiome, our analysis suggested a stronger impairment in the
oral microbiome after SARS-CoV-2 infection, wherein a significant
reduction of Neisseria, an essential oral microbial genus, was
found, along with several fatal metabolic pathways involving the
TCA cycle were suppressed. The result echoes a previous study
that the gut microbial community possesses higher taxa-function
robustness over oral community43, since the bacterial community
in the gut generally has a higher gene and functional redundancy
in comparison to communities inhabiting other body sites.
Microbiome dysbiosis persists during the COVID-19 disease

course, even after the viral clearance. Moreover, previous studies
have revealed that some recovered patients were re-detectable
positive for SARS-CoV-2 RNA after discharge44. The cause of re-
detectable positive remains unclear. One possibility is that a
prolonged detrimental effect on the microbiomes exerted by
SARS-CoV-2 infection persists even after discharge, which might
render convalescent patients susceptible to the residual viremia or
reinfection via a more long-lasting dysfunction of the immune
system. The microbiome recovery at the taxonomy level seemed
to be slowly healed in the oral samples as the PT(−) group shifts
towards the healthy controls group based on the dissimilarity
distance. In contrast, in the gut samples, the PF(−) group shifts
even away from the healthy controls (Fig. 4b). The inconsistency
may be due to the period span of sample collection or
microbiome characteristics within the oral and gut samples. In a
previous metagenomics study, Zuo and colleagues suggested four
negatively associated Bacteroides species could be involved in the
downregulation of ACE2 expression, and positively regulated E.
bacterium 2_2_44A may promote augmenting SARS-CoV-2 infec-
tion in the gut17. However, a similar analysis method in our study
did not identify the same agents to be associated with the viral
load of SARS-CoV-2 (Fig. 4c). Thus, we urge validation of the results
that should be taken before recognizing the results.
It is well accepted that unnecessary use of antibiotics should be

avoided in the episode of acute respiratory infections as
antibiotics have no role in treatment. In reality, 67.9% of patients
in our study were treated with antibiotics to prevent potential
secondary bacterial co-infections at the early phase of the
pandemic. Besides, antibiotics prescribing was elevated in patients
with severe conditions as compared to non-severe patients. In a
meta-analysis study, Langford has reported that 74.6% of COVID-
19 patients received antimicrobial treatment28. Antibiotics treat-
ment can not only eliminate pathogens but commensal micro-
organisms indiscriminately, which may lead to microbiota
dysbiosis and antimicrobial resistance. To circumvent and mini-
mize the effect of antibiotics on the microbiome analysis, we
employed a method to count antibiotics treatment as an adjusting
variable in the model or to stratify the data for only patients
without antibiotics treatment. In addition, unsupervised dimen-
sionality reduction results demonstrated that COVID-19 patients
with and without antibiotics treatment shared similar bacterial
community structures with a declined diversity in both oral and
gut microbiome, shifting away from healthy individuals. It seems

that the impacts derived from infection are overwhelming over
that of the antibiotic treatment that may apply to the microbiome.
The taxa differential analysis also supported this finding, that the
differential taxa between the controls and the antibiotics-free
patients were largely overlapped with those identified between
the controls and all patients (Supplementary Tables 3 and 5).
Collectively, we reported the alterations in both oral and gut

microbiomes of SARS-CoV-2 infected patients during hospitaliza-
tion and made comprehensive analyses to evaluate their potential
consequences and implication. The associations between micro-
bial species with disease severity and viral load in patients have
suggested the potential of microbiome-based intervention in the
prevention and treatment of COVID-19. We believe that the data
provides new knowledge with innovative perspectives for tackling
and managing the ongoing COVID-19 pandemic.

METHODS

Study subject and sample collection

A total of 53 COVID-19 patients and 76 healthy individuals were included in
this study. Patients with suspected SARS-CoV-2 infection were confirmed
after two sequential positive respiratory tract sample real-time RT-PCR
results. Patients were kept hospitalized and under strict observation until
the virus was completely eliminated in both respirational and intestinal
territories by real-time RT-PCR results. Depending on the sample
availability, serial samples were collected from a patient throughout his/
her hospitalization period. More specifically, throat swab and fecal samples
were collected in both the positive viral RNA test period (P-VRTP, defined
as the period of positive nucleic acid tests until the first day of continuous
negative tests) and the negative viral RNA test period (N-VRTP, defined as
the interval between the first day of negative nucleic acid test until the
hospital discharge) for both sample types. Fecal samples were collected
from patients who were ever detected with viral RNA in their feces. Only
one sample, either throat swab or fecal specimen, was collected from
healthy individuals during their physical examination. None of the COVID-
19 patients was received antibiotics nor probiotics within 8 weeks before
the infection, and none of the healthy individuals was either before this
study recruitment. Patients were categorized into two groups based on
disease severity: the non-severe group (mild/moderate) and the severe
group (severe/critical) following the instruction of the New Coronavirus
Pneumonia Prevention and Control Program (7th edition) published by the
National Health Commission of China. The demographic information,
underlying diseases, clinical indexes, and treatments were summarized
from official patients’ medical records. This study was reviewed and
approved by the Medical Ethical Committee of the Fifth Affiliated Hospital
of Sun Yat-Sen University (approval # K162-1). Written informed consent
was obtained from each enrolled subject.

