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Many previous studies have demonstrated that the
blindness patients have has functional and anatomical
abnormalities in the visual and other vision-related cortex.
However, changes in the brain function in late monocular
blindness (MB) at rest are largely unknown. In this study, we
investigated the underlying regional homogeneity (ReHo) of
brain-activity abnormalities in patients with late MB and
their relationship with clinical features. A total of 32 patients
with MB (25 male and seven female) and 32 healthy
controls (HCs) (25 male and seven female) closely matched
in age, sex, and education underwent resting-state
functional MRI scans. The ReHo method was used to
assess local features of spontaneous brain activities.
Patients with MB were distinguishable from HCs using the
receiver operating characteristic curve. The relationship
between the mean ReHo in brain regions and the behavioral
performance was calculated using correlation analysis.
Compared with HCs, patients with MB showed significantly
decreased ReHo values in the right rectal gyrus, right
cuneus, right anterior cingulate, and right lateral occipital
cortex and increased ReHo values in the right inferior
temporal gyrus, right frontal middle orbital, left posterior

cingulate/precuneus, and left middle frontal gyrus.
However, there was no significant relationship between the
different mean ReHo values in the brain regions and the
clinical features. Late MB involves abnormalities of the
visual cortex and other vision-related brain regions, which
may reflect brain dysfunction in these regions. NeuroReport
28:1085–1091 Copyright © 2017 The Author(s). Published
by Wolters Kluwer Health, Inc.
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Introduction
Blindness, known as the loss of response to external light

stimulus, is one of the most serious eye conditions. A

previous study demonstrated that there were 32.4 million

people suffering from blindness in 2010 globally [1]. The

prevalence of blindness was 0.33% in urban Southern

China [2]. Blindness can be divided into early blindness

and late blindness roughly. It can be caused by a variety

of factors such as ocular trauma [3], cataract [4], and

glaucoma [5]. At present, drugs and surgery are effective

for reversible blindness caused by cataract [6] and optic

neuritis [7]. However, there is no effective treatment for

irreversible blindness. Blindness greatly affects the daily

life in the patients [8]. Blindness has also become a ser-

ious social problem. Around $5.5 billion/year is spent for

the medical care for blind patients in the USA [9].

Functional MRI (fMRI) has been successfully used to eval-

uate the changes in brain activities in blindness. In the early

blindness, the superior colliculus (visual subcortical) was

reorganized with the auditory system [10]. Meanwhile, the

blindness showed enhanced processing of auditory motion

[11]. In addition, it has been shown that the occipital cortex is

thicker in early blindness patients [12], whereas the interac-

tions between the visual and other sensory cortices are weaker

[13]. Late blindness also leads to the altered cerebral function.

Gray matter volume in the visual areas is markedly decreased

in late blindness [14]. Moreover, compared with late blind-

ness, early blindness has increased functional connectivity in

the ventral visual stream [15]. Bola et al. [16] demonstrated

that the blindness showed the impairment of synchronization

in brain networks and more specifically in temporal patterns

[17]. In our previous study, we demonstrated that the late

monocular blindness (MB) showed the lower brain amplitude

of low-frequency fluctuation in the left cerebellum anterior

lobe, right parahippocampal gyrus, right cuneus, and left

precentral gyrus [18]. Meanwhile, another research reported

that the macaque monkeys with MB showed decreased

fractional anisotropy and increased mean diffusivity in the

disease side optic tracts compared with the normal optic tracts
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[19]. However, synchronous neural activities in MB are less

studied.

The regional homogeneity (ReHo) method, a resting-state

fMRI measurement method, is thought to be a reliable and

sensitive measurement, which can be used to evaluate the

coherence of the blood oxygen level-dependent signal

among neighboring voxels of the whole brain at rest.

Kendall’s coefficient of concordance is used to calculate the

similarity of the time series of the voxel with those of its

nearest neighbors. The major advantage of ReHo is the

ability to detect spontaneous hemodynamic responses of

resting-state fMRI [20,21]. In our previous studies, the

ReHo method has been successfully used to assess the

neurological conditions in certain eye diseases such as optic

neuritis [22] and comitant strabismus [23].

Here, we hypothesized that the ReHo values of resting-

state brain activity would be different between the MB

and the healthy control (HC) groups, which might

underlie the mechanism related to the dysfunction of the

visual cortex. The aim of our study was to investigate

brain synchronous neural activity changes in patients

with late MB and investigate its relationship with the

behavioral performances.