Sample library preparation and sequencing

Samples were inactivated at 56 °C for 30min before DNA extraction.
Extraction of nucleic acids was performed with the CFDA approved nucleic
acid extraction kits (QIAamp Viral RNA Mini Kit, Catalog #: 52904, QIAGEN).
The concentration and the purity were measured using the NanoDrop One
(ThermoFisher Scientific, MA, USA). Sequencing libraries were generated
using NEBNext® UltraTM II DNA Library Prep Kit for Illumina (New England
Biolabs, MA, USA) following manufacturer’s recommendations, and index
codes were added. The universal primers 338F (5′-ACTCCTACGGGAGG-
CAGCA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) were used for
amplification of the V3–V4 region of the bacterial 16S rRNA gene. DNA
libraries were generated from PCR amplicons targeting the hypervariable
regions V3–V4 of the bacterial 16S rRNA gene. After quality assessment
with the Qubit 2.0 Fluorometer (ThermoFisher Scientific, MA, USA), the
library was then sequenced on an Illumina NovaSeq 6000 platform, and a
minimum of 50,000 of 250 bp paired-end reads was generated for the
samples.

Bioinformatics analysis

Raw FASTQ files were demultiplexed using the QIIME 2 demux plugin
based on their unique barcodes45. Demultiplexed sequences from each
sample were stitched, quality filtered, trimmed, de-noised, and then the
chimeric sequences were identified and removed using the QIIME 2 dada2
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plugin to obtain the feature table46. The QIIME 2 feature-classifier plugin
was then used to align feature sequences to a pre-trained GREENGENES
13_8 99% database to generate the taxonomy table47. The data was
rarefied prior to alpha and beta diversity analysis using a depth of 13,111
reads. Any contaminating mitochondrial and chloroplast sequences were
filtered using the QIIME 2 feature-table plugin. Diversity metrics were
calculated and plotted using the core-diversity plugin and the emperor
plugin within QIIME 248. The beta diversity significance among groups was
examined with PERMANOVA and PERMDISP tests using QIIME 2 plugins
and Vegan package in R (version 4.0.2). The differences in the relative
abundance of taxa between the patients and healthy control groups were
identified in both sample types separately using the linear discriminant
analysis effect size (LEfSe)49. Given the possible confounding impact, the
output from LEfSe was further validated with Multivariate Association with
Linear Models (MaAsLin2) by adjusting confounding factors (age, sex,
antibiotic usage, PCR detection result, and patient ID), so only the bacteria
taxa agreed by both methods were presented50. PICRUSt2 was used to
predict the microbial metabolic pathways to assess the potential functional
implication51. QIIME 2 Procrustes plugin was used to examine the fitness of
the functional properties and the bacterial composition in the microbiome
community with the Procrustes plot, and the correlation between
functional properties (Bray Curtis distance) and the bacterial composition
(unweighted UniFrac distance) in the microbiome community was
examined by two-sided Mantel test.

Detection of SARS-CoV-2 viral load

SARS-CoV-2 viral loads in the throat and fecal swabs were measured using a
real-time RT-PCR assay. Viral RNA from throat swabs and fecal samples were
extracted using QIAamp Viral RNA Mini Kit (QIAamp Viral RNA Mini Kit,
Catalog #: 52904, QIAGEN). Up to 0.1 g of stool or throat swab was
suspended in a 2mL viral transport medium (in 1:10 dilution), followed by
centrifugation at 3000 × g for 30min. The aliquot of the filtrate was used as
the starting material. The real-time RT-PCR was carried out with the Novel
Coronavirus (2019-nCoV) real-time RT-PCR kit from LifeRiver Ltd. (Catalog #:
RR-0479-02). Nucleocapsid gene (N), membrane gene (E), and RNA
dependent RNA polymerase gene (RdRp) were the three targeted genes
simultaneously amplified and tested. According to the manufacturer’s
instructions, a combined result of the three SARS-CoV-2 viral gene targets
was used to yield a positive result. Samples were considered negative if the
cycle threshold values exceeded 43 cycles. Plasmids containing the full N
gene and E gene were obtained to assess SARS-CoV-2 viral copy in the
samples (PCDNA6B-SARS-CoV-2-N and PCDNA6B-SARS-CoV-2-E, gifts from
Peihui Wang, Cheeloo College of Medicine, Shandong University). Serial 10-
fold dilutions of known copies of these plasmids were prepared separately
for generating the standard curve. The Ct values of real-time RT-PCR from
patient samples were converted into viral RNA copies based on a
standard curve.

Statistical analysis

Categorical variables were presented as numbers and percentages (n/N, %)
whereas continuous variables were reported as median and interquartile
ranges (IQR). According to the distribution of data sets, the one-way
analysis of variance (ANOVA) followed by Tukey’s multiple comparisons
test or the Kruskal–Wallis test followed by Dunn’s multiple comparisons
test were performed using Prism 8.3.0 (GraphPad Software). Given the
nature of compositional data for the 16S microbial relative abundance
information, we implemented CCLasso to define the correlation between
the longitudinal viral load and the timepoint-matched relative abundances
of different taxa in the throat swab and fecal samples separately52. The
Spearman rank test was used to calculate the correlation between the
viral load represented by the abundances of the N gene and the E gene, as
their values did not follow the normal distribution according to the
Kolmogorov–Smirnov test. All statistical tests were two-sided, and a
p-value, of <0.05 was considered significant. Statistical analysis was
performed using SPSS version 25.0 (SPSS Inc). Additional custom R scripts
were used to making the plots.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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