Patients and methods
Patients
A total of 32 patients with MB (25 male and seven female,

all with right eye blindness) were recruited from the

Ophthalmology Department of the First Affiliated Hospital

of Nanchang University Hospital. The diagnostic criteria of

MB were as follows: (a) late stage of MB (in 18 patients it

was caused by ocular trauma and in 14 patients it was due to

keratitis); (b) normal contralateral eye without any ocular

diseases (cataracts, glaucoma, optic neuritis, and retinal

degeneration). The exclusion criteria were as follows:

(i) congenital blindness; (ii) impaired contralateral eye vision;

(iii) blindness caused by eye diseases (cataracts, glaucoma,

optic neuritis, macular degeneration, and ocular ischemic

diseases); (iv) a history of surgery in both eyes; (v) long-term

medical treatment of blindness; (vi) psychiatric disorders

(depression, bipolar disorder, and sleep disorder), and

cerebral infarction diseases (cerebral hemorrhage, cerebral

infarction, and cerebral vascular malformations).

Thirty-two (25 male and seven female) HCs with age, sex,

and education status matched to participants in the MB

group were also recruited for this study. All HCs met the

following criteria: (i) no abnormalities in the brain par-

enchyma on cranial MRI; (ii) no ocular disease with

uncorrected or corrected visual acuity (VA) more than 0.8;

(iii) no psychiatric disorders; and (iv) be able to be scanned

with MRI (e.g. no cardiac pacemaker or implanted metal

devices). All research methods followed the Declaration of

Helsinki and were approved by the principles of medical

ethics. All volunteers participated voluntarily and were

informed of the purposes, methods, and potential risks

before signing an informed consent form.

MRI parameters
MRI scanning was performed on a 3 TMR scanner (Trio;

Siemens, Munich, Germany). The functional data were

obtained with spoiled gradient-recalled echo sequence

with the following parameters: repetition time= 1900 ms,

echo time= 2.26 ms, thickness= 1.0 mm, gap= 0.5 mm,

acquisition matrix= 256× 256, field of view= 250× 250

mm, and flip angle= 9°; 176 structural images were

obtained. Finally, 240 functional images (repetition

time= 2000 ms, echo time= 30ms, thickness= 4.0 mm,

gap= 1.2 mm, acquisition matrix= 64× 64, flip angle=
90°, field of view= 220× 220 mm, and 30 axial slices with

gradient-recalled echo-planar imaging pulse sequence)

covering the whole brain were obtained.

Functional MRI data analysis
The 240 functional images were analyzed as described

previously [22]. Briefly, the data were filtered using

MRIcro (Nottingham University, Nottingham, UK) and

preprocessed using SPM8 (The MathWorks Inc., Natick,

Massachusetts, USA) and DPARSFA (Institute of

Psychology, CAS, Beijing, People’s Republic of China)

software. On the basis of Kendall’s coefficient of con-

cordance, ReHo computation was performed with the

REST software (State Key Laboratory of Cognitive

Neuroscience and Learning, Beijing, China), as pre-

viously described [22].

Statistical analysis
For fMRI data, two-sample t-test was performed to

examine the voxel-wise difference between the MB

and HC groups using the REST toolbox; State Key

Laboratory of Cognitive Neuroscience and Learning,

Beijing Normal University, Beijing, China (The statis-

tical threshold was set at the voxel level with P< 0.05

for multiple comparisons using Gaussian random field

theory voxels with P< 0.01 and cluster size> 40 voxels,

AlphaSim corrected.). These voxels were regarded as

the regions of interest showing significant difference

between the two groups.

Table 1 Demographics and clinical measurements

MB HC Cohen’s d Gates’ δ

Male/female 25/7 25/7 NA NA
Age (years) 45.63 ±13.01 45.28 ±12.50 0.027 0.026
Weight (kg) 58.56 ±7.23 57.81 ±6.70 0.108 0.104
Handedness 32R 32R NA NA
Duration of MB
(years)

22.66 ±7.68 NA NA NA

Best-corrected
VA-right

0.46 ±0.55 1.17 ±0.26 1.650 1.290

Best-corrected
VA-left

1.11 ±0.50 1.14 ±0.26 0.075 0.06

Effect size measures comparing two groups.
HC, healthy control; MB, monocular blindness; NA, not applicable; VA, visual
acuity.
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Fig. 1

Spontaneous brain activity in the monocular blindness and healthy control groups. Significant activity differences were observed in the right rectal
gyrus, right cuneus, right anterior cingulate, right lateral occipital cortex, right inferior temporal gyrus, right frontal middle orbital, left posterior
cingulate/precuneus, and left middle frontal gyrus. Black denotes higher regional homogeneity values. [P<0.01 for multiple comparisons using
Gaussian random field theory (z>2.3, P<0.01, cluster>40 voxels, AlphaSim corrected)].
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For behavioral performances, effect size measures were

used for continuous data. Cohen’s d and Gates’ δ were

calculated corrected for multiple comparisons.

SPSS, version 20.0 (IBM Corporation, Armonk, New York,

USA) statistical software was used for all statistical analyses.

Brain–behavior correlation analysis
The relationship between the mean ReHo value and

their clinical features was calculated using the correlation

analysis (P< 0.05 was considered statistically significant).

Clinical data analysis
The cumulative clinical measurements, including the

duration of the onset of MB and best-corrected VA were

recorded and analyzed in the study with independent

sample t-test (P< 0.05 as significantly different).

Results
Demographics and visual measurements
There were low Cohen’s d in weight (0.108), age (0.108),

and best-corrected VA-left (P= 0.719) between the two

groups. There was high Cohen’s d in best-corrected

VA-right (0.075) between the two groups (Table 1).

Regional homogeneity differences
Compared with HCs, MB patients showed lower ReHo

values in the right rectal gyrus, right cuneus, right ante-

rior cingulate, and right lateral occipital cortex [Fig. 1

(dark grey) and Table 2]. In contrast, higher ReHo values

in the MB group were observed in the right inferior

temporal gyrus (ITG), right frontal middle orbital, left

posterior cingulate/precuneus, and left middle frontal

gyrus [Fig. 1 (light grey) and Table 2]. The mean values

of altered ReHo between the MB and HC groups are

shown in Fig. 2. In the MB group, there was no sig-

nificant correlation between the mean ReHo values of

the different brain areas and the clinical manifestations

(P> 0.05).

Receiver operating characteristic curve
We hypothesized that the ReHo differences between the

MB and HC groups might be useful diagnostic markers.

The mean ReHo values of the different brain regions

were analyzed using the receiver operating characteristic

(ROC) curves. The areas under the ROC curve were as

follows: right rectal gyrus, 0.771; right cuneus, 0.715; right

anterior cingulate, 0.828; and right lateral occipital cortex

(0.756) (MBs<HCs) (Fig. 3a); the areas under the ROC

curve for ReHo values were as follows: right ITG, 0.778;

right frontal middle orbita, 0.795; left posterior cingulate/

Table 2 Brain areas with significantly different regional homogeneity values between groups

MNI coordinates

Condition Left/right Brain regions BA X Y Z Cluster size t-value d.f. P-value*

MBs<HCs
1 Right Rectal gyrus 11 9 24 −21 78 −3.555 48.542 0.001
2 Right Cuneus 18 3 −84 18 65 −3.289 61.752 0.001
3 Right Anterior cingulate 24/32 6 30 21 115 −4.395 58.900 <0.001
4 Right Lateral occipital cortex 19 12 −84 45 61 −4.082 60.830 <0.001

MBs>HCs
1 Right Inferior temporal gyrus 20 63 −33 −21 41 3.505 60.165 <0.001
2 Right Frontal middle orbital 11/47 39 39 −15 55 3.422 58.404 <0.001
3 Left Posterior cingulate, precuneus 23 0 −42 30 135 4.288 57.574 <0.001
4 Left Middle frontal gyrus 44 −48 27 36 52 3.493 61.064 <0.001

The statistical threshold was set at the voxel level with P<0.05 for multiple comparisons using Gaussian random field theory (z>2.3, P<0.01, cluster>40 voxels,
AlphaSim corrected).
*P < 0.05, significant.
BA, Brodmann area; HC, healthy control; MB, monocular blindness; MNI, Montreal Neurological Institute.

Fig. 2

The mean values of altered ReHo values between the MB and HC
groups. HC, healthy control; MB, monocular blindness; ReHo, regional
homogeneity.
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precuneus, 0.793; and left middle frontal gyrus, 0.782

(MBs>HCs) (Fig. 3b).

Discussion
In our study, compared with HCs, patients with MB

showed significantly decreased ReHo values in the right

rectal gyrus, right cuneus, right anterior cingulated, and

right lateral occipital cortex, and increased ReHo values

in the right ITG, right frontal middle orbital, left pos-

terior cingulate/precuneus, and left middle frontal gyrus.

Analysis of the decreased regional homogeneity values
in monocular blindness
The cuneus is located in the occipital lobe, playing an

important role in visual processing [24]. In addition, the

cuneus has been shown to be involved in the visual

imagery tasks [25]. The dysfunction of the cuneus has

been suggested in many diseases such as trigeminal

neuralgia [26] and panic disorder [27]. A previous study

demonstrated that the blindness showed decreased

regional gray matter in the cuneus [28]. Consistent with

that, in our study, we also found significantly decreased

ReHo values in the right cuneus of the MB group. We

speculated that the MB might be related to disrupted

synchronous neural activity in the right cuneus.

The anterior cingulated cortex (ACC) located in the

medial surface of the frontal lobes is a part of the limbic

system. The ACC is involved in cognition [29] and

emotion [30]. Moreover, the ACC is responsible for error

detection and behavior monitoring [31]. Attention-defi-

cit/hyperactivity disorder patients exhibit ACC functional

deficits [32]. Meanwhile, a previous study suggests that

the right dorsal ACC plays an important role in the visual

function [33]. Abnormality of the ACC has been asso-

ciated with many diseases such as depression [34], schi-

zophrenia [35], and autism [36]. In our study, we

demonstrated that the MB group showed significantly

decreased ReHo values in the right ACC, indicating that

the synchronous neural activity was also disrupted in the

right ACC in MB patients.

The occipital lobe is the anatomical region of the visual

cortex, which is critical for visual processing. The occi-

pital lobe contains the primary visual cortex (V1), visual

area V2, visual area V3, visual area V4, and visual area V5

[37]. The V1 receives information from its ipsilateral

lateral geniculate. The primate visual system can be

divided into a ventral stream and a dorsal stream. Liu

et al. [38] showed decreased functional connectivity

within the occipital lobe. Another research reported that

early blindness patients had significantly decreased gray

Fig. 3

ROC curve analysis of the mean regional homogeneity values for altered brain regions. The AUCs were 0.771 (P<0.001; 95% CI: 0.657–0.886) for
the RRG, 0.715 (P=0.003; 95% CI: 0.589–0.840) for the RC, 0.828 (P<0.001; 95% CI: 0.729–0.927) for the RAC, and 0.756 (P<0.001; 95%
CI: 0.639–0.873) for the RLOC (MBs<HCs). (a) The AUCs were 0.778 (P<0.001; 95% CI: 0.667-0.889) for the RITG, 0.795 (P<0.001; 95% CI:
0.687–0.903) for the RFMO, 0.793 (P<0.001; 95% CI: 0.685–0.901) for the LPC/P, and 0.782 (P<0.001; 95% CI: 0.668–0.897) for the LMFG
(MBs>HCs) (b). AUC, area under the curve; CI, confidence interval; HC, healthy control; LMFG, left middle frontal gyrus; LPC/P, left posterior
cingulate/precuneus; MB, monocular blindness; RAC, right anterior cingulate; RC, right cuneus; RFMO, right frontal middle orbital; RITG, right inferior
temporal gyrus; RLOC, right lateral occipital cortex; ROC, receiver operating characteristic; RRG, right rectal gyrus.
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matter volume in the early visual cortex [39]. Meanwhile,

blindness also correlates with reduced fractional aniso-

tropy in the primary visual cortex using the diffusion

tensor imaging method [40]. In support of these findings,

we also found that the MB group showed significantly

decreased ReHo values in the right lateral occipital cor-

tex. We speculated that MBs might lead to the dys-

function of the synchronous neural activity in the right

lateral occipital cortex.

Analysis of the increased regional homogeneity values
in monocular blindness
The ITG is located in contact with the inferior occipital

gyrus below the middle temporal gyrus. The ITG is

involved in the visual memory [41]. In addition, the ITG

plays an important role in the classification of visual

shape [42]. Abnormalities of the ITG are related to many

diseases such as schizophrenia [43] and Alzheimer’s dis-

ease [44]. In our study, we found that MB showed sig-

nificantly increased ReHo values in the right ITG, which

indicates the excessive activation of the right ITG in MB.

Meanwhile, the area under the ROC curve of the RITG

was 0.778. We speculated that high activities of the right

ITG might reflect the compensation of the monocular

vision loss in MB patients.

The frontal orbital is a part of the frontal cortex, which is

below the brain areas BA 47. The BA 47 is involved in

language and grammatical processing [45,46]. Moreover,

the BA 47 is also suggested to control the perception of

musical structure [47]. In our study, we found that MB

showed significantly increased ReHo values in the right

frontal middle orbital, which may reflect the enhance-

ment of language understanding in MBs. The middle

frontal gyrus is one-third of the frontal lobe, and is

involved in attention [48,49] and inhibitory errors [50].

The impairment of the middle frontal gyrus is related to

many diseases such as attention-deficit hyperactivity

disorder [51] and schizophrenia [52]. In our study, we

found that MB showed significantly increased ReHo

values in the left middle frontal gyrus. We surmised that

MB might lead to the dysfunction of the middle

frontal gyrus.

Conclusion
In summary, our results showed abnormal spontaneous

activities in many brain regions, which might reflect the

altered synchronous neural activity in the visual cortex

and other vision-related brain regions in MB. There are

some limitations to our study. First, the noise during the

MRI scanning might have some influence on the brain

activity in all participants. Second, we did not differ-

entiate different clinical outcomes of the MBs, such as

right eye blindness and left eye blindness. Third, MBs

can be caused by a variety of factors, such as ocular

trauma and keratitis, which might affect the accuracy of

the results. Future study should distinguish different

types of MBs to more accurately assess brain activities

and functional changes.
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